
PHYSICAL REVIEW B 109, 214438 (2024)

Giant caloric effects in spin-chain materials
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The giant electro- and elastocaloric effects in spin-chain materials are predicted. The theory is based on the
exact quantum mechanical solution of the problem. It is shown that the giant jumps in the entropy and the
temperature caused by the caloric effect are weakly affected by the initial temperature. The effect can be used
for the cooling of new quantum devices (like systems of qubits in quantum computers). On the other hand, since
large changes are predicted in the narrow neighborhood of the critical point, the predicted effect can be used in
ultrasensitive electric and stress sensors for modern microelectronics.
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I. INTRODUCTION

According to the data of the International Institute of Re-
frigeration, nowadays cooling demands about 17% of the total
used energy [1–3]. The prompt urbanization implies that the
part of the energy consumed for the refrigeration will grow
considerably [2]. Therefore, the quest for novel refrigeration
techniques is among the most important goals of modern
energy science. The standard approach for cooling is the vapor
compression. In that method, the refrigeration is the result
of expansion of previously compressed gaseous refrigerant,
repeated in a cyclic way. That way of cooling is widely
used, being well developed, and relatively highly effective. On
the other hand, the unavoidable losses of the energy caused
by, e.g., the superheating of the compressing refrigerant, or
the expansion in the valve, controlling the flow of the gas
stream, etc., demand the search of alternative cooling tech-
nologies. Among various approaches, caloric refrigeration is
the promising one [3], especially for a low-temperature us-
age. The nature of magneto-, electro-, and mechanocaloric
effects [4,5] is in the reduction of the temperature of a sys-
tem subjected to an adiabatic external magnetic or electric
field, and for the mechanocaloric effect an applied pressure
(barocalorics), or a uniaxial strain (elastocalorics). Similar to
the vapor compression method, the caloric effect can be used
in the thermodynamic cycle [6]. While the application of the
caloric effect for cooling of large industrial subjects is still not
commercially viable, it can be used for the refrigeration of
supercomputers based on superconducting devices, or quan-
tum computers, which need low temperatures. From the pure
research side, the caloric effect can be applied for reaching
ultralow temperatures, which cannot be obtained using other
methods.
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Magneto-, electro-, and mechanocaloric effects are the
manifestation of laws of thermodynamics. For systems in
thermodynamic equilibrium adiabatic variations of governing
external parameters (magnetic and electric fields or stress)
produce changes of the temperature and entropy of the sys-
tem. The largest changes of the temperature and entropy
are expected at phase transitions, where properties of matter
are renormalized drastically under the action of relatively
small variations of external parameters. In low-dimensional
systems, fluctuations at phase transitions are strengthened
compared to the standard three-dimensional ones. However,
the precise role of low-dimensional enhancement in caloric
effects is not well understood yet.

In this study we show that electro- and elastocaloric effects
in quantum spin-chain materials can be colossal. We show
that despite relatively weak couplings between spin, electric,
and elastic subsystems, the changes of the temperature and
entropy in mentioned caloric effects can be very large, of
order of the strongest value of the exchange integral for the
spin-spin coupling along the distinguished direction. Our re-
sults demonstrate how the electric field- and strain-induced
spin nematicity in the vicinity of the quantum phase transition
affects the entropy. We show that huge jumps of the entropy
and the temperature caused by the caloric effects in quantum
spin-chain materials are weakly affected by the tempera-
ture, due to strong quantum fluctuations. The predicted giant
caloric effects can be harnessed for cooling down to ultracold
temperatures. We anticipate that those effects can be adopted
for cooling of modern supercomputers (e.g., superconducting
ones), and of ensembles of quantum bits (qubits) in quantum
computers, where low temperatures provide the reduction of
noise and quantum decoherence. Also the predicted effects
can be used for production of ultrasensitive sensors for the
electric field and mechanical stress.

II. CALORIC EFFECT

From thermodynamics we know that the isothermal change
of the entropy S of the system in equilibrium under adiabatic
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changes of external parameter a at the fixed internal thermo-
dynamic variable b, thermodynamically conjugated to a, can
be written as

�S (a1 → a2) = −
∫ a2

a1

da

(
∂b

∂T

)
a

, (1)

where T is the temperature. For example, for the magne-
tocaloric effect, a is the external magnetic field H and b is the
magnetization of the system M, for the electrocaloric effect, a
is the external electric field E and b is the electric induction D,
and for the elastocaloric effect, the stress σ plays the role of b,
and the strain ε is a. The Maxwell relation implies that in the
thermal equilibrium αa = (∂b)/(∂T )|a = (∂S )/(∂a)|T . The
value αa is the expansion coefficient, related to the variation
of a. The change of the temperature for the caloric effect, in
turn, can be presented as

�T (a1 → a2) =
∫ a2

a1

da
T

(a2 − a1)ca

(
∂b

∂T

)
a

, (2)

where ca is the specific heat at the fixed value of a. For
the quantitative description of the caloric effect one uses the
Grüneisen ratio

�a =
(

∂S
∂a

)
T

ca
= αa

ca
, (3)

which was originally introduced a long time ago [7] for the
Einstein model to study the quantitative characteristics of the
effect of volume change of a crystal lattice on its vibrational
frequencies. The Grüneisen ratio determines the renormaliza-
tion of the entropy under adiabatic changes of a for the caloric
effect.

It is clear from those equations that to get the maximal
caloric refrigeration effect one needs to use systems with
the small specific heat, and systems, in which the changes
of the internal thermodynamic variable b are the largest for
the variation of the external parameter a from a1 to a2.
The natural conditions for the latter is to use systems near
phase transitions, governed by the external parameter a. It
is well known that some phase transitions are characterized
by the drastic changes of the state of the system under rel-
atively small variations of the external parameters. For the
small specific heat it is natural to chose the quantum sys-
tem with excitations with activation. For those systems, the
specific heat is exponentially small at temperatures lower
than the value of the energy gap, necessary to activate an
excited state.

III. CALORIC EFFECTS IN SPIN CHAINS

Among other systems, quantum one-dimensional spin-
1/2 ones play the special role. (Quasi-)one-dimensional
systems are ones in which an interaction between ions in
one space direction is much stronger than in the other
directions. First, for those systems, fluctuations (which pro-
vide phase transformations) are enhanced comparing to the
usual three-dimensional ones due to the peculiarities in the
density of states. Those fluctuations often destroy order-
ing in one-dimensional systems [8,9]. Then, for quantum
one-dimensional systems, one can use the great number of

theoretical results, often exact. Such results are mostly un-
available for three-dimensional systems. Last but not least,
recent technological progress in fabrication of novel materials
with demanded properties permitted to obtain numerous sys-
tems with one-dimensional properties, including spin chain
materials.

Consider the spin-1/2 chain system with the Hamiltonian

H0 =
∑

n

[
J
(
Sx

nSx
n+1 + Sy

nSy
n+1

) + JzSz
nSz

n+1

]
. (4)

Here, Sx,y,z
n are the operators of the components of spins

1/2 situated at the site n of the chain, J are the exchange
constants, and Jz �= J determines the magnetic anisotropy of
the exchange interaction. Thermodynamic characteristics of
the system with the Hamiltonian H0 do not depend on the
sign of J [10]. The free energy of the system is F (|Jz|, T )
for Jz > 0, i.e., for the antiferromagnetic interactions, and
it is −F (|Jz|,−T ) for Jz < 0, i.e., for the ferromagnetic in-
teractions. Then for convenience we introduce the following
notations: � = Jz/J and t = kBT/J (we do not study the
time dependence in our work, hence there must be no con-
fusion with the standard notations for time), where kB is the
Boltzmann constant. It is known that in the ground state
(T = 0) quantum phase transitions take place in the sys-
tem. For � < −1 the chain is ferromagnetically ordered; for
� > 1 it is ordered antiferromagnetically, and for −1 < � <

1 the system is disordered [11,12]. It means that � = ±1
are quantum critical points [13]. All eigenvalues of the con-
sidered quantum system can be obtained exactly using the
Bethe ansatz [11]. Performing exact calculations for the free
energy of the system (see Appendix A) we obtain necessary
results for the entropy of the spin chain for calculations of the
caloric effects.

Magnetocaloric effect for such a system is well studied
theoretically, see, e.g., Refs. [14,15]. Here we concentrate
on the elastocaloric and electrocaloric effects, where the for-
mer is associated with a strain and the latter on including
an external electric field in a linear approximation. First, let
us consider the strain εzz. It produces shifts of the magnetic
ions themselves, or neighboring nonmagnetic ions (ligands)
involved in the indirect exchange coupling [16]. In the main
linear approximation such a strain renormalizes the exchange
parameter of the spin chain as Jz → Jz(1 − fzzεzz ), where
fzz = (∂Jz/∂Rz ) is the component of the tensor of the mag-
netoelastic interaction, Rz is the component of the coordinate
of the magnetic ion. The electrocaloric effect can take place
in crystals, in which magnetic ions are situated not in the
center of inverse [17]. The external electric field in such
a system shifts ions one with respect to other. It produces
the change of the effective exchange interaction between
magnetic ions. In the linear approximation the electric field
Ei (i = x, y, z) renormalizes the exchange parameter of the
spin chain as Jz → Jz(1 − hizzEi ), where hizz is the compo-
nent of the tensor of the electromagnetic interaction. The
external electric field or the distortion change the popula-
tion imbalance for spins and results in the cooling of the
system.

Considered magnetoelastic and electromagnetic couplings
renormalize only one parameter of the spin Hamiltonian Jz =
J�. For convenience we introduce the parameter d = � −
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FIG. 1. The dependence of the entropy S of the spin chain per
site on the magnetic anisotropy parameter d = � − sign(�) at dif-
ferent values of dimensionless temperature t = kBT/J .

sign(�), which determines the deviation from the isotropic
exchange interaction, i.e., from quantum critical points caused
by the external electric field Ei or the strain εzz. From
now on we consider the antiferromagnetic chain � > 0 (the
ferromagnetic case can be studied analogously). The param-
eter d is an effective field which acts on the component
of the interion spin-quadrupole order parameter, responsi-
ble for the spin nematicity of the system [18]. To remind,
unlike a spin-dipole order parameter, which is the vector,
the spin-nematic order parameter is a director (similar to
the situation in organic liquid crystals [19]), and breaks
the rotational symmetry in the system. In what follows
we will consider d as the external governing parameter a,
since it depends on the strain εzz or the electric field Ei.
Obviously, one has (∂/∂Ei ) = −hizz(∂/∂d ) and (∂/∂εzz ) =
− fzz(∂/∂d ). The component of the intersite spin-quadrupole
moment 〈Sz

nSz
n+1〉 − (1/3)〈Sn · Sn+1〉 plays the role of the

internal parameter b, conjugated to d [18] (the role of
a plays the anisotropy parameter d , i.e., Sa → Sd , ca →
cd , αa → αd and �a → �d ). For d = 0 the spin nematicity
is zero.

IV. RESULTS

The main results are presented in Figs. 1–4. First, the cal-
culation of the entropy of the spin chain per site as a function
of d for various values of temperature from the nonlinear
integral equations, which exactly describe thermodynamics
(see Appendix A) manifests jumps in S (d ) at d = 0 for
T �= 0, see Fig. 1. This is why the expansion coefficient αd

per site, which is the derivative of S (d ) with respect to d ,
and the Grüneisen ratio �d per site, proportional to αd , man-
ifest the δ-functionlike feature at d = 0, see Figs. 2 and 3,
respectively. Figure 4 presents the results for the change of
the temperature per site �t , caused by the adiabatic change of
d . All these dependencies were obtained for several values of
the temperature: t = T/J = 0.1, 0.25, 0.5, 0.75, 1. We stress
that the results are exact.

FIG. 2. The dependence of the expansion parameter αd of the
spin chain per site on the magnetic anisotropy parameter d at
different values of temperature t . Wide vertical lines demonstrate
schematically δ-functionlike feature at d = 0.

The jump of the entropy (which grows with the tempera-
ture) causes the features of the caloric effect in the quantum
spin-chain material: The changes of the expansion param-
eter and the Grüneisen ratio (Figs. 2 and 3) at d = 0 are
huge (of order of the exchange constant). They exist for a
large temperature range, not only in the ground state, as
for magnetocaloric effect for spin chains [14,15]. Even the
large value of the specific heat cannot overcome the growth
of the Grüneisen ratio. The increase of the temperature (to
remind, the temperature in our calculations is measured in
the units of the exchange integral) does not remove the gi-
ant renormalization of the entropy at the quantum critical
point, and does not lead to broadening of the entropy jump.

FIG. 3. The dependence of the Grüneisen parameter �a [see
Eq. (3) with a = d] of the spin chain per site on the mag-
netic anisotropy parameter d at different values of temperature t .
Wide vertical lines demonstrate schematically δ-functionlike feature
at d = 0.
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(a)

(b)

FIG. 4. (a) The dependencies of the temperature change �t [see
Eq. (2) with a = d] per site of the spin chain on the change of
magnetic anisotropy parameter δd at different values of temperature
t . In the considered region of d ∈ (0, 0.3) the value of �t changes
its sign in the case of the initial temperature t = 0.1 only. (b) The
same dependencies in variables (δd δt

t , δd ). It can be seen that the
magnitude of the caloric effect is from ≈0.7 for t = 0.1 up to ≈0.85
for t = 1.0.

It is the manifestation of quantum fluctuations enhancement
by the quantum critical point at nonzero temperatures [20].
The temperature renormalization for the caloric effect (see
Fig. 4) is of the order of the exchange constant (the values for
the temperature renormalization �t obviously do not depend
on the parameters of the magnetoelastic and electromagnetic
couplings). Notice that according to Ref. [21] and references
therein, the term “giant” is attached to the materials with the
first-order phase transition. In our case one has the jump of the
entropy, the first derivative of the thermodynamic potential,
hence we use the term “giant” for the studied effect. We can
see from Fig. 4 that the renormalization of the temperature

caused by the considered caloric effect can be of order of the
initial temperature.

Now we present some analytic results for the caloric
effect in the quantum antiferromagnetic spin-chain mate-
rial. Using the known series (see Appendix B) at low
temperatures T � J, Jz for d < 0 (� < 1) we get for the
entropy per site S|d→−0 = t/3 + . . . . The specific heat
per site is cd |d→−0 = t/3. The expansion coefficient per
site is αd = ∂S/∂d; we obtain αd |d→−0 = t/9. Then the
Grüneisen ratio is �d |d→−0 = −1/3. For both negative
d1,2 the change of the temperature caused by the caloric
effect is

�t = t

|δd|
∫ d2

d1

�d (x)dx ≈ t

3|δd| (5)

[δd = (d2 − d1); here and below we integrate with respect to
d , and replace the variable d by x for convenient reading]. For
d > 0 at low temperatures for d → +0 the gap is small and
the main contribution comes from the pre-exponential mul-
tipliers. For the specific heat, expansion coefficient, and the
Grüneisen ratio we obtain cd |d→+0 = 2t/3, αd |d→+0 = 2t/9,
and �d |d→+0 = −1/3. For both positive d1,2 the change of the
temperature caused by the caloric effect is

�t = t

δd

∫ d2

d1

�d (x)dx ≈ t

3(δd )
. (6)

The most interesting case corresponds to the situation in
which d1 < 0 and d2 > 0 or vice versa, i.e., the transition
across the quantum critical point. According to Eqs. (B1)
and (B5) of Appendix B, at low-temperature limit and in
small neighborhood of d = 0 the specific heat is cd = t ∂S

∂t ≈
S , and the Grüneisen ratio is �d (x) = 1

cd

∂S
∂d ≈ 1

S
∂S
∂d = ∂ lnS

∂d .
It means that the integral of �d (x) over this small neigh-
borhood of d = 0 (i.e., 0 ∈ (−δd/2, δd/2), |δd| � 1) is∫ δd/2
−δd/2 �d (x)dx = ln 2, and the change of the temperature

caused by the caloric effect is

�t = t

δd

∫ δd/2

−δd/2
�d (x)dx ≈ t ln 2

δd
. (7)

Unlike most of quantum phenomena, the discovered
caloric effect manifests itself not only in the low-temperature
region. Moreover, as can be seen from Fig. 1, with increasing
temperature, the jump in entropy increases, and, consequently,
the magnitude of the effect itself. On the one hand, it sim-
plifies the experimental detection of the phenomenon, on
the other hand, it removes the question of the adequacy of
the applicability of the one-dimensional spin model. Indeed,
strictly one-dimensional magnetic chains are absent in nature
due to the presence of arbitrarily weak but finite inter-chain
interactions. Wherein, the effects associated with such in-
teractions (i.e. the manifestation of quasi-one-dimensionality
effects) appear only at temperatures below the characteristic
energies of inter-chain interactions. In our case, this means
that it is always possible to choose a temperature range at
which the discovered caloric effect is fully manifested, and the
effects associated with quasi-one-dimensionality are negligi-
ble small. The predicted caloric effect can be also manifested
in organic spin chain materials: There vibrations of molecules
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produce the anisotropy of spin-spin interactions, similar to
strains in crystals.

Let us estimate the value of the effect. There exists a large
variety of spin chain materials with the exchange constants
from J ∼ 2100 K for SrCuO2 (with the magnetic ordering
temperature below 2 K) [22], CaCu2O3 with J ∼ 2000 K
and ordering temperature ∼25 K [23], InCuPO5 with J ∼
100 K and the inter-chain coupling of order of 0.07J [24],
Cs4CuSb2Cl12 with J ∼ 180 K, which manifests the Heisen-
berg spin chain behavior down to 0.7 K [25], KCuF3 with
J ∼ 400 K [26] (with the ordering temperature ∼40 K) to
organic spin chain complexes like Cu(C4H4N2)(NO3)2 with
the intra-chain exchange J ∼ 10 K and very small inter-chain
interactions [27]. For example, the low-temperature change of
the temperature caused by the predicted caloric effect accord-
ing to Eq. (7) can be equal to the initial temperature for the
changes of the anisotropy parameter δd ∼ 0.3, which is of or-
der of the known values of the magnetic anisotropy caused by
the spin-elastic coupling in spin chain materials [18,28–30].
The value |δd|�t almost reaches the value ln 2 at low temper-
atures, i.e. the entropy of the spin 1/2, and it weakly grows
with the growth of the initial temperature. To compare, the
temperature change for the magneto-caloric effect in organic
spin chain system [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n

(J ∼ 3.2 K) was of order of 1.2 K for the change of the mag-
netic field from 4 to 7 T [31], and in the spin chain material
Cu(NO3)2 2.5 H2O (J ∼ 5 K) it was about 1 K for the change
of the external magnetic field from zero to 3 T [32]. As for
the comparison with the electro-caloric effect in spin chain
materials with the second order quantum phase transition, the
recent study [33] calculated the value of the renormalization
of the Grüneisen ratio at the critical point of order of 1.6,
and it strongly decays with the growth of the temperature,
cf. Fig. 3 where the renormalization of the Grünesen param-
eter is much larger, and it is almost temperature independent
near d = 0.

V. SUMMARY

In summary, we have predicted the giant electro- and
elastocaloric effect in the spin-chain material. The predicted
caloric effect can be used for cooling of modern supercomput-
ers and small quantum systems, e.g., one-dimensional arrays
of qubits (quantum registers) in quantum computers. Since the
giant effect manifests itself even in a small neighborhood of
d = 0 point, this makes it possible to use this phenomena to
create ultrasensitive sensors for electric field and mechanical
stress (both compression and rarefaction). To do this one
needs the antiferromagnetic spin-1/2 chain material with the
isotropic (or almost isotropic) exchange coupling along the
spin chain. Then adiabatically applying the external electric
field or external uniaxial stress one either shifts the system to
the spin-nematic anisotropic phase or vice versa.
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APPENDIX A: EXACT RESULTS FOR THE
THERMODYNAMICS OF THE SPIN-1/2 CHAIN

Consider the Hamiltonian of the chain system with the
nearest neighbor interactions between spins 1/2:

H0 =
∑

n

[
J
(
Sx

nSx
n+1 + Sy

nSy
n+1

) + JzSz
nSz

n+1

]
− gμBH

∑
n

Sz
n. (A1)

Here H is the external magnetic field, g is the effective g factor,
and μB is Bohr’s magneton. It is convenient to introduce the
following notation h = gμBH/J .

We are interested in the properties of the system at T �= 0.
The most convenient method to describe thermodynamics of
the spin chain is quantum transfer matrix one [34]. To be
concrete, let us study in detail the case −1 � � � 1, i.e.,
the easy-plane magnetic anisotropy. It is convenient to define
� = cos θ . Consider Rmimi+1

aibi
(u), the standard R matrix of the

spin-1/2 chain with the easy-plane magnetic anisotropy [11].
The nonzero matrix elements of that R matrix are R21

12 = R12
21 =

1, R11
11 = R22

22 = sin[(θ (u + 2)/2]/ sin(θ ), and R12
12 = R21

21 =
sin[(θu)/2]/ sin(θ ), where the index 1 is related to the state
with spin up, and the index 2 is related to the state with
spin down. Here u is the spectral parameter. The indices ai

and bi denote states in the Hilbert space of the spin at site
i, and m denotes states in the auxiliary Hilbert space. Let us
construct the row-to-row transfer matrices τ b

a (u) as the trace
over the auxiliary space of the product of R matrices, τ b

a (u) =∑
m

∏L
i=1 Rmimi+1

aibi
(u). The R matrices satisfy the Yang-Baxter

equations, hence the transfer matrices with different spectral
parameters commute, which meant the exact integrability of
the system [11]. Then we construct R matrices of different
type, related to the initial one by the anticlockwise and clock-
wise rotations R̄mn

ab (u) = Rab
nm(u) and R̃mn

ab (u) = Rba
mn(u). The

transfer matrix τ̄ (u) can be constructed in a way similar to
the case of τ (u). The partition function Z of the considered
quantum one-dimensional system is

Z = lim
N→∞

Tr
N/2∏
i=1

(τ (ui)τ̄ (0)), (A2)

where N is the Trotter number. It is equal to the partition
function of the inhomogeneous classical vertex model with
alternating rows on the square lattice of size L × N , L is
the size of the chain, with spectral parameters ui (of order
of N−1). Consider four-spin interactions on the (classical)
two-dimensional lattice with the coupling parameters, which
depend on (N/β )−1, where β is the inverse temperature. Cor-
responding column-to-column transfer matrices are known as
quantum transfer matrices, which describe transfer in the hor-
izontal direction. The magnetic field h is included via twisted
boundary conditions.

τQTM(u) =
∑
{mi}

em1h/t
N/2∏
i=1

Rm2i−1m2i

a2i−1b2i−1
(u − ui )R̃

m2im2i+1

a2ib2i
. (A3)

We are interested in the properties of the system in the thermo-
dynamic limit N, L → ∞. The quantum transfer matrix has a
gap between the largest eigenvalue and the next-largest ones.
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This is why the free energy of the quantum one-dymensional
spin system per site f can be calculated from the largest
eigenvalue of the quantum transfer matrix �0(u) as f =
−T limN→∞ ln[�0(u = 0)].

All eigenvalues of the Hamiltonian Eq. (A1) can be
parametrized by the quantum numbers, rapidities x j , related to
the quasimomenta of eigenstates. Rapidities satisfy the Bethe
ansatz equations, which can be written as

φ−(x j )φ+(x j + 2i)

φ+(x j )φ−(x j − 2i)
= e2h/t Q(x j + 2i)

Q(x j − 2i)
, j = 1, . . . M∗,

(A4)

with φ+(x) = ∏N/2
l=1 sinh[θ (x+ixl )/2], φ−(x)= sinhN/2[θx/2],

and Q(x) = ∏M∗
j=1 sinh[θ (x − x j )/2]. The largest eigenvalue

of the quantum transfer matrix is related to M∗ = L/2. The
eigenvalue of the quantum transfer matrix is related to the
eigenvalue of the row-to-row transfer matrix as �Q(ix) =
�(x)/ sinhN (iθ ). Let us write �(x) = λ1(x) + λ2(x) with

λ1(x) = φ+(x)φ−(x − 2i)eh/t Q(x + 2i)

Q(x)
,

λ2(x) = φ−(x)φ+(x + 2i)e−h/t Q(x − 2i)

Q(x)
. (A5)

Then we introduce the auxiliary functions b(x) = λ1(x +
i)/λ2(x + i), and b̄(x) = λ2(x − i)/λ1(x − i). One can check
that

�(x + i) = [1 + b(x)]λ2(x + i), �(x − i)

= [1 + b̄(x)]λ1(x − i). (A6)

Then it follows that

b(x) = e2h/t
∏
±

φ±(x ± i)

φ±(x + 2i ± i)

Q(x + 3i)

Q(x − i)
,

b̄(x) = e−2h/t
∏
±

φ±(x ± i)

φ±(x − 2i ± i)

Q(x − 3i)

Q(x + i)
. (A7)

These auxiliary functions are analytic and nonzero. Also
the functions b(x) and 1 + b(x) have constant asymptotic
behavior for the strip −1 < Imx � 0. The functions b̄(x)
and 1 + b̄(x) have constant asymptotic behavior for the strip
0 � Imx < 1. Finally we can denote a(x) = b[(2/π )(x +
iε)] and ā(x) = b̄[(2/π )(x − iε)] with an infinitesimal
ε > 0. Taking the logarithmic derivative of these func-
tions, Fourier transforming the equations, eliminating the
functions Q(x), and then inverse-Fourier transforming, and
taking the limit N → ∞, one gets two nonlinear integral
equations:

ln a = −2π sin(θ )c(x)

t
+ h

t

+
∫ π

−π

dyg(x − y) ln(1 + a)

−
∫ π

−π

dyg(x − y − i[2θ − ε]) ln(1 + ā),

ln ā = −2π sin(θ )c(x)

t
− h

t

+
∫ π

−π

dyg(x − y) ln(1 + ā)

−
∫ π

−π

dyg(x − y + i[2θ − ε]) ln(1 + a), (A8)

with

c(x) = 1

2θ cosh(πx/θ )
, (A9)

and

g(x) = 1

4π

∫ ∞

−∞
dy

sinh((π − 2θ )y/2) cos(xy)

cosh(θy/2) sinh((π − θ )y/2)
. (A10)

For the function f (x) = −t limN→∞ ln �Q(x) one gets

f (ix) = e0(x) − t

2π

∫
dy

ln([1 + a(y)][1 + ā(y)])

cosh(x − y)
, (A11)

with e0(0) being the ground-state energy of the quantum spin
chain per site divided by J . The free energy of the quantum
spin chain per site divided by J is then

f = e0 − t
∫ ∞

−∞
dxc(x) ln[(1 + a)(1 + ā)]. (A12)

In the case |�| > 1 it is possible to perform similar pro-
cedure with � = cosh � for the antiferromagnetic chain. We
get

ln a = −2π sinh(�)c(x)

t
+ h

t

+
∫ π

−π

dyg(x − y) ln(1 + a)

−
∫ π

−π

dyg(x − y − i[2� − ε]) ln(1 + ā),

ln ā = −2π sinh(�)c(x)

t
− h

t

+
∫ π

−π

dyg(x − y) ln(1 + ā)

−
∫ π

−π

dyg(x − y + i[2� − ε]) ln(1 + a), (A13)

where

c(x) = 1

2π

[
1

2
+

∞∑
n=1

cosh(inx)

cosh(n�)

]
, (A14)

and

g(x) = 1

2π

[
1

2
+

∞∑
n=1

e−n� cosh(inx)

cosh(n�)

]
, (A15)

with cosh(�) = �. The free energy per site is

f = e0 − t
∫ π

−π

dxc(x) ln[(1 + a)(1 + ā)]. (A16)

For the ferromagnetic chain we use the above-mentioned con-
nection for the free energy.

Hence, the solution of the nonlinear integral equations with
respect for the functions a(x) and ā(x) determines the free
energy of the spin-1/2 chain with the uniaxial magnetic
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anisotropy. Then, differentiating the function f with respect
to temperature, external magnetic and electric field, and
distortion, we obtain thermodynamic characteristics of the
spin-chain material, necessary for the description of the mag-
netocaloric, electrocaloric, and elastocaloric effects in that
system.

To calculate the entropy (the derivative of the Helmholtz
free energy with respect to the temperature) it is useful to
perform the following trick [35]. Namely, let us define the
new functions A = ∂ ln a/∂t and Ā = ∂ ln ā/∂t . The equa-
tions for the functions A and Ā can be obtained from Eqs. (A8)
and (A13) by analytic differentiation. In the right-hand sides
of those obtained equations there will be A/(1 + a) and
Ā/(1 + ā). We see [35] that the equations for A and Ā are
linear integral equations if one regards the functions of a
and ā as given. Once the integral Eqs. (A8) and (A13)
are solved for a and ā, the integral equations for A and Ā
associated with Eqs. (A8) and (A13) can be solved. The
entropy is determined as the function of a, ā, A, and Ā.
The trick permits to avoid numerical differentiation. For
calculation of the specific heat it is possible to introduce
functions related to the second derivatives of ln a and ln ā
with respect to T . Those functions also satisfy linear integral
equations.

APPENDIX B: LIMITING CASES

At high temperatures T � J, Jz at H = 0 one gets for the
free energy per site f = −T ln 2, as it must be, so that the
entropy in this limit is constant. This is why the specific heat
and any expansion coefficients are zero.

Let us study the case of low temperatures in the absence of
the magnetic field. For example, consider the ferromagnetic
spin-1/2 chain with the easy-axis magnetic anisotropy � > 1.
The low-temperature free energy of the spin-1/2 chain per site
is [36]

f = − t3/2

√
2π

e−(1−�)/t + . . . . (B1)

For the easy-axis antiferromagnetic chain one has [36]

f = e0 − exp(−B/t )
√

At3/2

− (k2 + k + 1)

4π (1 − k)2
A3/2t5/2 + . . . , (B2)

where

A = k′

2JKk2 sinh �
,

B = Kk′

π
sinh(�), (B3)

where the elliptic modules k and k′, and the elliptic half-period
K are determined via the value q = exp(−�) as

K = π

2

∞∏
n=1

[
1 + q2n−1

1 − q2n−1

1 − q2n

1 + q2n

]2

,

k = 4
√

q
∞∏

n=1

[
1 + q2n

1 + q2n−1

]4

, k′ =
∞∏

n=1

[
1 − q2n−1

1 + q2n−1

]4

.

(B4)

Hence, the low-temperature specific heat and the low-
temperature expansion coefficients are exponentially small in
these regions of �.

For the easy-plane spin chain the low-temperature part of
the free energy can be written as [11]

f = e0 − πt2

6v
, (B5)

with the ground-state energy e0 of the easy-plane spin chain
and with the velocity of the low-energy gapless excitation

v = π sin(θ )

θ
(B6)

for the antiferromagnetic chain and

v = πJ sin(π − θ )

(π − θ )
(B7)

for the ferromagnetic chain. This is why the low-temperature
entropy of the spin chain per site is S = T/3v. The
low-temperature specific heat and the electric expansion
coefficient are linear in T . At the point � = 1 the low-
temperature entropy of the antiferromagnetic spin-1/2 chain
as a function of the temperature has a jump. Hence, the low-
temperature specific heat manifests the feature at that point.
Low-temperature expansion coefficients reveal the behavior,
similar to the one of the specific heat.

For the isotropic antiferromagnetic chain one takes the
limit θ → 0 (v = π/2) and obtains (taking into account small
logarithmic correction [35])

f = e0 − πt2

6v

(
1 + 3

8 ln3(π/t )

)
. (B8)
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