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Calculation of Gilbert damping and magnetic moment of inertia using the torque-torque correlation
model within an ab initio Wannier framework
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Magnetization dynamics in magnetic materials are well described by the modified semiclassical Landau-
Lifshitz-Gilbert equation, which includes the magnetic damping α̂ and the magnetic moment of inertia Î, both
usually being tensors, as key parameters. Both parameters are material specific and physically represent the
timescales of damping of precession and nutation in magnetization dynamics. α̂ and Î can be calculated quantum
mechanically within the framework of the torque-torque correlation model. The quantities required for the
calculation are torque matrix elements, the real and imaginary parts of the Green’s function, and its derivatives.
Here, we calculate these parameters for the elemental magnets such as Fe, Co, and Ni in an ab initio framework
using density functional theory and Wannier functions. We also propose a method to calculate the torque matrix
elements within the Wannier framework. We demonstrate the effectiveness of the method by comparing it with
the experiments and previous ab initio and empirical studies and show its potential to improve our understanding
of spin dynamics and to facilitate the design of spintronic devices.
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I. INTRODUCTION

In recent years, the study of spin dynamics [1–5] in
magnetic materials has garnered significant attention due to
its potential applications in spintronic devices and magnetic
storage technologies [6–9]. Understanding the behavior of
magnetic moments and their interactions with external per-
turbations is crucial for the development of efficient and
reliable spin-based devices. Among the various parameters
characterizing this dynamics, Gilbert damping [10] and mag-
netic moment of inertia play pivotal roles. The fundamental
semiclassical equation describing the magnetization dynamics
using these two crucial parameters is the Landau-Lifshitz-
Gilbert (LLG) equation [11,12], given by

∂M
∂t

= M ×
(

−γ H + α̂

M

∂M
∂t

+ Î
M

∂2M
∂t2

)
, (1)

where M is the magnetization, H is the effective magnetic
field including both external and internal fields, α̂ and Î are
the Gilbert damping and moment of inertia tensors with the
tensor components defined as αμν and Iμν , respectively, and γ

is the gyromagnetic ratio.
Gilbert damping α̂ is a fundamental parameter that de-

scribes the dissipation of energy during the precession of
magnetic moments in response to the external magnetic field.
Accurate determination of Gilbert damping is essential for
predicting the dynamic behavior of magnetic materials and
optimizing their performance in spintronic devices. On the
other hand, the magnetic moment of inertia Î represents the

*Contact author: s.bhattacharjee@ikst.res.in
†Contact author: mjain@iisc.ac.in

resistance of a magnetic moment to changes in its orientation.
It governs the response time of magnetic moments to external
stimuli and influences their ability to store and transfer infor-
mation. The moment of inertia [13] is the magnetic equivalent
of the inertia in classical mechanics [14,15] and acts as the
magnetic inertial mass in the LLG equation.

Experimental investigations of Gilbert damping [16–23]
and moment of inertia involve various techniques, such as
ferromagnetic resonance (FMR) spectroscopy [24,25], spin-
torque ferromagnetic resonance (ST-FMR), and time-resolved
magneto-optical Kerr effect (TR-MOKE) [26,27]. Interpret-
ing the results obtained from these techniques in terms of the
LLG equation provide insights into the dynamical behavior of
magnetic materials and can be used to extract the damping and
moment of inertia parameters. In order to explain the experi-
mental observations in terms of more microscopic theoretical
description, various studies [28–34] based on linear response
theory and Kambersky theory have been carried out.

Linear response theory based studies of Gilbert damping
and moment of inertia involve perturbing the system and
calculating the response of the magnetization to the perturba-
tion. By analyzing the response, one can extract the damping
parameter. Ab initio calculations based on linear response
theory [33] can provide valuable insights into the microscopic
mechanisms responsible for the damping process. While for-
mal expression for the moment of inertia in terms of Green’s
functions has been derived within the linear response frame-
work [11], to the best of our knowledge, there has not been
any first-principles electronic-structure-based calculation for
the moment of inertia within this formalism.

Kambersky’s theory [35–37] describes the damping phe-
nomena using a breathing Fermi surface [38] and torque-
torque correlation model [39], wherein the spin-orbit cou-
pling acts as the perturbation and determines the change
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in the nonequilibrium population of electronic states with
the change in the magnetic moment direction. Gilmore
et al. [32,34] have reported the damping for ferromagnets
like Fe, Co, and Ni using Kambersky’s theory in the linear
augmented plane-wave method [40].

The damping and magnetic inertia have been derived
within the torque-torque correlation model by expanding the
effective dissipation field in the first and second time deriva-
tives of magnetization [29–31]. In this work, the damping and
inertia were calculated using the tight-binding model. The
parameters are obtained by fitting the electronic band struc-
tures to those obtained by fully relativistic multiple scattering
Korringa-Kohn-Rostoker (KKR) method using a genetic al-
gorithm [41]. However, there has not been any full ab intio
implementation using density functional theory (DFT) and
Wannier functions to study these magnetic parameters.

The expressions for the damping and inertia involve in-
tegration over crystal momentum k in the first Brillouin
zone. Accurate evaluation of the integrals involved requires
a dense k-point mesh of the order of 106–108 points for ob-
taining converged values. Calculating these quantities using
full ab initio DFT is hence time consuming. To overcome
this problem, here we propose an alternative. To begin with,
the first-principles calculations are done on a coarse k mesh
instead of dense k mesh. We then utilize the maximally lo-
calized Wannier functions (MLWFs) [42] for obtaining the
interpolated integrands required for the denser k meshes. In
this method, the gauge freedom of Bloch wave functions is
utilized to transform them into a basis of smooth, highly
localized Wannier wave functions. The required real-space
quantities like the Hamiltonian and torque matrix elements are
calculated in the Wannier basis using Fourier transforms. The
integrands of integrals can then be interpolated on the fine k
mesh by an inverse Fourier transform of the maximally local-
ized quantities, thereby enabling the accurate calculations of
the damping and inertia.

The rest of this paper is organized as follows: In Sec. II,
we introduce the expressions for the damping and the inertia.
We describe the formalism to calculate the two key quantities
required, namely, the Green’s function and the torque matrix
elements, using the Wannier interpolation. In Sec. III, we
describe the computational details and workflow. In Sec. IV,
we discuss the results for ferromagnets like Fe, Co, and Ni,
and discuss the agreement with the experimental values and
the previous studies. In Sec. V, we conclude with a short
summary.

II. THEORETICAL FORMALISM

First, we describe the expressions for Gilbert damping
and moment of inertia within the torque-torque correlation
model. Then, we provide a brief description of the MLWFs
and the corresponding Wannier formalism for the calculation
of torque matrix elements and the Green’s function.

A. Gilbert damping and moment of inertia within
the torque-torque correlation model

If we consider the case when there is no external magnetic
field, the electronic structure of the system can be described

by the Hamiltonian

H = H0 + Hexc + HSO = HSP + HSO. (2)

The paramagnetic band structure is described by H0 and
Hexc describes the effective local electron-electron interac-
tion, treated within a spin-polarized (SP) local Kohn-Sham
exchange-correlation (exc) functional approach, which gives
rise to the ferromagnetism. HSO is the spin-orbit Hamilto-
nian. As we are dealing with ferromagnetic materials only,
we can club the first two terms as HSP = H0 + Hexc. During
magnetization dynamics, (when the magnetization precesses),
only the spin-orbit energy of a Bloch state |ψnk〉 is effected,
where n is the band index of the state. The magnetization
precesses around an effective field Heff = Hint + Hdamp + HI,
where Hint is the internal field due to the magnetic anisotropy
and exchange energies, Hdamp is the damping field, and HI

is the inertial field, respectively. From Eq. (1), we can see
that the damping field Hdamp = α̂

Mγ
∂M
∂t , while HI = Î

Mγ
∂2M
∂t2 .

Equating these damping and inertial fields to the effective
field corresponding to the change in band energies as mag-
netization precesses, we obtain the mathematical description
of the Gilbert damping and inertia. It was proposed by Kam-
bersky [39] that the change of the band energies ∂εnk

∂θμ (θ =
θ n̂ defines the vector for the rotation) can be related to the
torque operator (or matrix depending on how the Hamiltonian
is being viewed) 	μ = [σμ,HSO], where σμ are the Pauli
matrices. Eventually, within the so-called torque-torque cor-
relation model, the Gilbert damping tensor can be expressed
as follows:

αμν = g

Msπ

∫∫ (
−df (ε)

dε

)
Tr[	μ(ImG)(	ν )†(ImG)]

× d3k
(2π )3

dε. (3)

Recently, Thonig et al. [30] have extended such an approach
to the case of moment of inertia also, where they deduced the
moment of inertia tensor components to be

Iνμ = gh̄

Msπ

∫∫
f (ε)Tr

[
	ν (ImG)(	μ)† ∂2

∂ε2
(ReG)

+	ν ∂2

∂ε2
(ReG)(	μ)†(ImG)

]
d3k

(2π )3
dε. (4)

Here the trace, denoted by Tr, goes over band indices, f (ε) is
the Fermi function, (ReG) and (ImG) are the real and imag-
inary parts of Green’s function G = (ε + ιη − H)−1 with η

as a broadening parameter, Ms is the saturation magnetization
in units of the Bohr magneton, 	μ = [σμ,HSO] is the μth
component of the torque operator or matrix, μ = x, y, z. α is
a dimensionless parameter, and I has units of time, usually of
the order of femtoseconds.

To obtain the Gilbert damping and moment of inertia ten-
sors from the above two k integrals calculated as sums over
discrete k meshes, we need a large number of k points: around
106 for ensuring the convergence of α, and more than 107

for converging I. The need for an ample k-point sampling
in the first Brillouin zone (BZ) is caused by the narrowness
of Green’s function peaks in the vicinity of its poles, for the
case of small broadening value η. For I, the required number
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of k points is larger in comparison to the case of α because
∂2ReG/∂ε2 is composed of cubic terms:

∂2ReG

∂ε2
= 2[(ReG)3 − ReG(ImG)2

−ImG ReG ImG − (ImG)2ReG]. (5)

We note that to carry out energy integration in α it is
sufficient to consider a limited number of energy points within
a narrow range (∼kBT ) around the Fermi level. This is mainly
due to the exponential decay of the derivative of the Fermi
function away from the Fermi level. However, the integral
for I involves the Fermi function itself and not its derivative.
Consequently, while the Gilbert damping is associated with
the Fermi surface, the moment of inertia is associated with
the entire Fermi sea. Therefore, in order to adequately capture
both aspects, it is necessary to include energy points between
the bottom of the valence band and the Fermi level.

B. Wannier interpolation

1. Maximally localized Wannier functions (MLWFs)

The real-space Wannier functions are written as the Fourier
transform of Bloch wave functions

|wnR〉 = v0

(2π )3

∫
BZ

dk e−ιk·R|ψnk〉, (6)

where |ψnk〉 are the Bloch wave functions obtained by the
diagonalization of the Hamiltonian at each k point using
plane-wave density functional theory (DFT) calculations. v0

is the volume of the unit cell in the real space.
In general, the Wannier functions obtained by Eq. (6) are

not localized. Usually, the Fourier transforms of smooth func-
tions result in localized functions. But there exists a phase
arbitrariness of eιφnk in the Bloch functions because of in-
dependent diagonalization at each k, which messes up the
localization of the Wannier functions in real space.

To mitigate this problem, we use the Marzari-Vanderbilt
(MV) localization procedure [42–44] to construct the ML-
WFs, which are given by

|wnR〉 = 1

N

∑
q

Nq∑
m=1

e−ιq·RUq
mn|ψmq〉, (7)

where Uq
mn is a (Nq × Nw )-dimensional matrix chosen by

Wannierization procedure. Nw are the number of target Wan-
nier functions, and Nq are the original Bloch states at each q
on the coarse mesh, from which Nw smooth Bloch states on
the fine k mesh are extracted requiring Nq � Nw for all q, N
is the number of uniformly distributed q points in the BZ. The
interpolated wave functions on a dense k mesh, therefore, are
given via inverse Fourier transform or by summation over R
with a cutoff (see Fig. 1) as∣∣ψw

nk

〉 =
∑

R

eιk·R|wnR〉. (8)

Throughout the paper, we use q and k for coarse and fine
meshes in the BZ, respectively. Note that unlike |ψmq〉 in
Eq. (7), the interpolated wave functions in Eq. (8) are no
longer eigenfunctions of the Hamiltonian. Therefore, we used

FIG. 1. The figure shows the schematic of the localization of the
Wannier functions on a R grid. The matrix elements of the quantities
like Hamiltonian on the R grid are exponentially decaying. There-
fore, they can be set to zero for most points on the R grid (shown in
blue). We can hence do the summation until a cutoff Rcut (shown in
red) to interpolate the quantities on a fine k grid.

superscript w to represent the interpolated wave functions as
|ψw

nk〉.

2. Torque matrix elements and Green’s functions

As described in the expressions of αμν and Iνμ in Eqs. (3)
and (4), the μth component of the torque matrix is given
by the commutator of μth component of Pauli matrices and
spin-orbit coupling matrix, i.e., 	μ = [σμ,HSO]. Physically,
we define the spin-orbit coupling (SOC) and spin-orbit torque
(SOT) as the dot and cross products of orbital angular momen-
tum and spin angular momentum operator, respectively, such
that HSO = ξ� · σ where ξ is the coupling amplitude. Using
this definition of HSO, one can show easily that −ι[σ,HSO] =
2ξ� × σ which represents the torque.

There have been several studies on how to calculate the
spin-orbit coupling using the ab initio numerical approach.
Shubhayan et al. [45] describe the method to obtain SOC
matrix elements in the Wannier basis calculated without SO
interaction, using an approximation of weak SOC in the or-
ganic semiconductors considered in their work. Their method
involves DFT in the atomic orbital basis, wherein the SOC
in the Bloch basis can be related to the SOC in the atomic
basis. Then, by the basis transformation, they get the SOC in
the Wannier basis calculated in the absence of SO interaction.
Farzad et al. [46] calculate the SOC by extracting the coupling
amplitude from the Hamiltonian in the Wannier basis, treating
the Wannier functions as atomiclike orbitals.

We present a different approach wherein we can do the
DFT calculation in any basis (plane wave or atomic orbital).
Unlike the previous approaches, we perform two DFT cal-
culations and two Wannierizations: one is with spin-orbit
interaction and finite magnetization (SO) and the other is spin
polarized without spin-orbit coupling (SP). The spin-orbit
Hamiltonian HSO can then be obtained by subtracting the
spin-polarized Hamiltonian HSP from the full Hamiltonian H
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as HSO = H − HSP, provided that both Hamiltonians (H and
HSP) are written in the same Wannier basis. However, when
one Wannierizes the SO and SP wave functions, one will get
two different Wannier bases. As a result, we can not directly
subtract the H and HSP in these close but different Wannier
bases. In order to do the subtraction, we find the transforma-
tion between the two Wannier bases, i.e., express one set of
Wannier functions in terms of the other. Subsequently, we can
express the matrix elements of H and HSP in the same basis
and hence calculate HSO. In the equations below, the Wannier
functions, the Bloch wave functions and the operators defined
in the corresponding bases in SP and SO calculations are rep-
resented with and without the tilde (∼) symbol, respectively.

The Nw SO Wannier functions |wnR〉 are related to SO
Bloch wave functions |ψmq〉 by

|wnR〉 = 1

N

∑
q

Nq∑
m=1

e−ιq·RUq
mn|ψmq〉, (9)

where Uq
mn is a (Nq × Nw )-dimensional matrix. The SO wave

functions and Wannier functions are superpositions of up- and
down-spin states and can be represented as spinors:

|ψnq〉 =
[
|ψ↑

nq〉
|ψ↓

nq〉

]
, |wnR〉 =

[
|w↑

nR〉
|w↓

nR〉

]
. (10)

The Ñ s
w SP Wannier functions |w̃s

nR〉, are related to the SP
Bloch wave functions |ψ̃ s

mq〉 by

∣∣w̃s
nR

〉 = 1

N

∑
q

Ñ s
q∑

m=1

e−ιq·RŨqs
mn

∣∣ψ̃ s
mq

〉
, (11)

where s =↑,↓. Ũqs
mn is a (Ñ s

q × Ñ s
w )-dimensional matrix. The

off-diagonal terms in the spin-polarized Hamiltonian corre-
sponding to opposite spins are zero (because of no SOC). As
a result, the SP Bloch wave functions are the eigenstates of
the σz operator. The SP Bloch wave function in the σz basis,
|ψ̃mq〉, can be written as

|ψ̃mq〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
|ψ̃↑

mq〉
0

]
for m = 1, . . . , Ñ ↑

q

[
0

|ψ̃↓
mq〉

]
for m = Ñ ↑

q + 1, . . . , Ñ ↑
q + Ñ ↓

q

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(12)

The corresponding Ñw SP Wannier functions in the σz basis,
|w̃nR〉, with Ñw = Ñ ↑

w + Ñ ↓
w , can be written as

|w̃nR〉 = 1

N

∑
q

Ñq∑
m=1

e−ιq·RŨq
mn|ψ̃mq〉, (13)

where Ũq is (Ñq × Ñw)-dimensional matrix with Ñq = Ñ ↑
q +

Ñ ↓
q ·Ũq can be represented in the σz basis as

Ũq =
[
Ũq↑ 0

0 Ũq↓

]
(14)

and |w̃nR〉 can be represented as

|w̃nR〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
|w̃↑

nR〉
0

]
for n = 1, . . . , Ñ ↑

w[
0

|w̃↓
nR〉

]
for n = Ñ ↑

w + 1, . . . , Ñ ↑
w + Ñ ↓

w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(15)

We now define the matrix of the transformation between
SO and SP Wannier bases as

T RR′
mn = 〈w̃mR|wnR′〉

= 1

N2

∑
qq′

Ñq,Nq′∑
p,l=1

eι(q·R−q′·R′ )Ũq†
mp〈ψ̃pq|ψlq′〉Uq′

ln

= 1

N2

∑
qq′

eι(q·R−q′·R′ )[Ũq†Vqq′Uq′
]mn, (16)

where Vqq′
pl = 〈ψ̃pq|ψlq′〉. Equation (16) is the most general

expression to get the transformation matrix. We can reduce
this quantity to a much simpler one using the orthogonality of
wave functions of different q. Equation (16) hence becomes

T RR′
mn = 1

N2

∑
q

eιq·(R−R′ )[Ũq†(NVq)Uq]mn

= 1

N

∑
q

eιq·(R−R′ )[Ũq†VqUq]mn (17)

where Vq
pl = 〈ψ̃pq|ψlq〉. Using this transformation, we write

the SP Hamiltonian in SO Wannier bases as

(HSP)RR′
mn = 〈wmR|HSP|wnR′〉

=
∑

plR′′R′′′
〈wmR|w̃pR′′〉

× 〈w̃pR′′ |HSP|w̃lR′′′〉〈w̃lR′′′ |wnR′〉
=

∑
plR′′R′′′

(T †)RR′′
mp (H̃SP)R′′R′′′

pl T R′′′R′
ln . (18)

Since Wannier functions are maximally localized and gener-
ally atomiclike, the major contribution to the overlap T RR′

mn is
for R = R′. Therefore, we can write T RR

mn = T 0
mn. The reason

is that it depends on relative R − R′, we can just consider
overlaps at R = 0. Equation (18) becomes

(HSP)RR′
mn =

∑
pl

(T †)0
mp(H̃SP)RR′

pl T 0
ln. (19)

Therefore, we write the HSO in Wannier basis as

(HSO)RR′
mn = HRR′

mn − (HSP)RR′
mn . (20)

The torque matrix elements in SO Wannier bases are given by

(	μ)RR′
mn = (σμHSO)RR′

mn − (HSOσμ)RR′
mn . (21)

Consider (σμHSO)RR′
mn and insert the completeness relation

of the Wannier functions, and also neglecting SO matrix
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elements between the Wannier functions at different sites be-
cause of their being atomiclike:

(σμHSO)RR′
mn = ∑

pR′′ (σμ)RR′′
mp (HSO)R′′R′

pn = (σμ)RR′
mp (HSO)0

pn.

(22)

(σμ)RR′
mp is calculated by the Fourier transform of the spin

operator written in the Bloch basis, just like the Hamiltonian:

(σμ)RR′
mp = 1

N

∑
q

e−ιq·(R′−R)[Uq†(σμ)qUq]mp. (23)

We interpolate the SOT matrix elements on a fine k mesh as
follows:

(	μ)k
mn =

∑
R′−R

eιk·(R′−R)(σμ)RR′
mn . (24)

This yields the torque matrix elements in the Wannier
basis. In the subsequent expressions, W and H subscripts
represent the Wannier and Hamiltonian basis, respectively. In
order to rotate to the Hamiltonian basis, which diagonalizes
the Hamiltonian interpolated on the fine k mesh using its
matrix elements in the Wannier basis,

(HW )k
mn =

∑
R′−R

eιk·(R′−R)HRR′
mn , (25)

(HH )k
mn = [(U k)†(HW )kU k]mn. (26)

Here U k (not to be confused with Uq) are the matrices with
columns as the eigenvectors of (HW )k, and (HH )k

mn = εmkδmn.
We use these matrices to rotate the SOT matrix elements in
Eq. (24) to the Hamiltonian basis as(

	
μ
H

)k
mn = [

(U k)†(	μ
W

)k
U k]

mn. (27)

The Green’s function at an arbitrary k and ε on a fine k
mesh in the Hamiltonian basis is given by

Gk
H (ε + ιη) = [ε + ιη − (HH )k]−1, (28)

where η is a broadening factor and is caused by electron-
phonon coupling and is generally of the order 5–10 meV.
Gk

H (ε + ιη) is a (N × N )-dimensional matrix.
Therefore, we can calculate ReG, ImG, and ∂2ReG/∂ε2 as

defined in Eq. (5) and, hence, α and I. The implementation
flow chart based on the above-described procedure has been
shown in Fig. 2.

There are, however, some limitations of this approach:
materials with very large spin-orbit coupling, and antifer-
romagnets. Our method of calculating the spin-orbit torque
matrix elements in Wannier framework is perturbative. There-
fore, in the case of significant variation of the Hartree field
or exchange energy terms in the strong spin-orbit coupling
regime, this method may not estimate correctly the Gilbert
damping coefficient. But there is an alternative to effectively
suppress those effects on the matrix elements of the Hamilto-
nian. We know that in the Wannier and atomiclike bases, the
spin-orbit coupling and torque matrix elements should be of
the form HSO = ξ� · σ and 2ξ� × σ, respectively. Therefore,
for the strong spin-orbit coupling, we can manually suppress
effects of Hartree and exchange terms for all matrix elements
where it should vanish. This approach should give the correct
estimate of the Gilbert damping and the moment of inertia.

FIG. 2. This figure shows the implementation flow chart of the
theoretical formalism described in Sec. II.

In antiferromagnets, the damping tensor is αss′ , where s and
s′ correspond to two sublattices with the opposite orientation
of spins [47]. By solving the coupled LLG equations for s
and s′ in the absence of external magnetic field, one can show
that the antiferromagnetic resonance (AFMR) linewidth is
composed of two damping components, αr and αex, which
represent the relativistic component arising from spin-orbit
coupling and the exchange component arising from spin ex-
change between the two sublattices, respectively [48]. The
expression for αr is similar to torque-torque correlation, and
therefore can be calculated using the described Wannier for-
malism. But in AFMs, αr is usually smaller by three orders of
magnitude in comparison to αex. In this case, it is important to
use the described approach for exchange torque calculations:
−i[Ŝ±, Ĥxc] = ∓iUhMŜ±. Here, Uh and M are, respectively,
the Stoner-Hubbard parameter and the magnetization, which
can be estimated in the Wannier basis for AFMs by fitting
it with the Wannier Hamiltonian to get Uh. This method is
analogous to estimating the coupling ξ in the spin-orbit part
using the Hamiltonian written in the Wannier basis. Therefore,
the Wannier-based approach may approximately quantify the
damping for AFMs as well.

III. COMPUTATIONAL DETAILS

Plane-wave pseudopotential calculations were carried out
for the bulk ferromagnetic transition metals bcc Fe, hcp Co,
and fcc Ni using the QUANTUM ESPRESSO package [49,50].
The conventional unit-cell lattice constants (a) used for bcc
Fe and fcc Ni were 5.424 and 6.670 bohrs, respectively, and
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FIG. 3. (a)–(c) Show the plots of α vs η for Fe, Co, and Ni, respectively. Damping constants calculated using the Wannier implementation
are shown in blue. Dampings calculated using the tight-binding method based on Lorentzian broadening and Green’s function by Thonig
et al. [29] are shown in brown and green, respectively. Damping coefficients calculated by Gilmore et al. [32] using local spin density
approximation (LSDA) are shown in red. The dashed curves are guides to the eye.

for hcp Co, a = 4.738 bohrs and c/a = 1.623 were used.
The noncollinear spin-orbit and spin-polarized calculations
were performed using fully relativistic norm-conserving pseu-
dopotentials. The kinetic energy cutoff was set to 80 Ry.
Exchange-correlation effects were treated within the PBE-
GGA approximation. The self-consistent calculations were
carried out on a 16 × 16 × 16 Monkhorst-Pack grid using
Fermi smearing of 0.02 Ry. Non-self-consistent calculations
were carried out using the calculated charge densities on a
	-centered 10 × 10 × 10 coarse k-point grid. For bcc Fe and
fcc Ni, 64 bands were calculated, and for hcp Co 96 bands
were calculated (because there are two atoms per unit cell
for Co). We define a set of 18 trial hybrid orbitals sp3d2,
dxy, dxz, and dyz for Fe, as well as trial orbitals without any
hybridization, also 18 per atom s, p, and d for Co and Ni, to
generate 18 maximally localized spinor Wannier functions per
atom using the WANNIER90 package [43].

From the WANNIER90 calculations, we get the check-
point file .chk, which contains all the information about the
gauge matrices. We use the .spn and .eig files generated by
PW2WANNIER90 to get the spin operator and the Hamiltonian
in the Wannier basis. We evaluate the SOT matrix elements in
the Wannier basis.

We get α by simply summing up on a fine-k grid the inte-
grand in Eq. (3) with appropriate weights for the k integration,
and we use the trapezoidal rule in the range [−8δ, 8δ] for
energy integration around the Fermi level where δ is the width
of the derivative of Fermi function ∼kBT . We consider 34
energy points in this energy range. We perform the calculation
for T = 300 K.

For the calculation of I, we use a very fine grid of 400 ×
400 × 400 k points. For η > 0.1, we use 320 energy points
between valence band minimum (VBM) and Fermi energy.
For 0.01 < η < 0.1, we use 3200–6400 energy points for the
energy integration.

IV. RESULTS AND DISCUSSION

A. Gilbert damping

In this section, we report the Gilbert damping constants
calculated for the bulk iron, cobalt, and nickel. If we choose

the z direction to be oriented along the direction of magnetiza-
tion, the damping tensor is diagonal, resulting in the effective
damping constant α = αxx + αyy.

In Fig. 3, we report the damping constants calculated by
the Wannier implementation as a function of the broadening
η known to be caused by electron-phonon scattering and
scattering due to impurities. In this study, η was varied in
the range 10−6–1 eV for clarifying the contributions of in-
traband and interband transitions, following the methodology
reported in Refs. [29,32]. The upper limit of the range η =
1 eV was chosen because above this value our model ceases
to produce realistic results. The broadening range observed

FIG. 4. Schematic diagrams illustrating the influence of the
broadening parameter η on the intraband and interband contributions
to the damping coefficient α.
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FIG. 5. Plot showing the moment of inertia −I versus broadening
η for Fe. The moment of inertia in the range 0.03–3.0 eV is shown as
an inset. The values using the Wannier implementation and the tight-
binding method [30] are shown in magenta and cyan, respectively.

experimentally is considerably narrower, η ≈ 5–10 meV. Our
calculation results agree well with those obtained using lo-
cal spin density approximation [32,51] and tight-binding
parametrization [29].

The expression for Gilbert damping in Eq. (3) is written
in terms of the imaginary part of Green’s functions. Using
the spectral representation of Green’s function Ank(ω), we can
rewrite Eq. (3) as

αμν = gπ

Ms

∑
nm

∫
T μ

nm(k)T ∗ν
nm (k)Snmdk, (29)

where Snm = ∫
η(ε)Ank(ε)Amk(ε)dε is the spectral overlap.

Although we are working in the basis where the Hamiltonian
is diagonal, the nonzero off-diagonal elements in the torque
matrix lead to both intraband (m = n) and interband (m �= n)
contributions. For the sake of simple physical understanding,
we consider the contribution of the spectral overlaps at the
Fermi level for both intraband and interband transitions in
Fig. 4. But in the numerical calculation thermal broadening
has also been taken into account. For the smaller η, the contri-
bution of intraband transitions decreases almost linearly with

the increase in η because overlapping peaks are of smaller
height and larger width as shown in Fig. 4. Above a certain η,
the interband transitions become dominant and the contribu-
tion due to the overlap of two spectral functions at different
band indices m and n becomes more pronounced at the Fermi
level. With further increase in η, the interband contribution in-
creases until η ∼ 1 eV. Because of the finite Wannier orbitals
basis, we have an accurate description of energy bands only
within the approximate range of (εF − 10, εF + 5) eV for the
ferromagnets in consideration.

B. Moment of inertia

Figures 5 and 6 show the moment of inertia for bulk Fe, Co,
and Ni. Analogous to the Gilbert damping, the inertia tensor
is diagonal, resulting in the effective moment of inertia I =
Ixx + Iyy.

The behavior for I vs η is similar to that of the damping,
with smaller and larger η trends arising because of intraband
and interband contributions, respectively. The overlap term in
the moment of inertia is between the ∂2ReG/∂ε2 and ImG
unlike just ImG in the damping. In Ref. [30], the moment of
inertia is defined in terms of torque matrix elements and the
overlap matrix as

Iμν = − gh̄

Ms

∑
nm

∫
T μ

nm(k)T ∗ν
nm (k)Vnmdk, (30)

where Vnm is an overlap function, given by∫
f (ε)[Ank(ε)Bmk(ε) + Bnk(ε)Amk(ε)]dε and Bmk(ε) is

given by 2(ε − εmk)[(ε − εmk)2 − 3η2]/[(ε − εmk)2 + η2]
3
.

There are other notable features different from the damping.
In the limit η → 0, the overlap Vmn reduces to 2/(εmk − εnk)3.
For intraband transitions (m = n), this leads to I → −∞.
In the limit η → ∞, Vmn ≈ 1/η5 which leads to I → 0.
The behavior at these two limits is evident from Figs. 5
and 6. The large-τ (small-η) behavior is consistent with the
expression I = −α.τ/2π derived by Fähnle et al. [52]. Here
τ is the Bloch relaxation lifetime. The behavior of τ as a
function of η using the above expression in the low-η limit
is shown in Fig. 7. Apart from these limits, the sign change

FIG. 6. (a), (b) Show the moment of inertia −I versus broadening η for Co and Ni, respectively. The values using the Wannier implemen-
tation and the tight-binding method are shown in magenta and cyan, respectively. Insets: the moment of inertia in the range 0.02–2.0 eV and
0.03–3.0 eV for Co and Ni, respectively.
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FIG. 7. The damping, magnetic moment of inertia, and relax-
ation rate for Fe are shown as functions of the broadening η in
blue, pink, and cyan, respectively. The gray-shaded region shows the
observed experimental relaxation rate τ , ranging from 0.12 to 0.47
ps. The η range of 6–12 meV is highlighted with a purple rectangle
(see Table I for the corresponding numerical values for Fe, Co, and
Ni). This agrees with the experimental broadening in the range of
5–10 meV, arising from electron-phonon coupling.

has been observed in a certain range of η for Fe and Co. This
change in sign can be explained by Eq. (5). In the regime
where intraband contributions dominate, at a certain η the
negative and positive terms integrated over ε and k become the
same, leading to zero inertia. Above that η, the contribution
due to the negative terms decreases until the interband
contribution plays a major role leading to a local maximum
in I (a local minimum in −I). Interband contribution leads
to the sign change from + to − and eventually zero at larger
η. This local minimum in −I can be seen at the broadening
of around 0.3 and 0.06 eV for Fe and Co, respectively [see
Figs. 5 and 6(a)].

In the small-η regime, the moment of inertia and the Gilbert
damping are related by I = −α.τ/2π , which indicates that
damping and the moment of inertia have opposite signs. By
analyzing the rate of change of magnetic energy, Ref. [11]
shows that Gilbert damping and the moment of inertia have
opposite signs when the magnetization dynamics is suffi-
ciently slow (compared to τ ).

FMR measurements on Ni79Fe21 and Co thin films have
experimentally elucidated the origin of the anomalous inertia
sign [27]. The third term in Eq. (1), involving second-order
time derivative, results in an effective field (Heff) that is
quadratic in frequency. One can show that the negative and
positive values of the moment of inertia correspond to pos-
itive and negative values of Heff, respectively. This directly
reflects the stiffening and softening behavior in Heff versus ω

at higher frequencies, analogous to the stiffening or softening
on force versus displacement at larger displacements. The
experimentally observed frequency dependence of resonance
fields confirms the stiffening behavior, which indicates the
negative values of the moment of inertia. The softening caused
by positive values of the moment of inertia is not observed
experimentally. This is because the experimentally realized

TABLE I. Theoretically calculated values of −I, α, and τ for Fe,
Co, and Ni for different values of η.

Material η (meV) −I (fs) α(×10−3) τ (ps)

Fe 6 0.210 3.14 0.42
8 0.114 2.77 0.26
10 0.069 2.51 0.17

Co 10 0.061 1.9 0.21
Ni 10 1.747 34.2 0.32

broadening η caused by electron-phonon scattering and scat-
tering from impurities is of the order of 5–10 meV. The values
of Bloch relaxation lifetime τ measured at the room tempera-
ture with the FMR in the high-frequency regime for Ni79Fe21

and Co films of different thickness range from 0.12–0.47 ps.
The theoretically calculated values for Fe, Co, and Ni using
the Wannier implementation for η ranging from 5–10 meV
are reported in Table I and lie roughly in the above-mentioned
experimental range for the ferromagnetic films.

V. CONCLUSIONS

In summary, in this paper we have presented a numerical
method to obtain the Gilbert damping and moment of inertia
based on the torque-torque correlation model within an ab
initio Wannier framework. We have also described a technique
to calculate the spin-orbit coupling matrix elements via the
transformation between the spin-orbit and spin-polarized ba-
sis. The damping and inertia calculated using this method for
the transition metals like Fe, Co, and Ni are in good agree-
ment with the previous studies based on the tight-binding
method [29,30] and local spin density approximation [32].
We have calculated the Bloch relaxation time for the approxi-
mate physical range of broadening caused by electron-phonon
coupling and lattice defects. The Bloch relaxation time is in
good agreement with experimentally reported values using
FMR [27]. The calculated damping and moment of inertia can
be used to study the magnetization dynamics in the sub-ps
regime.
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