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We investigate the impact of spin torque and spin pumping on the surface magnon polariton dispersion in a
antiferromagnetic insulator-semiconductor heterostructure. In the bilayer system, the surface magnon polaritons
conventionally couple to the plasma oscillations in the semiconductor via electromagnetic fields. Additionally,
magnons in the antiferromagnetic insulator layer may interact with the semiconductor layer via spin torques and
their reciprocal phenomena of spin pumping. Due to the spin-to-charge conversion from the spin-Hall and inverse
spin-Hall effects in the semiconductor layer with a strong spin-orbit coupling, this can couple the magnons
to the plasmons in the semiconductor layer. Our research reveals that modifications in the mode frequency
and the hybridization gap induced by these phenomena depend on the thickness of the antiferromagnetic layer.
In thick layers, the spin-pumping contribution to the frequency shift and damping is inversely proportional to
the wavelength, while in thin layers it is inversely proportional to the thickness. Furthermore, hybridization of
the surface magnon polariton and dispersive magnons in the antiferromagnet is shown to depend on both the

thickness and wavelength of the modes.
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I. INTRODUCTION

Magnonics and plasmonics are two active research fields in
physics, photonics, and materials sciences. Plasmons, collec-
tive oscillations of the electron density, can miniaturize optical
devices by generating and manipulating signals at optical fre-
quencies along metal-dielectric interfaces on the nanometer
scale, a dimension significantly smaller than the optical wave-
length [1]. These surface plasmons polaritons, confined at
the conductor interface, allow for strong light-matter coupling
with potential applications [2—4]. On the other hand, magnon-
ics is a research field in magnetism that addresses the use of
magnons, collective excitations of magnetic order, to transmit,
store, and process information [5—7]. The typical wavelength
of magnons is orders of magnitude shorter than that of photons
of the same frequency and thus makes it possible to build up
more compact devices.

Magnetoplasmonics represents the convergence of two dis-
tinct areas of research. The fundamental questions in this field
are how magnons and plasmons, each with unique properties,
can be effectively coupled to harness synergistic effects and
how different system parameters can alter magnetoplasmonic
modes. However, magnons and plasmons normally have very
different energy scales, while ferromagnetic and antiferro-
magnetic (AF) systems have a characteristic energy scale of
gigahertz and terahertz, respectively, three-dimensional (3D)
metals host plasmons with an intrinsic optical gap [8]. There-
fore, the interaction between magnons and plasmons is very
weak and negligible. However, situations in two-dimensional
materials and semiconductors can be different. Recent theo-
retical studies have shown the possibility of strong coherent
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coupling between 2D magnetic layers and plasmons [9—11].
The possibility of a strong interaction between plasmons,
electromagnetic waves, and magnons in ferromagnetic and AF
semiconductors with very low carrier density has also been
pointed out decades ago [12—-15].

Antiferromagnets have recently attracted considerable in-
terest [16—18]. They have potential in THz electronics.
Precessing spins in AF systems pump spin angular momentum
into adjacent conductors [19-22] that give rise to electric
signals via the inverse spin-Hall effect [23,24]. Electrical
injection and detection reveal micrometer distance spin trans-
port [25-27].

Similarly to conducting interfaces, AF systems can host
surface magnon polaritons (SMP) at their interfaces with
other materials [28,29], whose properties depend on the ori-
entation and width of the AF layer [30-32]. Several hybrid
structures have also been investigated that could be used to
further modify the properties of SMP, as well as host several
hybrid polariton modes [30,33-35]. SMPs could be used to
create materials with negative refraction [36] and have been
shown to enhance spin relaxation in nearby emitters [37].
More exotic states in AF structures have also been studied,
Ghost SMPs that both oscillate and decay away from the
interface [38] whose phononic counterpart has been observed
experimentally [39]. Dyakonov SMPs which lie outside the
AF Restrahlen band, where the permeability is negative and
are instead carried by the anisotropic nature of AFs, have also
been predicted [32].

Recently, the coupling between plasmons in 2D graphene
and magnons in the uniaxial AF insulator (AFI) [33,40] has
been studied. The hybrid modes, surface magnon-plasmon
polaritons, and surface plasmon-magnon polaritons resulted
from the two subsystems interacting via light. These hybrid
excitations have intriguing properties that are controllable in
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FIG. 1. The geometry of the system, composed of a bilayer of an
antiferromagnetic insulator of width d4 and a normal semiconductor
of width dy, is considered semi-infinite in the yz plane and bounded
by vacuum along the x direction. The electromagnetic fields of the
surface magnon polariton propagates along the interface, and in the
figure only the electric field E is shown. The spins in the AF and
electrons in the N interact with each other and the electromagnetic
fields, determining the behavior of the polariton.

new ways. For instance, the dispersion of the surface magnon-
plasmon differs from that of uncoupled surface magnons,
expressed in a reflection of the group velocity. Other recent
related work investigates surface plasmon-phonon-magnon
polaritons in topological insulators in contact with AFI [34],
as well as the transverse electric—(TE) surface plasmons in a
2DEG-(anti)ferromagnetic system [41].

At interfaces between magnets and conductors, spin trans-
fer and spin-orbit torques and their reciprocal phenomena spin
pumping and charge pumping couple the spin and charge flow
in the metals and the spin dynamics in the magnets, even
when the latter are insulating [21,42-45]. Furthermore, in
conductors with spin-orbit interactions, the spin-Hall effect
couples spin and charge currents. We will explore how this
coupling can alter surface magnon-plasmon polaritons. To this
end, we consider a bilayer containing an AFI layer placed
on top of a normal semiconductor layer (N), as shown in
Fig. 1. In this geometry, magnons reside in the AFI layer, and
surface magnon polaritons exist at the AFI interfaces. In this
way, the magnons have a long relaxation time since there are
no lossy electrons to dissipate energy. In the absence of the
spin-charge conversion and interfacial spin mixing, the solu-
tions to Maxwell’s equations with the dielectric function of
the conducting media and magnetic permeability tensor of the
insulating magnet are known [1,30]. The behavior of magnons
that pump spins into a conducting medium with spin-charge
conversion has also been studied [46]. Our challenge is to
combine these descriptions and explore how the presence of
interfacial spin-conductance and spin-charge conversion mod-
ifies the surface polaritons.
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FIG. 2. The coupling of the different modes in the system. The
electromagnetic fields interact with the spins in the AFI layer, which
are characterized by the orientation of the staggered n and magneti-
zation m fields, and with the electrons in the N layer characterized
by a charge current density j¢. The resulting spin dynamics in the
AF can pump a spin current j*? into the N, while the charge current
also creates a spin current j*5" through the spin-Hall effect. This in
turn gives rise to a spin accumulation in N, which both contributes
to a backflow spin current j“l"’ across the interface, which influences
the spin in the AF, and a diffusive spin current j*°, which generates
a charge current through the spin-Hall effect. The spin current is as-
sumed to be continuous across all interfaces, both between the center
AF-N interface and the outer vacuum-AF and N-vacuum interfaces,
where at the latter two it must vanish, as there is no spin current in the
vacuum. Note that all the above spin currents are two-dimensional
tensors in the current direction and spin orientation. The color coding
of the green and blue arrows refer to the degree of spin and charge
current respectively.

The rest of the paper is structured as follows: First, we
present the system setup and the relevant equations governing
the behavior of electromagnetic fields and charge and spin
currents in Sec. II. We then investigate the different modes that
can exist in the bulk of the different materials in Sec. III before
finding the dispersion relation of the SMPs by enforcing the
boundary conditions in Sec. [V. We investigate the effect of a
finite exchange-stiffness, spin-pumping, and spin-Hall effect
on the dispersion relation by both numerical and analytical
means in Sec. V, using a perturbative approach to derive the
lowest-order frequency shifts in both the wide and narrow
limit. We also investigate the hybridization between SMPs and
bulk magnons. We present our conclusions in Sec. VI.

II. MODEL

We consider a system composed of an AFI-N bilayer,
semi-infinite in the yz plane but finite along the x direction,
as shown in Fig. 1. A surface polariton can propagate at the
interface between the two materials. As shown in Fig. 2,
the spin dynamics in the AFI layer and the spin and charge
dynamics in the N layer are coupled both through the elec-
tromagnetic fields and spin-Hall effect, as well as through the
spin pumping and spin backflow through the AFI-N interface.

In the absence of spin-pumping and torque phenomena,
the AFI and N layers interact through electromagnetic fields,
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as indicated in Fig. 2, which are governed by the Maxwell
equations. These equations describe the coupled behavior of
the electric E and magnetic H fields in all regions, including
the vacuum on the two sides of the bilayer. In the absence of
free charges and currents, the Maxwell equations then read as

V.-D =0, (1a)
V-B=0, (1b)
VxE 9B (1c)
X = -, C
ot

oD
VxH=—, (1d)

ot

where

D = ¢E + P, 2

is the displacement field, P is the electric polarization of the
material and € is the vacuum dielectric constant, and

H=B/n —M, 3

where M and B are the magnetization of the system and
magnetic flux density, respectively, and g is the vacuum
permeability.

A. AFI layer

The Landau-Lifshitz-Gilbert (LLG) equation governs the
dynamics of the spins in the AFI layer. For simplicity, we
neglect the Gilbert damping parameter in our model. We are
interested in the real part of frequency, and for the effects in
question, the Gilbert damping can be neglected as a higher-
order term. In a two-sublattice collinear AFI, the magnetic
moments at the sublattice a (b) are characterized by a unit
vector m, ), and the coupled LLG equations can be expressed
in terms of the magnetization m(r,t) = (m, + m;)/2 and
staggered n(r,t) = (mm, — my)/2 fields [47],

r(r, 1) = —g(m % H, +n x Hy), (4a)

i 1) = —g(m < H, +n x Hy). (4b)

where y is the gyromagnetic ratio and the effective mag-
netic field H,, = —(1/M)6U{//5m and staggered field H,, =
—(1/M;)éU /én follow from the total potential energy U,
where M, denotes the sublattice saturation magnetization.
Spin-torques resulting from the coupling to the N-layer will
be treated as interfacial effects and are therefore not included
in the LLG equation.

We consider a uniaxial AFI layer with the following poten-
tial energy density within the exchange approximation [48],

M
u= —S[wexm2 +a(Vn)* — 2uoyH -m — wang]’ ®)
y z

where we is the exchange frequency, a is the exchange
stiffness, and w, the anisotropy energy. Using the continuity-
equation o,M, + 9; jf";‘ =0 for the magnetization M =
2Mgm, the spin current in the AFI in the exchange limit can
be found,

2aM,
A =~ 2 x i), ©6)
’ Y

where the first subscript i denotes the direction of the current
and the second index « relates to the orientation of the spins.
Following the procedure of Ref. [49], by integrating the LLG
equation over a small pill box straddling the interface while
allowing for possible surface torque terms and then letting the
thickness go to zero, it can then be shown that the boundary
condition for the LLG equation is that the spin current j;’: is
continuous at the interface. Note that in the following we will
use the sub- or superscript A to denote quantities in the AFI
and similarly N for quantities in the normal semiconductor.

B. N layer

The electric polarization of the semiconductor, Eq. (2), can
be divided into two parts, one part P, coming from the core
electrons and one part P, from the conduction electrons. The
response of the former can be assumed to be proportional to
the electric field and frequency independent in the frequency
region of interest, such that we can define D = e 60E + P,
where €, is the high-frequency dielectric constant of the
ion background. The time evolution of P, is governed by
the differential equation 9,P. = j¢, where the charge current
density j¢ generally arises from the electrical conductivity
of the material j*° = ¢ E and the spin-to-charge conversion
through the inverse spin-Hall effect j*S!; see below for more
details. For a 3D electron gas, the Drude conductivity at a
given frequency o reads,

2
E()a)p‘l.'

(N

o(w) = —,
1 —iwt
where 7 is the elastic scattering time and w, the plasma
frequency.

A spin current in the N layer leads to spin accumulation
p1f, which is governed by the following spin-diffusion equa-
tion [46]:

i’
ot

where yy is the gyromagnetic ratio in N, v is the density of
states per spin at the Fermi level, t is the spin-flip relaxation
time, ]fJN is the spin current density in the N layer, and &, is
the unit vector in the o direction and summation over repeated
indices is implied. Since we do not consider an externally
applied magnetic field, the term H x p* can be neglected as a
second-order contribution in small fields. The spin accumula-
tion, in turn, gives rise to a spin current density,
houw
Jia ==Dov3 ali:x

where Dy is the diffusion coefficient of the N layer.

The charge and spin currents in the N layer couple via the
spin-Hall and inverse spin-Hall phenomena [50-52], and we
thus write for the total spin and charge currents in the N layer,

AN
=l <= (30) wile - ®
2 ’ Tsf

€))

: . . _ i
B = 0 i = 0t~ fsa s (100)
.c __ 0 .c,SH __ :c,0 26 .5,0
Ji =0T =0+ QSHzfijan,a’ (10b)

where €;j; is the Levi-Civita tensor and the spin-Hall angle
Osu, given as the ratio between the spin-Hall and the charge
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conductivity, is assumed to be small. Although sy, in general,
exhibits a nontrivial frequency dependence [53,54], we will
treat it here as a constant, since SMPs only exist in a nar-
row frequency band close to the antiferromagnetic resonance
frequency. This frequency region, where the real part of the
permeability is negative, is known as the Reststrahlen band
due to its reflective properties [30].

C. Boundary conditions

To solve the dynamics of the coupled bilayer system, we
need the corresponding set of boundary conditions. The elec-
tromagnetic fields at the interface between two media 1 and 2
must satisfy

e, - [D® —DV] =0, (11a)
e [BY —BV1 =0, (11b)
e x [E® —EM) =0, (11c)
enx [H® -—HV] =0, (11d)

where the unit vector é;, points from medium 1 to 2 per-
pendicularly to the interface. We consider an AFI with a
compensated interface and thus ignore any net magnetiza-
tion at the interfaces. Furthermore, as all the interfaces are
assumed to be clean and lacking spin-flip scattering, the con-
servation of spin angular momentum requires the spin current
densities to be continuous across all the interfaces. This intro-
duces an additional coupling channel between the dynamics
in the AFI and N layers, as shown in Fig. 2. The dynamics of
the interfacial magnetic moments in the AFI layer give rise to
a pumped spin current density into the N layer [22,55]. Under
the assumption that the cross-sublattice contribution is small
[55], the dominant contribution in the exchange limit to linear
order is

5. hg,
]if" - 4

(n X 1)y, (12)

where g, denotes the real part of the intralattice spin-mixing
conductance per area. In addition to being small due to the
exchange limit, the imaginary part of the spin-mixing conduc-
tance is often tiny compared to the real part [56,57]. A positive
current j'/” is defined to flow in the positive x direction, i.e.,
out of the AFI layer. The spin accumulation in the N layer can
also diffuse back into the AFI layer, which, under the same
approximations as above, gives rise to a backflow spin current
density,

_ &

“(n x p* xn),, (13)
4

across the interface. This leads to a torque acting on the
magnetic moments in the AFIL. The total spin current density
crossing the interface is thus j5” 4 j*’.

The boundary conditions for the LLG and spin-diffusion
equations are given by (i) continuity of spin current densities
at the AFI-N interface,

Jrae =00 = + /i = =0, (14

and (ii) vanishing of the spin current density at the AFI-
vacuum and the N-vacuum interfaces,

jrar=—d) = il =dy) =0. (13

.5.b
JJ_,a -

Note that no similar boundary condition exists for the electric
current, which can build up as a surface charge P -7 at an
interface with normal-vector 71 [58].

Solving these coupled equations for the charge and spin
potentials in the N layer and the magnetic moments in the
AFI layer, we can determine the magnon-plasmon polariton
resonances and their properties.

III. BULK BEHAVIOR

We start by considering the bulk behavior of the different
layers in the system before imposing the boundary conditions
between them. For simplicity, we consider a case in which
the propagation of the electromagnetic waves at the interface,
the § — Z plane, is along the § direction and the ground-state
Néel vector direction is n || Z in the AFI layer, see Fig. 1.
This choice results in a relatively compact set of Maxwell
equations to consider: (i) Considering that the bilayer
structure is still translationally invariant along the Z direction,
we can assume that all fields are uniform in that direction;
this causes the Maxwell equations (1c) and (1d) to decouple
into one TE and one transverse magnetic (TM) mode [1]. (ii)
The TM mode has H = H,Z, i.e., the magnetic field is always
(anti)parallel to the ground-state Néel vector direction in the
AFI layer and it thus does not couple to the spin dynamics to
linear order; therefore, the TM mode is not able to host SMPs,
and we will not consider it here. We are thus left with the
TE mode, with E = E,Z, causing the Maxwell equations to
reduce to

3,E. = —,B,, (16a)
3,E. = 0,By, (16b)
9.H, — d,H, = 9,D.. (16¢)

We begin by finding the normal modes for this TE mode
in the vacuum, the bulk AFI, and the bulk N. Due to the
translational and temporal invariance of the bulk and the
fact that all the equations will be linearized, we work in the
Fourier space such that all fields have a simple exponential
dependence o ¢/®~@)+4* Note that the fields here refer to
both electric E and magnetic H fields as well as the internal
fields 6n = n — Z and m in the AFI and u® in N. The wave
number along the y direction, k, and the frequency, w, are
assumed to be given for now, and we want to find the wave
number g(k, w), which describes the localization of the mode
along the x direction. In general, g is a complex number,
becoming purely real or imaginary in limiting cases.

A. Bulk vacuum

In the vacuum, the bulk behavior is fully determined by
the Maxwell equations (16), which can be rewritten in Fourier
space as

—iow 0 ik H,
0 —ipow  —q || H, | =0. (17)
—ik q icow | | Ez

Equation (17) has solutions for

(18)
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where ¢ = (eouu0)~!/? is the speed of light. As we assume the

vacuum to be semi-infinite on each side of the structure, we
must have Re{qo} # 0 and thus k > w/c, so that the fields
vanish at x — =00 and the wave is localized.

B. Bulk AFI

In the AFI, the bulk behavior is governed by the Maxwell
equations (16) and the coupled LLG equations (4). Solving
the LLG equations for m and n fields as a function of H
gives M = 2Mm = xyH and dn = (xn/M;)Z x H with the
following magnetic and staggered field response functions,
respectively:

202[1 4 22(k* — ¢?)]
3[1+22(k% — ¢»)] — 0

XM = (19a)

- 2

iw ®
_ 5 , 19b
AN wa 3[1+ 22(k* — ¢¥)] — w? (190)

where we have introduced the AF resonance frequency wy =
[wa(wex + @4)]'/?, the saturation frequency w? = y powMs,
and the domain-wall length A2 = a/w,. Substituting for M in
B = po(H + M), the Maxwell equations (16) take the form

—IoUm@ 0 ik H,
0 —ifpopmew  —q || Hy | =0, (20)
—ik q ieqgw | | E;

where u,, = 1+ xu. This set of equations has six different
solutions for g. The four modes with

2 2 s
_k - v
Uz A2 20} r 20}
0=} w4202\ 20te?
+ 2 - — °+2 ) o+ =, (@21
20205  r 2w 212w

are hybrid modes containing a polariton and a magnon con-
tribution and can be found by replacing o — (om, O,
equivalently, ¢c=2 = po€p — ¢ >4, in Eq. (18) and solving
for g. The other two modes have

2 g2y () o’ 22)
Qa0 = A2 W} +202)

yielding @, = 0 for all k, w, which can be seen to make the
matrix in Eq. (20) noninvertible. These two modes have no
electric field components and represent a correction to the
magnon modes in the presence of electromagnetic fields.

In the numerical calculations we present below, we will
treat all six modes described by Egs. (21) and (22) on equal
footing. However, it can be shown that when w,/wy — 0 or
rawo/c — 0, the four hybrid modes of Eq. (21) decouple into
pure polariton and magnon modes. In this limit, the modes
with ¢ = £¢a+ return to the polariton modes for a = 0 [33]
with

w? a)g + Zw% — w?

2 2_ 2 ’
c g

Gy > K+ (23)

w

and the other two become magnonic modes with
(24)

We will make the realistic assumptions that the domain-wall
length in the AFI is sufficiently tiny, A,k < w;/wy, such that
the four modes of Eq. (21) almost fully decouple. In this limit,
SMPs are mostly carried by localized polariton-like modes
with ¢ = £¢ga+. The remaining four modes become localized
magnonlike modes with ¢ = £¢ao and propagating magnon
modes with ¢ = +g5_. This will allow for a perturbative
analytic treatment of the SMP mode, where the contribution of
the magnon(-like) modes can be assumed small. Furthermore,
since the SMP has frequencies in the Restrahlen band wy <
o < vV} + 20? [30,33], it follows that for real frequencies
® € R, both qi i qio > 0 represent localized modes, while
gx_ < O represent propagating magnonlike modes.

C. Bulk N

We first look at the semiconductor case without spin-Hall
response Osy = 0, where Maxwell’s equations yield two po-
lariton modes,

1 ot
Y 2 2
gnp = k7 — =2 (60060 + w”l — iwr)’ (25)
and the spin-diffusion equation (8) yields two pairs of spin-
accumulation modes with equal g, given by

s (26)

where A% = Doty is the the spin-flip diffusion length. All

solutions of Egs. (25) and (26) yield a g with a nonzero real
component and thus correspond to localized modes.

Next, we allow for a nonzero spin-Hall angle 6sy. Solving
for spin accumulation as a function of the electric field E,, we
find u* = x,V x E, with the following response function:

= (@)t Osu
" ev 1425k —¢*) —itgo

27
Since the spin accumulation gives rise to a charge current
density [see Egs. (9) and (10b)]

JoSM = —0suDoevV x p', (28)

the Maxwell’s equations take the same form as in Eq. (17) but
replacing €y — €p€, where
io(w) 2 )»ff(kz — 612)
1 4 65y 5 -
€ow 1+ A% (k% — ¢%) — ity

€ = €x +

i| . (29

Solving these equations now yields four modes, with

2 dxp T dsp
N+ = f

)

N dRr—dRsp)\? _ Beuwo (@)1 — itgo]
2 : Eoczkff
(30)
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where we introduced the notation

1 iot
Gnp =K — C—z[eoowz +(1+62y) w0} —— } 31)

1 —iwt

These four modes are hybrid, resulting from a mixing of
the polariton modes corresponding to Eq. (25) with two of
the spin-accumulation modes with ¢ = £¢gn_sp described by
Eq. (26). It is easy to see from Eq. (30) that these modes
indeed decouple again in the limit sy — 0. The two remain-
ing spin-accumulation modes, which also have g = +gn_sp,
remain unaltered and do not couple to the electromagnetic
field by satisfying V x u* = 0. These modes have no electro-
magnetic field components and are purely composed of spin
accumulation. They can be understood as superpositions of
spin accumulations w3 and pj polarized along X and y, respec-
tively, such that the resulting charge current from the spin-Hall
effect cancels between the two polarization components.

IV. INCLUDING BOUNDARY CONDITIONS

A nontrivial solution for the whole bilayer system must, in
addition to satisfying the equations in the bulk, also satisfy all
the boundary conditions given by Egs. (11), (14), and (15).
We thus look for a superposition of the bulk modes found in
the previous section, which also conforms to the continuity of
electromagnetic fields and spin currents at the interfaces.

We again refer to Fig. 1, which depicts the setup we con-
sider: a semi-infinite bilayer system in the yz plane, consisting
of an AFI layer of width d4 and an N layer of width dy, with
a vacuum on either side of the bilayer. Since we are looking
for localized modes, the fields in the vacuum must vanish at
x — *oo, implying that on each side, only one of the two
solutions of Eq. (18) can be used. Furthermore, we note that
for real k, w, a solution only exists for k > w/c, and we will
focus on this regime in the following.

We find 14 modes that obey the bulk equations of motion:
six in the AFI layer, six in the N layer, and one vacuum
mode on each side of the bilayer. Maxwell’s equations require
the continuity of the fields across all interfaces as described
by Eq. (11). However, from Maxwell’s equation (16a) in the
Fourier space, ikE, = iwB,, it follows that continuity of B,
(11b) is satisfied if E, is continuous across the interface since
k and w are assumed equal for all modes. Thus, we obtain six
boundary conditions from the continuity of H, and E; for each
of the three interfaces. The boundary conditions for the spin
currents, given by Egs. (14) and (15), consist of 12 equations.
However, since the spin current can only be polarized in the
xy plane, we discard all equations involving j; and are thus
left with eight spin-current boundary conditions. In total, we
thus find 14 boundary conditions for 14 modes.

We must then find a way to relate the modes to the bound-
ary conditions. Each of the 14 modes, labeled ! below, are
linear combinations of the different fields in the system: the
electric field E;, the magnetic fields H, and H,, the stag-
gered and magnetization fields §r and m in AFI, and the
spin accumulation g* in N. The amplitudes of these fields
for a given mode can all be linearly related to each other
through the results in Sec. III. For example, for the vacuum
modes the electric- and magnetic-field components E, and
H, are related by Eq. (16b) as qoE; = —iwuoH,, where go

is given in Eq. (18). The relative amplitudes of the different
electromagnetic-field components follow from Eq. (20) for
the AFI layer, while a similar equation can be found for the
fields in the N by combining the Maxwell equations (16) with
the spin-diffusion equation (8). The staggered-order field én
and spin-accumulation g, can in turn be related to the electro-
magnetic fields through the susceptibilities in Eqs. (19a) and
(27), respectively. Therefore, each mode can be characterized
by a single amplitude ¢;, from which the amplitudes of all the
different fields for the mode are given.

The 14 boundary conditions, given by the continuity of E,
and H, and the x and y components of the spin currents in
Egs. (14) and (15) across the interfaces, can then be recast in
terms of the mode amplitudes «; by plugging in the relevant
fields for all the modes in the layer. This then gives a set of 14
coupled linear equations, which can be compactly be written
in matrix form as Aa’ =0, where a = («;) is a vector of
the amplitudes of the modes and A is a 14 x 14 matrix. For
a solution to exist, det (A) = 0 must hold, from which the
dispersion relation w(k) can be found. The relative ratio of
the amplitude of the modes can then also be seen from the
eigenvector corresponding to the zero eigenvalues. Once the
dispersion is known, the wave number g(k, ) can also be
computed for the different modes using the expressions found
in Sec. III, which could be used to study the localization of
the various modes.

In the following, we present results from solving the de-
terminant equation numerically using Newton’s method. We
then compare those to approximate analytic expressions based
on an expansion in small spin-mixing conductances, spin-Hall
angle, domain-wall, and spin-flip lengths.

V. RESULTS

This section presents our numerical and analytical results
by the model outlined in Sec. II as explained in Secs. III and
Iv.

For concreteness, we use the material parameters of Cr,O3
for the AFI layer, which has a long domain-wall length scale
of 100nm [59], with an AF resonance frequency of wy =
1 ThZ, the magnetic anisotropy field w,/y =~ 0.7T, and the
sublattice saturation magnetization puoM; =~ 0.286 T, yielding
ws ~ 25 GHz [60-62].

For the N layer, we use material parameters of an n-doped
GaN, which has Ay ~ 200nm [63], 7 = 60ps [64], and
€00 = 5 [65]. In the rest of the paper, we also consider the
clean limit where wt > 1 [1,64]. Furthermore, with an effec-
tive mass of m* = 0.24 m, [65] and a very low electron charge
density n, = 7.5 x 10" cm~3, we find a density of states per
spin of v =7.6 x 10¥J"'m— and plasma frequency w, ~
10 THz. We assume g, ~ 107m~2 in GaN and a spin-Hall
angle of Oy = 2 X 1073 [66,67], even though it is expected
that the spin-Hall angle at the AF resonance frequency will
differ from the measured dc value.

The bilayer heterostructure supports two SMP modes that
satisfy the set of boundary conditions localized at the left and
right interface of the AFI layer. The number of magnon modes
in the AFI layer inside the Reststrahlen band depends on the
width of the AFI layer d4, with more magnon modes for wider
AFIs. Furthermore, since the AFI layer carries the SMPs,
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FIG. 3. Dispersion magnon polaritons, both surface and bulk
modes, for (a) a thin AFI with dywy/c = 107 and (b) a wide AFI
with dywy/c = 3, using the material parameters stated in the text.
The color scale reflects the ratio of the magnetic field and magneti-
zation in the AFI as given in Eq. (32). In (b), the redder lines are also
thicker to aid readability. The black dashed lines show the case with
zero exchange stiffness, spin pumping, and spin-Hall effect, i.e., the
limit A,, g,, Osyg = 0. All frequencies are plotted in units of the width
of the Reststrahlen band Awg = /w} + 2w? — wy.

the properties of the SMPs are qualitatively sensitive to dj.
However, reducing the width of the N layer dy mainly reduces
N-induced frequency changes but does not produce a qualita-
tive change. Once dy becomes sufficiently small, the system
behaves like the vacuum replaced the N. Therefore, we set
dy = 20 ¢/wy in our numerical calculations, corresponding to
dy = 300 um, which is much longer than the decay length
of the SMPs and approximates a semi-infinite semiconductor.
We will focus on two distinct limits for the width of the AFI
layer: the narrow limit kdy < 1 and the wide limit kds > 1.

A. Numerical results

Figure 3 presents the dispersion of the two SMP modes
from the two AFI interfaces in the narrow and wide limits.
The color code represents the ratio between the sum of the
squared amplitudes of the magnetic fields and the in-plane
magnetization of all the modes in the AFI layer

2
Zl:i(QAi’CIAO) HI

2

color =
Zl:i(q/\iqq/xo) Ml

(32)
where the blue corresponds to a mode carried by magnons
and red to a mode carried equally by the electromagnetic
field and magnons. In the narrow limit, shown in Fig. 3(a),
the two SMPs live close to the edges of the Reststrahlen
band; the high-frequency SMP has a frequency close to @ ~

\/ @% + 2w?, while the low-frequency SMP has approximately

w ~ wy. Figure 3(b) shows the wide limit, where the SMP

frequency lies between wy and /] + 2w? for both modes, as

shown by the dispersive curves. The general behavior of these
modes is very similar to that of the SMPs in a semi-infinite
AFI-graphene heterostructure; see Ref. [33]. The dense set of
almost dispersionless states, absent in Fig. 3(a) as the AFI is
too narrow, represents purely magnonlike states in the bulk
of the AFI layer, carried by the propagating modes with g4_.
Their dispersion looks almost flat as their characteristic length
scale A, is much smaller than the polariton length scale ¢/wy.
Due to their magnonlike nature, they mostly appear less red
than the two polaritons for the same k& and w. However, as
® — Vi + 20? the contributions of the modes with gao
and g4 become significant. Since these two modes have sig-
nificant electromagnetic field components, the weight of the
magnetic field strength in the dispersionless states is increased
in this limit; that is why they show up as increasingly red at
higher frequencies.

The dispersion of the colored curves can also be seen to dif-
fer slightly from the black dashed line in Fig. 3, representing
the SMPs in the absence of exchange-stiffness, spin-pumping,
and spin-Hall angle. In Fig. 3(b), the SMPs can also hybridize
with the bulk magnonic states, forming anticrossings where
two such states would otherwise have crossed.

B. Analytic results

To better understand the numerical results and how these
modes are related to the microscopic details of the sys-
tem, we perform analytical calculations for two limiting
thicknesses of the AFI layer. We disentangle the effects of
exchange-stiffness, spin-pumping, and spin-Hall impact on
the dispersion of the modes.

1. Thick AFI layer kdy, > 1

We start by considering the “zeroth-order” noninteracting
case, i.e., without any magnon-polariton coupling, spin-
pumping, and spin-Hall effect. Using the fact that for the
systems of interest wy; << wg, we find the following expres-
sions for the high-frequency polaritons in the wide limit:

27,2 2 2 2
0 A @} | 2K + 0] — eocw) + @
Wyt X Wy + ——

2o @2 — (€ — D]

\/4c2k2 (22 + @2 — €xow) + g

. (33
a)i — (€0 — D}
and for the low-frequency polaritons,
2 2
O ~ D (1— 0 34
Ow= N @O0t 2ay ( 202k2 — w%) (34)

In the limit of a high plasma frequency w, > wo, the high-
frequency branch approaches «/a)% + 2w? at small k, while
for large k it goes to vV j + w?, consistent with the results
presented before in Ref. [33]. The low-frequency mode is
localized at the AFI-vacuum interface and is thus insensitive
t0 w, and €, in the thick-film limit, which are properties
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of the N layer. The mode starts at w = wy for k = wp/c and

approaches ,/a)g + a)sz as k — oo, cf. Refs. [30,33].

Next, we consider the leading-order corrections to these
frequencies, Eqs. (33) and (34), that arise from coupling
to the magnons, spin-pumping, and spin-Hall effect. We
can construct an approximate model that describes the fre-
quency shifts and the induced couplings between the polariton
and magnon modes by expanding the governing equa-
tion det(A) = 0 as outlined in Sec. IV, in the relevant small
parameters before solving for its zeros. Apart from using
ws/wo <K 1 and wy/w), K 1, we can identify small parameters
by comparing the length scales associated with the different
types of modes that become mixed: polariton, magnon, and
spin-accumulation modes.

The relevant length scale of the polaritons in the vacuum
and the AFI layer is Ap ~ k~! ~ ¢/wp. Using our assumption
that A, is small, we find from Eq. (24) the typical length
scale of the propagating magnons in the Reststrahlen band
to be Ay ~ A,wp/ws for all k of interest. This suggests that
we can treat Ay /Ap ~ kA wo/wy < 1 as a small parameter
in the expansion of det(A). In the N layer, the polariton
length scale becomes Agp ~ (k* + wlz, /c?)~1/2, while the spin-
accumulation mode is characterized by the length scale A;.
Thus, we can use Ag/Asp < 1 as a small parameter in the
expansion. Furthermore, we assume a small spin-Hall angle,
so we only need to expand to the first order in Oy < 1.
Finally, considering the effect of spin pumping perturbatively
is slightly more complicated. Part of the spin current pumped
from the AFI layer into the N layer backflow into the AFI
layer, and for the material parameters that we use this back-
flow spin current density is large compared to the bulk spin
current density jib / jis ~ Vre/CpgN-sDAst 2, 1, and thus the N
layer does not act as a spin sink. This backflow being large
yields the small dimensionless parameter,

g, = Vre
¢ 1+ Vre/gqu—SD)st

<1, (35)

where gn_sp is given by Eq. (26), and we have introduced the
following dimensionless parameters:

1 YTt o
e = — | ———— —g,., 36
Vie 2w\ My hgpv a)ag (36a)
_ YR o Agt (36b)
CP B Msfsf Wq )\a ’

Yt 1S an effective measure of the average strength of the bare
spin pumping and backflow, while the parameter ¢, relates to
the relative strength of the spin pumping as viewed by the AFI
and N layers. One would find y; ~ 0.79 and {, = 1.3 x 1073
for the explicit material parameters mentioned above.

The parameter g, can then be viewed as a renormalization
of the effective spin-pumping parameter ), as parts of the
spin current pumped into N backflows back across the inter-
face instead of diffusing into the N layer. This then reduces the
effective spin-pumping parameter, and below, we include spin
pumping to the leading order in g,.. For the chosen parameters
we find |yre/¢pgn-spAsi| & 77, and as such the effective spin
mixing is significantly reduced compared to the bare value.
This also means that further increasing the spin-mixing con-

ductance g, does not increase the effect of spin mixing, as the
additional pumped spin-current backflow into the AF.

Finite coupling to magnons gives rise to two effects: (i) a
shift in the polariton frequency and (ii) hybridization of the
polariton with the magnon, manifesting itself as anticrossings
appearing wherever polariton and magnon modes intersect
each other in the spectrum.

The spin-pumping and spin-Hall phenomena present small
additional contributions to both the frequency shift Aw, and
the hybridization strengths. In the following, we analyze all
contributions perturbatively in terms of the small parameters
introduced above.

We start by analyzing the frequency shifts arising from the
polariton-magnon coupling and setting g., Osy = 0. Later, we
add the finite spin-pumping and spin-Hall phenomena. From
Eq. (6) and én = x,Z x H, we see that the spin current in
the AFI layer scales with d,H = gH, and thus it follows that
if Apr/Ap ~ khqwo/ws < 1, then the polaritons only elicit a
weak response from the magnons as the corresponding mag-
netic fields of the magnon modes are much smaller than for the
polariton. In this limit, we find the leading-order correction in
A /Ap to the frequency shift as

Awyt = (kXg) wo, 37)

whose k dependence are the same as that of a gapped AFI at
long wavelengths [68]. Figure 4(a) shows the frequency shift
given by this expression using the material parameters given
above (black dashed line) compared to the numerically cal-
culated shift of the two modes (colored dots), where the blue
dots show the high-frequency polariton localized at the AF/N
interface, while red dots are for the low-frequency polariton
localized at the AFI-vacuum interface. The frequency is eval-
uated at k values at the midpoint between two neighboring
anticrossings to separate the shifts from the hybridization. A
small peak at small k for the lower polariton mode (shown in
the inset) is due to a strong hybridization with the mode with
ga—: From Eq. (24), it follows that ga— — £k when w — wy,
and thus the modes are no longer well separated. This shift
can be understood as the additional dispersion resulting from
the magnonic nature of the polariton since the magnons also
disperse like (kA,)?/2.

We then compute the effect of spin pumping by including
a finite g,,

igegpk)huwo

1 .
Since this correction is generally a complex frequency, it
can not only induce a frequency shift but also introduce a
damping of the mode. As the phase of g, is given by the fac-
tor 4/1 — itgwo stemming from gn_sp When g/, > 1, the
frequency shift is only comparable to the damping if 7 2 wp.
Note that the lower-frequency polariton mode is unperturbed
by the spin pumping AwS’ =0, as it is localized at the
AFI-vacuum interface. In Fig. 4(b), we compare the additional
frequency shift of the high-frequency polariton predicted by
Eq. (38) (black dashed line) with the numerically calculated
shift (blue dots). Since the effect of spin pumping on the
polariton mode vanishes in the absence of polariton-magnon
coupling, the correction Eq. (38) is accompanied by the cor-
rection Eq. (37). The numerically calculated shift in Fig. 4(b)

Aa)\syli = (38)
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FIG. 4. The change in the real part of w(k) of the two polaritons
for a wide AF with dy = 3.98 ¢/wy ~ 1.2 mm resulting from (a) in-
cluding finite polariton-magnon mixing and, additionally, including
(b) finite spin pumping across the AFI/N interface or (c) a spin-Hall
effect in the N. The dots show the numerically calculated shift of
the frequencies, where the red and blue dots in (a) distinguish the
shift for the low- and high-frequency modes, respectively. As the
text explains, the black dashed lines show the analytically calculated
corrections. For all plots, we used the material parameters stated in
the text.

is thus found as the difference in frequency between the case
with a finite spin-pumping and polariton-magnon coupling
and the case with only polariton-magnon coupling.

We finally compute the effect of a finite spin-Hall mixing,

/ 2
8e (1)3 Ay K2 + C—f

ADSH = — Osuki, ==

é‘b 2(J‘)O A/ 1— i‘Ewa()

k
x|1l-—=, 39

Je+2

where we introduced the following dimensionless parameter:

2
0 Mw, A
P Y Mswq Aq
=L/ —, 40
) 2 100\ "33 (40

which characterizes the relative ratio of how strongly the two
layers are influenced by the spin transferred from the other
layer. We find ¢, = 9.7 x 107> for the material parameters
used in this article. The correction described by Eq. (39) origi-
nates from the spin current pumped from the AFI layer into the
N layer, being converted into an electric and magnetic field in

the N layer through the spin-Hall effect, and is thus again only
affecting the high-frequency mode, i.e., AwS? = 0. There
is also a correction to the frequency proportional to ¢, for
the opposite “loop” caused by the backflow spin current that
converts spin accumulation in the N layer into electromagnetic
fields in the AFI layer. This correction, however, is much
smaller than Aw3™ since ¢, <« 1. In Fig. 4(c), we compare the
analytically found correction following from Eq. (39) (black
dashed curve) with the numerically calculated frequency shift
of the mode (blue dots), again focusing on the difference
between the case with only polariton-magnon coupling and
the case with additional spin-Hall mixing.

The total approximate expression for the frequency of the
two polariton modes in the thick limit of the AFI layer, in the
presence of all mechanisms considered here, thus becomes

Awy &~ a)g)j[ + Aa)wi + Aw\f}; + Aa)g}i. 41)

From Fig. 3(b), it can be seen that the upper polariton coupled
to N exhibits a negative group velocity, and as shown in
Figs. 4(b) and 4(c), this effect can in principle be enhanced
by spin mixing and SHE. However, the effect is fragile due
to the small spin-Hall angle in most semiconductors and the
reduced effective spin mixing due to a large backflow spin
current from the N, reducing the effective spin pumping.
However, this large backflow is also responsible for the pure
spin-mixing-induced frequency shift in the absence of SHE
as given in Eq. (38); in its absence, the spin mixing would
only lead to an increased damping of the polariton. On the flip
side, the coupling to the magnonic modes in the AF imparts a
weak magnonic dispersion on the surface polariton, reducing
the negative group velocity. As such, the combined effect will
be very material dependent.

We now turn to the hybridization of the polaritons with the
dispersionless magnonlike states. To investigate the hybridiza-
tion strength, we calculate the size of the avoided crossing
gaps, i.e., the minimal difference in frequency between two
given states as a function of k numerically and analytically.
To construct an analytical model, we make use of the same
approximations as for the frequency shifts, expanding the
determinant det(A) from Sec. IV in the small parameters
mentioned above.

Here we focus only on the contribution from the polariton-
magnon coupling and do not consider the contributions of the
spin mixing and spin-Hall phenomena; the latter are minor
corrections. In the wide limit kd4 >> 1, we find the size of the
avoided crossing gaps up to the leading order in Ay, /Ap,

| 2
MY = k22 2wy L (42)

Importantly, this means that the width of the anticrossings
decreases as the width of the AFI layer increases while
increasing with increasing k. In Fig. 5, we compare this ana-
lytical expression (black dashed curves) with the numerically
found splittings (colored dots) of the anticrossings between
the polariton mode and the magnon mode. Figure 5(a) ex-
plores the hybridization as a function of d4 and Fig. 5(b) as
a function of k. The approximate result captures the behavior
very well for thick AFI layers. The sharp increase as k ap-
proaches wy/c for the lower polariton is due to the same effect
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FIG. 5. The size of the anticrossings between the high-frequency
polariton mode and the magnon modes, given by the approximate
expression (42) (black dashed curves) and calculated numerically
(colored dots). The blue dots show the anticrossings for the upper
polariton mode and the red dots for the lower, with anticrossings with
symmetric and antisymmetric magnon modes shown with different
shades of the respective colors. (a) The splitting as a function of & for
da = 3 ¢/wy. (b) The splitting tMF as a function of dj for k = 2 wy/c.
In the numerical calculations we used 6sy, ¥ = 0 throughout.

as the peak in Fig. 4(a), namely that the separation between the
magnonic g4 mode and the polariton diminishes as g4 — &
in this limit.

The two “branches” of splittings appearing at smaller d4
can be understood as follows: For a thinner AFI layer, the
two polariton modes are no longer well separated at the
two interfaces of the AFI layer. The high-frequency mode
ultimately becomes a mode with symmetric E, field along
the x direction, and the low-frequency mode becomes an
antisymmetric mode. For the high-frequency case, one thus
expects the hybridization with antisymmetric magnon modes
to vanish for a thin AFI layer (light blue colored dots) and with
symmetric modes to become stronger (dark blue colored dots).
The low-frequency mode displays a much weaker branching
but is still visibly split at smaller d4, with the roles of the
symmetric and antisymmetric magnon modes interchanged.

2. Thin AFI layer kdy, < 1

In this limit, the decay length of the polariton modes in the
AFI is longer than the thickness of the AFI. The SMPs will
no longer be located at the two separate interfaces but instead
mix to form superpositions of the two ¢4+ modes decaying
in opposite directions. The high-frequency mode becomes
a symmetric superposition of the two modes when viewed
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FIG. 6. The change in the real part of w(k) of the two polaritons
for a narrow AF as a function of dj for a fixed k = 5 wy/c resulting
from (a) including finite polariton-magnon mixing and, additionally,
including (b) finite spin pumping across the AF/N interface or (c) a
spin-Hall effect in the N. The dots show the numerically calculated
shifts for the high-frequency polariton (blue) and the low-frequency
polariton (red). The seeming divergence at certain larger d, results
from anticrossings with magnonlike states in the AF. The black
dashed curves show the approximate analytical results derived for
the narrow limit.

in terms of the electric field E,, while the low-frequency
polariton approaches an antisymmetric superposition. The
frequency of the upper polariton in the uncoupled limit

Aas Yees Osu — O approaches a)ﬁg ~ vV} + 202, while the

lower polariton approaches a)fB: ~ wy, see again Figs. 3(a) and

3(b). In particular in this limit g4, g4o — k for the lower and
upper modes, respectively.

We derive approximate expressions for the induced fre-
quency shifts due to the polariton-magnon mixing, spin
pumping, and the spin-Hall effect in the thin limit of the AFI
layer. The frequency shift due to coupling with the magnons,
to the lowest order in A /Ap, becomes

1
AMP = zk%\gwo. (43)

In Fig. 6(a), we compare this analytical result (black dashed
line) with the numerically calculated shifts (colored dots),
where the (blue) red dots correspond to the (high-) low-
frequency mode. Note that the perceived divergence as dy4 is
due to the hybridization with magnon modes, which, as seen
from Fig. 5(a), is strong for a thin AFI layer.
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The effect of additionally adding the spin pumping leads
then to a frequency change of

_ ige;-p)"awo
8dy

Just as in the thick limit, this is a complex frequency that leads
to a frequency shift and damping to the mode. We show this
result in Fig. 6(b) (black dashed line), again comparing it to
the numerically calculated shift of the high-frequency (blue
dots) and low-frequency (red dots) modes. This correction
diverges in the limit d4 — 0, which is reasonable. For a very
thin AFI layer, the total magnetization is small and thus more
quickly pumped into the N layer, where it decays. Note, how-
ever, that the frequency shift is constant as a function of k£ and
thus does not change the group velocity of the polariton mode.
Finally, the effect of a finite spin-Hall mixing yields

2
Aot = At [1 — 20 (45)
n— W+ 62k2 ’

for the low-frequency mode, whereas for the high-frequency
mode Awﬁi‘ ~ 0. These results are illustrated in Fig. 6(c),
where the black dashed line indicates Aw,sf and the (blue)
red dots show the numerically calculated frequency shift of
the (high-) low-frequency polariton. The strongly reduced
shift for the high-frequency mode follows from the symmetry
of the polaritons, which hybridize in the thin-film limit into
modes with either symmetric or antisymmetric fields in the
AFT layer. Due to the boundary conditions on the electromag-
netic fields at the interfaces with the vacuum and N layer,
the ratio of H,/E, must remain finite even in the thin-film
limit. As the frequency of the high-frequency polariton ap-
proaches @ ~ v} + 2w? in the thin limit, gar4 ~ k remains
finite, and the antisymmetric fields will be expected to be
much smaller than their symmetric counterparts by a fac-
tor sinh(qa4+da)/ cosh(ga+da) ~ qa+da < 1. Furthermore, as
[m(ga)| < 1 forw ~ v w(% + wa, it follows from Eq. (16)
that only for a symmetric E; field does the ratio H,/E,
tanh(gap+da/2)/m(ga+) not diverge at the interface. The
high-frequency mode must therefore have a symmetric E, and
H, field, and an antisymmetric H, field, and thus Eq. (16)
implies H, > H,. The low-frequency polariton will, in turn,
have the opposite field symmetries. However, deriving this

Ao, = (44)

result is slightly more complicated as both w,, 4+ and ga+
diverges as w — wy. From Eq. (6), where the spatially varying
component of n is given by én & Z x H, it follows that the
H; field mostly pumps spin into the f component. However,
as Asf < ¢/wyp, the spin current in the N layer flows more
strongly along the x direction, and thus wj couples much
more strongly than ). to the electric polarization through the
spin-Hall effect. Therefore, the small H, field in the high-
frequency polariton is why the spin-Hall-induced frequency
shift is much weaker than in the lower mode. As d, increases,
the lower mode becomes more localized towards the left in-
terface, and thus the coupling to the N layer vanishes. At the
same time, the upper mode localizes at the right interface,
which causes the (anti)-symmetry of the fields to be lost, thus
causing the reappearance of a finite frequency shift.
VI. CONCLUSION AND SUMMARY

We have developed a formalism for the study of sur-
face magnons polaritons in an antiferromagnetic insulator
coupled to a semiconductor. Starting from Maxwell’s equa-
tions combined with the Landau-Lifshitz-Gilbert equation for
the dynamical electric and magnetic fields, we generalized
this conventional description with spin-pumping, spin-torque,
spin-Hall effects, and inverse spin-Hall effects. We com-
puted numerically the resulting dispersion relations for the
eigenexcitations in the hybrid system. We also found an-
alytical expressions for the influence of spin-pumping and
spin-Hall effects in the perturbative limits of thick and thin
antiferromagnetic layers. There is a good agreement between
the numerical and analytical results in appropriate limits.
We found that conventional electromagnetic couplings are
robust and typically dominate the dispersion relations, but
spin-pumping and spin-Hall effects give smaller frequency
shifts in the perturbative regimes. Our analytical results show
how material parameters control the impact of spin-pumping
and spin-transfer torques on the surface magnon polaritons
and could be used as a guide to explore new materials for
magnetoplasmonic applications.
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