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Robust A1 superconductivity in the kagome lattice
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We theoretically studied the superconducting pairing in a single-orbital kagome lattice. By taking the electron-
electron correlation as the pairing mechanism, we obtained the spin and charge fluctuations based on the random-
phase approximation and calculated the preferred pairing function based on the linearized Eliashberg equation.
It turns out that the frequency dependence of the Eliashberg equation is of great importance in this model, and
may lead to spin-triplet and odd-frequency pairing state. We further found a robust A1 pairing symmetry, with
respect to the correlation strength and Fermi surface variation. This pairing state does not break the time-reversal
symmetry and can be nodal or nodeless. We concluded that, in the recently discovered kagome superconductors,
the preferred pairing symmetry is A1, even if the pairing originates from the electron-electron interaction.

DOI: 10.1103/PhysRevB.109.214501

I. INTRODUCTION

Recently, superconductivity has been found in a series
of materials AV3Sb5 (A = K, Rb, Cs) featuring the kagome
lattice structure [1–7]. These discoveries soon attracted much
attention among physics communities, because the kagome
band structures are very special. They host flat bands, Dirac
cones, and van Hove singularities at various electron fillings,
making them particularly suitable for studying the nontrivial
band topology, exotic Fermi surface instabilities, and super-
conductivity, as well as their interplay. Indeed, the normal
state band structures of the above kagome superconductors
are argued to feature a Z2 topological invariant [1,3], and a
charge density wave (CDW) has also been observed [8–13].

Regarding the superconductivity, it has been widely ob-
served that superconductivity gets enhanced once CDW is
suppressed by either doping [14–20] or pressure [5,6,21],
suggesting a competition between these two orders. However
currently there is no consensus about the superconducting
pairing symmetry. Some experiments suggest that the pair-
ing is nodal [22,23], while others indicate a nodeless pairing
[24–29], or even a nodal to nodeless transition [30]. In ad-
dition, whether the superconducting state itself breaks the
time-reversal symmetry is also controversial [30,31].

On the theoretical side, various superconducting pairing
mechanisms and symmetries have been proposed. The pair-
ing mechanisms are argued to be electron-phonon interaction
[32–34] or electron-electron correlation [35–41]. While the
former usually leads to conventional s-wave pairing symmetry
with a full gap structure [32,33], the latter, on the other hand,
predicts a variety of pairing symmetries, including s wave,
p wave, f wave, and even dx2−y2 + idxy wave that breaks
the time-reversal symmetry [35–41]. In addition, these pair-
ing symmetries and the gap nodes are very sensitive to the
strength of the electron correlation, as well as to a slight
change of the Fermi surface. Therefore, a comparison be-
tween the theoretical and experimental pairing symmetries is
difficult.

In this work, we also study the pairing symmetries in the
kagome lattice, when the Fermi level is slightly away from
the upper van Hove singularity, as in the above mentioned
kagome superconductors. We consider the electron-electron
correlation as the pairing mechanism, and solve the linearized
Eliashberg equation to obtain a sublattice-, momentum- and
frequency-dependent pairing function. We found a robust
A1 pairing symmetry that is not sensitive to the correlation
strength and Fermi surface shape, together with a possible
A1 odd-frequency triplet pairing in the phase space. In all we
obtained pairing functions that are real and do not break the
time-reversal symmetry. Complex pairing functions that do
break the time-reversal symmetry remain subleading and are
not the leading pairing function.

II. METHOD

We adopt a single-orbital tight-binding model of the
kagome lattice [36–40]. The noninteracting part of the Hamil-
tonian can be written as H0 = ∑

kσ ψ
†
kσ Mkψkσ , where ψ

†
kσ =

(c†
kAσ , c†

kBσ , c†
kCσ ) and

Mk =

⎛
⎜⎝

−μ εAB,k εAC,k

ε∗
AB,k −μ εBC,k

ε∗
AC,k ε∗

BC,k −μ

⎞
⎟⎠. (1)

Here c†
ksσ creates a spin σ (σ =↑,↓) electron with momentum

k on the sublattice s (s = A, B,C). In addition,

εAB,k = −[1 + e−i(k1−k2 )],

εAC,k = −(1 + e−ik1 ),

εBC,k = −(1 + e−ik2 ), (2)

where k1 = k · a1 and k2 = k · a2, with a1 and a2 being the
primitive
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vectors of the kagome lattice, which are

a1 = (1, 0),

a2 =
(

1

2
,

√
3

2

)
. (3)

Throughout this work, we take the nearest-neighbor hopping
integral as the energy unit and the lattice constant of the unit
cell as the length unit.

The interaction Hamiltonian can be written as Hint =
Honsite + HNN [35–38,40], where

Honsite = U
∑

i,s

nis↑nis↓, (4)

and

HNN = V

2

∑
i,s,i′,s′,σ,σ ′

nisσ ni′s′σ ′ . (5)

In Eqs. (4) and (5), nisσ = c†
isσ cisσ is the electron number

operator with spin σ at the sublattice s of the unit cell i and
(i′, s′) represents a lattice site which is a nearest-neighbor of
the lattice site (i, s).

The irreducible susceptibility is defined as Eq. (A1) and
can be expressed as [35]

χ
αβ,γ δ

0 (q) = −T

N

∑
k

Gγ β (k + q)Gαδ (k), (6)

where G(k) = (ipnI − Mk )−1 is the normal Green’s function
matrix, I is the unit matrix, T is the temperature and N is the
number of unit cells. Here q = (q, iωn) and k = (k, ipn), with
ωn = 2nπT and pn = (2n − 1)πT .

If an infinite number of pn are considered in the summa-
tion of Eq. (6), then the frequency summation can be done
analytically, which gives [35]

χ
αβ,γ δ

0 (q) = − 1

N

∑
k,η,ν

Qγ η

k+qQ∗βη

k+qQαν
k Q∗δν

k

× f
(
E ν

k

) − f
(
Eη

k+q

)
iωn + E ν

k − Eη

k+q

. (7)

Here E ν
k is the νth eigenvalue of Mk in Eq. (1) and Qk

is a unitary matrix that diagonalizes Mk. Finally, f (x) =
1/(ex/T + 1) is the Fermi distribution function.

Within the random-phase approximation (RPA), the spin
and charge susceptibilities χs(q) and χc(q) can be calculated
by Eq. (A2) [35].

Close to Tc, the linearized Eliashberg equation can be ex-
pressed as [42]

λφδβ (k) = −T

N

∑
q

∑
α,γ ,η,ν

Gαγ (k − q)Gνη(q − k)

×V νβ,αδ (q)φγη(k − q), (8)

where φ(k) is the anomalous self-energy, and the pairing
interaction V (q) is

1
2 [3Usχs(q)Us − C(q)χc(q)C(q) + Us + C(q)] (9)

for spin singlet pairing and

− 1
2 [Usχs(q)Us + C(q)χc(q)C(q) − Us − C(q)] (10)

for spin triplet pairing. At this stage, the derivation is standard
without qualitative difference with respect to previous stud-
ies [35,36,41]. However, instead of neglecting the frequency
dependence of φ(k) [35,36] or considering only those k on
the Fermi surface [35,36,41], we solve Eq. (8) without further
approximation by the power method [43] to find the largest
positive eigenvalue λmax and Tc is reached when λmax reaches
1. In this way, the sublattice, momentum, and frequency-
dependence of φ(k) can all be solved self-consistently. The
reason why previous studies adopted the above approxima-
tions is because solving Eq. (8) straightforwardly is much
more time and memory consuming. However, by adopting
those approximations, either the frequency dependence of the
pairing function or the contribution of those k points away
from the Fermi surface will be lost.

In the iterative process, due to the anticommutation relation
of the fermions, the initial input φ(k) should satisfy

φαβ (k, ipn) = φβα (−k,−ipn) (11)

for spin singlet pairing and

φαβ (k, ipn) = −φβα (−k,−ipn) (12)

for spin triplet pairing.
After convergence, the anomalous self-energy in the band

basis �(k) is calculated as

�(k) = Q†
kφ(k)Q∗

−k = Q†
kφ(k)Qk. (13)

Similarly, we should have

�αβ (k, ipn) = �βα (−k,−ipn) (14)

for spin singlet pairing and

�αβ (k, ipn) = −�βα (−k,−ipn) (15)

for spin triplet pairing.
In the following, we adjust the chemical potential μ in

Eq. (1) to ensure the electron filling 〈n〉 = (5/12 + 0.02) × 2.
Here

〈n〉 = 1

NsublatticeN

∑
k,s,σ

〈c†
ksσ cksσ 〉

= 2

NsublatticeN

∑
k,s

Gss(k,−0+)

= 2T

NsublatticeN

∑
k,s,pn

Gss(k, ipn)eipn0+
, (16)

where Nsublattice denotes the number of sublattices in the unit
cell, which is 3 in the present model. Then by using the
relation [44]

T
∑

pn

Gss(k, ipn)eipn0+ = 1

2
+ T

∑
pn

Gss(k, ipn) (17)
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we have

〈n〉 = 1

NsublatticeN

∑
k,s

1 + 2T

NsublatticeN

∑
k,s,pn

Gss(k, ipn)

= 1 + 2T

NsublatticeN

∑
k,s

Gss(k). (18)

The reason we adopt such an electron filling is because,
at 〈n〉 = 5/12 × 2, the Fermi level is located exactly at the
upper van Hove singularity at M, and the Fermi surface forms
a perfect hexagon. In this case, the Fermi surface is perfectly
nested and may lead to various density-wave orders instead of
superconductivity. Since we are more concerned with super-
conductivity, we slightly change the value of 〈n〉 away from
5/12 × 2, so the Fermi level is not located at the van Hove
singularity and the Fermi surface is not perfectly nested. In
addition, it is experimentally observed that, when the optimal
superconductivity is reached, the Fermi level is not at the van
Hove singularity [14–16,18,20].

The number of unit cells is set to be N = 64 × 64 and
we use 16 384 Matsubara frequencies (−16 383πT � pn �
16 383πT and −16 382πT � ωn � 16 384πT ). The tem-
perature T is set to be T = 0.01. The summations over
momentum and frequency are both done by fast Fourier trans-
formation (FFT).

III. RESULTS AND DISCUSSION

First, in Figs. 1(a) and 1(b) we show the Fermi surface and
band structure in our subsequent calculation. At this electron
filling, the Fermi surface is not perfectly hexagonal, therefore
the nesting condition is less satisfied. It may suppress various
density-wave orders related to Fermi surface nesting, while
superconductivity can emerge upon their suppression. The
chemical potential μ ≈ 0.08 is solved according to Eq. (18)
and the eigenvalues of Eq. (1) along the high-symmetry direc-
tions are shown in Fig. 1(b). The Fermi level (the Es

k = 0 line)
is close to the upper van Hove singularity at M.

Second, since the summation of frequency [either pn in
Eq. (6) or ωn in Eq. (8)] is done by FFT in our calculation,
we have to verify that this approximation does not lead to
appreciable deviation from the analytical results. This is done
by comparing the results obtained by FFT of Eq. (6) and the
analytical results of Eq. (7). At a given q = (q, iωn), χ0 is
a 9 × 9 Hermitian matrix. We denote its largest eigenvalue
as α. In Fig. 1(c), we show α calculated at ωn = 0, with q
along the high-symmetry directions. We can see that the FFT
result of Eq. (6) and the analytical result of Eq. (7) agree with
each other, suggesting that the FFT can give reliable χ0 at
ωn = 0. The largest peak of α is located close to M, and we
denote this momentum as q = Q. Furthermore, in Fig. 1(d)
we show α calculated at q = Q, for varying ωn. We can see
that the FFT and analytical results also agree with each other,
with only minor quantitative deviation in the large |ωn| region
(as denoted by the two rectangles). However in this region,
α is extremely small and such a deviation will not affect the
following results qualitatively. Besides this region, the two
results agree quite well, as shown in the inset of Fig. 1(d).
Therefore, we conclude that the FFT used in our calculation
can indeed approximate the summation over infinite number

FIG. 1. (a) The Fermi surface at the electron filling 〈n〉 =
(5/12 + 0.02) × 2 (red); the thick black lines are the boundaries
of the first Brillouin zone. The black dotted lines indicate the
high-symmetry directions. (b) The eigenvalues of Eq. (1) along the
high-symmetry directions. (c) The largest eigenvalue of the matrix
χ0(q, iωn = 0) along the high-symmetry directions. (d) The largest
eigenvalue of χ0(Q, iωn) for varying ωn. The two rectangles enclose
areas where the FFT and analytical results show minor deviation.
The inset in (d) shows the largest eigenvalue of χ0(Q, iωn) for
0 � ωn/(πT ) � 103.

of frequencies and that the results presented below are reli-
able.

Then we set the interaction strength U and V as tun-
ing parameters to study their effect on the spin and charge
susceptibilities, as well as on the superconducting pair-
ing symmetry. In the following, we set U = 1, 1.5, 2, V =
0.25, 0.5, 1 and consider their different combinations. For a
given q = (q, iωn), χs and χc defined in Eq. (A2) are both
9 × 9 Hermitian matrices and we denote their largest eigen-
values as αspin and αcharge, respectively. From Eqs. (A2)–(A4)
we can see that αspin depends only on U , but not on V , while
αcharge depends on both U and V . Figure 2(a) shows αspin cal-
culated at ωn = 0, with q along the high-symmetry directions.
As U increases, αspin is enhanced, as expected, since it is well
known that the on-site Hubbard interaction can enhance the
spin susceptibility. In addition, there are three major peaks:
one is close to M and the other two are close to �. They are all
present in the bare susceptibility (U = 0) and all get enhanced
by increasing U . None of these peaks overwhelmingly wins
over the other two, indicating that the momentum structure
of the spin susceptibility is highly competing. Figures 2(b)
and 2(c) show αcharge calculated in the same way as αspin

in Fig. 2(a). Generally, the momentum structure of αcharge is
similar to αspin. However, αcharge is suppressed by increasing
U and enhanced by increasing V , which is also as expected.
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FIG. 2. (a) The largest eigenvalue of the matrix χs defined in Eq. (A2), calculated at ωn = 0 and q along the high-symmetry directions.
(b) and (c) are similar to (a), but for χc. (d) The superconducting pairing symmetry as a function of U and V .

For most of the interaction strength, αspin > αcharge, indicating
a dominant spin fluctuation over the charge one. However at
(U,V ) = (1, 1) and (1.5,1), αcharge surpasses αspin and in these
two cases there appears an appreciable peak located exactly at
� in αcharge.

Finally we come to the superconducting pairing symmetry.
As mentioned above, we solve Eq. (8) by using two different
pairing interactions, presented in Eqs. (9) and (10), together
with two different initial input φ(k) satisfying Eqs. (11) and
(12). Therefore for a given (U,V ), we can get two λmax: one
for the spin singlet pairing and the other one for the spin triplet
pairing. The one with larger λmax is the preferred pairing. Fig-
ure 2(d) shows the preferred pairing symmetry as a function of
U and V , while the corresponding λmax is shown in Figs. 3(a)
and 3(b). Having determined the spin singlet/triplet nature
of the pairing, the converged φ(k) then indicates the pairing
function in momentum, frequency and sublattice space. By
carefully checking the numerical results, we find that φ(k)
satisfies the following relations:

φ(k, ipn) =
{
φ(k,−ipn) for spin singlet pairing,

−φ(k,−ipn) for spin triplet pairing.
(19)

That is, the pairing is either spin singlet and even frequency
or spin triplet and odd frequency [45]. We then transform

φ(k) to the band basis according to Eq. (13). Since in the
present model only band 2 crosses the Fermi level, in the
following we show only �22(k, ipn) at the lowest positive
Matsubara frequency (pn = πT ), which can approximate the
pairing function at the Fermi level.

When the spin fluctuation is much larger than the charge
one (αspin 
 αcharge), e.g., at (U,V ) = (2, 0.25), spin sin-
glet and even-frequency pairing are preferred. We show

1.0 1.5 2.0
0.00

0.04

0.08

0.12

1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

U

V=0.25, singlet
V=0.25, triplet
V=0.5, singlet
V=0.5, triplet

(a)

U

V=1, singlet
V=1, triplet

(b)

FIG. 3. The largest positive eigenvalue λmax of Eq. (8). (a) is for
U = 1, 1.5, 2 and V = 0.25, 0.5. (b) is for U = 1, 1.5, 2 and V = 1.
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FIG. 4. Left panels: �22(k, iπT ) calculated at (U,V ) =
(2, 0.25) (a), (1,1) (c), and (1,0.5) (e). Right panels: �22(kF , iπT )
calculated at (U,V ) = (2, 0.25) (b), (1,1) (d), and (1,0.5) (f). The
thick black lines are the boundaries of the first Brillouin zone.
The black arrows in (b) denote the gap nodes on the Fermi surface,
while the one in (f) indicates the specific Fermi momentum at which
we performed a Padé approximation.

�22(k, iπT ) in Fig. 4(a). By using the convention of Ref. [36],
we characterize the pairing symmetry in terms of the irre-
ducible representation of the C6v point group, and we can
see that the pairing symmetry is A1 with sign change in
the Brillouin zone. On the Fermi surface, there is also sign
change in �22(kF , iπT ), where kF is the Fermi momentum
[see Fig. 4(b)]. There are 12 gap nodes on the Fermi surface,
whose locations are denoted by the black arrows and their
counterparts by a π

3 rotation. We denote this pairing as nodal
A1 even-frequency singlet. In this case, φ(k, iπT ) can be fitted
to Eqs. (B1)–(B3). The fitting results are shown in Figs. 5(a)
and 5(b) for comparison. The pairing is on the same sublattice
and is composed of on-site and higher order lattice harmonics
between several unit cells.

When the charge fluctuation is much larger than the spin
one (αcharge 
 αspin), e.g., at (U,V ) = (1, 1), spin singlet and

FIG. 5. (a) and (b) are the fitting results of Eqs. (B1), (B2), and
(B3). (c) and (d) are the fitting results of Eq. (B4). (e) and (f) are the
fitting results of Eq. (B5).

even-frequency pairing are still preferred. �22(k, iπT ) shown
in Fig. 4(c) suggests the pairing is still A1, with slight sign
change in the Brillouin zone. However on the Fermi surface,
there is no sign change in �22(kF , iπT ) [see Fig. 4(d)]. We
denote this pairing as nodeless A1 even-frequency singlet.
φ(k, iπT ) can be fitted to Eq. (B4) and the fitting results
are shown in Figs. 5(c) and 5(d). It indicates the pairing is
also on the same sublattice and is still composed of on-site
and higher order lattice harmonics. However in this case, the
on-site component is enhanced compared to Eq. (B3).

The above two scenarios can be understood as follows.
For spin singlet pairing, the pairing interaction from the spin
fluctuation is 3

2Usχs(q)Us. It is repulsive and can lead to
a sign-changing gap function on the Fermi surface. There-
fore if the spin fluctuation is dominant, we have nodal A1

even-frequency singlet pairing. On the contrary, the pairing in-
teraction from the charge fluctuation is − 1

2C(q)χc(q)C(q). It
is attractive and can lead to a sign-preserving gap function on
the Fermi surface. Therefore, if the charge fluctuation is dom-
inant, we have nodeless A1 even-frequency singlet pairing.
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FIG. 6. (a) The frequency dependence of �22(kF , ipn) at a spe-
cific kF indicated by the black arrow in Fig. 4(f). (b) Analytic
continuation of �22(kF , ipn) by means of a 1024-point Padé approxi-
mation. The pairing function is the nodeless A1 odd-frequency triplet
at (U,V ) = (1, 0.5).

When the spin and charge fluctuations are comparable
(αspin ≈ αcharge), λmax of the spin triplet pairing can be close to
or even larger than that of the spin singlet one. For example,
at (U,V ) = (1, 0.5), spin triplet and odd-frequency pairing
are preferred. In this case, the pairing symmetry is still A1

and there is no sign change of the pairing function on the
Fermi surface [see Figs. 4(e) and 4(f)]. We thus denote this
pairing as nodeless A1 odd-frequency triplet. φ(k, iπT ) in
this case can be fitted to Eq. (B5), with the fitting results
shown in Figs. 5(e) and 5(f). From Eqs. (B4) and (B5) it
can be seen that the nodeless A1 even-frequency singlet and
the nodeless A1 odd-frequency triplet have similar momen-
tum dependence. However, their frequency dependences are
opposite: one is even frequency while the other one is odd fre-
quency. In addition, for this nodeless A1 odd-frequency triplet,
we have verified numerically that the magnitude of φ(k, iπT )
is comparable to the magnitude of φ(k, ipn) with pn �= πT ,
indicating that the pairing function is finite on the Fermi level
and the quasiparticle spectrum is indeed fully gapped. For
example, at a specific kF indicated by the black arrow in
Fig. 4(f), we plot the frequency dependence of �22(kF , ipn)
in Fig. 6(a), an odd-frequency dependence is clearly seen.
We then use a 1024-point Padé approximation to perform an
analytic continuation of �22(kF , ipn) down to pn = 0+, as
shown in Fig. 6(b). Clearly, �22(kF , i0+) �= 0, indicating that
�22(kF , ipn) is discontinuous at pn = 0.

This spin-triplet, odd-frequency and even-parity pairing
function has not been found in previous studies of the kagome
lattice with a similar method [35,36]. Instead they found
spin-triplet and odd-parity pairing states such as f -wave and
p-wave states. The reason is that, in Refs. [35] and [36], the
frequency-dependence of the pairing function is neglected,
which means that it is assumed to be even frequency. How-
ever, this peculiar pairing state is an allowed one [45] and can
show up once the frequency dependence of Eq. (8) is taken
into account.

For one single sublattice, e.g., the A sublattice, the pairing
function fAA,k in Eqs. (B3)–(B5) does not respect the A1

symmetry. However, since

�22(k, iπT ) = �22(k1, k2, iπT )

=
∑
α,β

Q†2α
k φαβ (k, iπT )Qβ2

k

-1 0 1

-1

0

1

-1 0 1

-1

0

1
(a)

k y
/π

kx/π

-1 0 1

(b)

k y
/π

kx/π

FIG. 7. (a) Re�22(k, iπT ) and (b) Im�22(k, iπT ) correspond-
ing to the second largest positive eigenvalue of Eq. (8), calculated at
(U,V ) = (2, 0.25) and for the spin singlet case.

=
∑

α

∣∣Qα2
k

∣∣2
φαα (k, iπT )

= ∣∣Q12
k

∣∣2
fAA(k1, k2) + ∣∣Q22

k

∣∣2
fBB(k1, k2)

+ ∣∣Q32
k

∣∣2
fCC (k1, k2), (20)

the properties fBB,k = fAA(k2, k1) and fCC,k = fAA(k1, k1 −
k2) guarantee that �22(k, iπT ) stays invariant as k rotates 2π

3 ,
leading to the A1 pairing symmetry in the band basis.

At some values of U and V , e.g., at (U,V ) = (2, 1) and
(1.5,0.5), nodal A1 even-frequency singlet and nodeless A1

odd-frequency triplet are degenerate within our numerical
accuracy. Thus we denote these two cases as degenerate in
Fig. 2(d).

All the pairing functions φ(k) we obtained above are real,
up to a global phase, thus the superconducting state itself does
not break the time-reversal symmetry. In addition, by using
the numerical technique called deflation, together with the
power method, we can calculate the second largest positive
eigenvalue λsecond of Eq. (8) and the corresponding φ(k).
For example, at (U,V ) = (2, 0.25) and for the spin singlet
case, the second largest positive eigenvalue λsecond ≈ 0.08 and
the corresponding pairing function �22(k, iπT ) are shown in
Fig. 7. We can see that the momentum structure of the real and
imaginary parts of �22(k, iπT ) are different, thus it cannot be
taken as real and this pairing function breaks the time-reversal
symmetry. However since λ of this pairing is smaller, it is not
the preferred pairing compared to the nodal A1 even-frequency
singlet shown in Fig. 4(a).

IV. SUMMARY

We investigate the possible superconducting pairing in
a single-orbital model of the kagome lattice. By taking
into account the on-site and nearest-neighbor interactions,
the spin and charge fluctuations are obtained based on the
RPA. We then solve the full momentum-, sublattice-, and
frequency-dependent superconducting pairing function from
the linearized Eliashberg equation. Our results suggest that,
depending on the values of the interaction strength, there
exist two kinds of superconducting pairing: one is spin singlet
and even frequency, while the other one is spin triplet and
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FIG. 8. Similar to Figs. 4(a) and 4(b), but at 〈n〉 = (5/12 +
0.06) × 2. The black arrows in (b) denote the gap nodes on the Fermi
surface.

odd frequency. Although the spin and frequency dependences
of these two pairings are opposite, the momentum depen-
dence of both respects A1 symmetry. This A1 symmetry is
very robust and prevails for moderate interaction strength.
In addition, it may be nodal or nodeless, depending on the
relative strength of the spin and charge fluctuations. A slight
variation of the Fermi surface by doping does not change the
main conclusions as well. For example, if the electron fill-
ing is increased to 〈n〉 = (5/12 + 0.06) × 2 (corresponding to
further electron-doped case), or decreased to 〈n〉 = (5/12 −
0.02) × 2 (corresponding to hole-doped case), the size and
shape of the Fermi surface will vary slightly. In this case,
at (U,V ) = (2, 0.25) and for spin singlet pairing, we plot
�22(k, iπT ) and �22(kF , iπT ) in Figs. 8 and 9. Compared
to Figs. 4(a) and 4(b) we can see that the pairing is still nodal
A1 even-frequency singlet. Thus, the A1 pairing symmetry is
not only robust to the interaction strength, but also to slight
variation of the Fermi surface.

In the present study, we adopt the RPA, which neglects the
renormalization of the normal and anomalous self-energies
to the Green’s function. In the future, we will use the
fluctuation-exchange technique to investigate this effect. Fur-
thermore, the experimental consequences of the possible spin
triplet and odd-frequency pairing will also be studied. The
odd-frequency order may lead to different Josephson effect
as compared to the even-frequency one; see Sec. IV H 1 and
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FIG. 9. Similar to Fig. 8, but at 〈n〉 = (5/12 − 0.02) × 2.

references therein in Ref. [45]. For example, the Josephson
effect between an odd-frequency superconductor and an even-
frequency one may have a different current-phase relation,
compared to that of two even-frequency superconductors. In
addition, the conductance of a diffusive junction consisting
of a normal metal in contact with an s-wave triplet odd-
frequency superconductor may also show different behaviors
as compared to the even-frequency superconductor. In con-
trast, the odd-frequency order will not lead to an unusual
Meissner response and is thus also thermodynamically stable
(see Sec. IV E and references therein in Ref. [45]). Therefore,
we propose to use the Josephson junction or normal-metal–
superconductor junction to probe the possible odd-frequency
order in the kagome superconductors. Here we need to point
out that if the frequency dependence is neglected in solv-
ing the Eliashberg equation, as in Refs. [35] and [36], the
odd-frequency pairing will never show up. Finally, this work
presents the preliminary results of the superconducting pair-
ing in a single-orbital kagome lattice; the material specific
multiorbital model will also be investigated in detail soon. For
example, in Ref. [46], a circular Sb-derived pocket centered
around the � point is revealed, which might be crucial to
understand the superconducting properties of this system. The
angle-resolved photoemission spectroscopy (ARPES) data
also indicate that the hexagonal-shaped Fermi surface sheet
is influenced by t ′ (substantial curvature). We will investigate
these effects in detail in the future.

APPENDIX A: RPA METHOD

The irreducible susceptibility is defined as

χ
αβ,γ δ

0 (q) = 1

2N

∫ 1/T

0
dτ eiωnτ

∑
k,k′,σ,σ ′

× 〈Tτ c†
k+qασ (τ )ckβσ (τ )c†

k′−qγ σ ′ (0)ck′δσ ′ (0)〉.
(A1)

Within the RPA, the spin and charge susceptibilities are
written as [35]

χs(q) = [I − χ0(q)Us]
−1χ0(q),

χc(q) = [I + χ0(q)C(q)]−1χ0(q), (A2)

where the nonzero matrix elements of Us and C(q) are

U αβ,γ δ
s = U, α = γ = δ = β, (A3)

and

Cαβ,γ δ (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U, α = γ = δ = β,

2V [1 + ei(q1−q2 )], α = β = 1, γ = δ = 2,

2V (1 + eiq1 ), α = β = 1, γ = δ = 3,

2V [1 + e−i(q1−q2 )] α = β = 2, γ = δ = 1,

2V (1 + eiq2 ), α = β = 2, γ = δ = 3,

2V (1 + e−iq1 ), α = β = 3, γ = δ = 1,

2V (1 + e−iq2 ), α = β = 3, γ = δ = 2.

(A4)

Here q1 = q · a1 and q2 = q · a2.
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APPENDIX B: FITTING OF φ(k, iπT )

For the cases shown in Fig. 4, φ(k, iπT ) can be fitted to

φ(k, iπT ) =
⎛
⎝ fAA,k 0 0

0 fBB,k 0
0 0 fCC,k

⎞
⎠, (B1)

where

fAA,k = fAA(k1, k2),

fBB,k = fBB(k1, k2) = fAA(k2, k1),

fCC,k = fCC (k1, k2) = fAA(k1, k1 − k2). (B2)

At (U,V ) = (2, 0.25),

fAA,k ≈ 0.48 − [cos(3k1 − k2) + cos(3k1 − 2k2)]

+ 0.79 cos(2k1 − k2) + 0.68 cos(4k1 − 2k2)

+ 0.52[cos(4k1 − k2) + cos(4k1 − 3k2)]

+ 0.44[cos(k1 − k2) + cos k1] − 0.26 cos k2

− 0.25[cos(5k1 − k2) + cos(5k1 − 4k2)]

− 0.24[cos(2k1 − 2k2) + cos(2k1)]

− 0.2[cos(5k1 − 2k2) + cos(5k1 − 3k2)]. (B3)

At (U,V ) = (1, 1),

fAA,k ≈ 1 − 0.84[cos k1 + cos(k1 − k2)]

+ 0.3[cos(2k1) + cos(2k1 − 2k2)] − 0.23 cos k2

− 0.16[cos(3k1) + cos(3k1 − 3k2)]. (B4)

At (U,V ) = (1, 0.5),

fAA,k ≈1 − 0.69[cos k1 + cos(k1 − k2)]

+ 0.34 cos k2 + 0.16[cos(2k1) + cos(2k1 − 2k2)].

(B5)
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