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Linear and nonlinear spin-current generation in polar collinear
antiferromagnets without relativistic spin-orbit coupling
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We investigate spin-current generation in polar collinear antiferromagnets without relying on the relativistic
spin-orbit coupling. The symmetry and microscopic model analyses indicate that both linear and nonlinear spin
conductivities are induced; the linear spin conductivity is characterized by the non-Hall-type transverse tensor
component, while the nonlinear spin conductivity is characterized by the Hall-type tensor component. We show
that the emergence of the linear and nonlinear spin currents is caused by the quadrupole and dipole components
of the magnetic toroidal multipoles in the collinear antiferromagnetic structure, respectively. We demonstrate
the important conditions to enhance and/or suppress the spin conductivity in each component by analyzing a
fundamental tight-binding model. The experimental separation between their contributions is also discussed.
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I. INTRODUCTION

Relativistic spin-orbit coupling (SOC) has been the sub-
ject of considerable interest in both theory and experiments
in condensed-matter physics, since it brings about intriguing
quantum states of matter and physical phenomena, such as
the topological insulator [1,2], topological magnetism [3–5],
the spin Hall effect [6,7], multiferroics [8–11], the anomalous
Hall effect [12–16], nonreciprocal transport [17–19], and non-
centrosymmetric superconductivity [20–22]. Meanwhile, the
flexible control of the SOC is difficult, since its effective mag-
nitude in solids is intrinsically determined by lattice structures
and constituent elements.

Recently, it was shown that such SOC-related phenom-
ena have been achieved by considering a certain type of
antiferromagnets (AFMs) even without the SOC. One of the
typical examples is the spin-current generation that originates
from the symmetric momentum-dependent spin splitting in
the electronic band structure under collinear AFMs [23–47].
Since the appearance of the momentum-dependent spin po-
larization requires neither net magnetization nor SOC, it
can be expected by a high-efficient spin-current generator
[26,31,34,48,49]. The conditions causing the SOC-free spin-
split band structure have been clarified based on the symmetry
analysis by using magnetic point group theory [33,50], spin
group theory [51–54], and magnetic layer group theory [55]
and microscopic analysis based on electronic multipole mo-
ments [27,29,34]. Furthermore, such a concept has been
extended so as to include noncollinear and noncoplanar AFMs
with the breaking of the spatial inversion symmetry; the non-
collinear AFM leads to the antisymmetric spin-split band
structure like the Rashba-type spin splitting [29,56,57], while
the noncoplanar AFM leads to the asymmetric band modula-
tion resulting in the nonreciprocal transport [58–62].

In the present study, we further investigate physical phe-
nomena in such SOC-free AFMs. Among them, we analyze
the spin-current generation in collinear AFMs under the polar

crystal structure by focusing on the role of spatial inversion
symmetry breaking. Although the breaking of the spatial in-
version symmetry does not cause a further antisymmetric spin
splitting, as found in noncollinear AFMs, owing to the spin
rotational symmetry in collinear AFM structures [27], we
show that nonlinear spin transport is induced without relying
on the spin-split band structure in addition to the linear spin
transport. We clarify that a nonzero linear (nonlinear) spin
conductivity is obtained when the collinear AFM structure ac-
companies the cluster magnetic toroidal quadrupole (magnetic
toroidal dipole) through symmetry and microscopic model
analyses [34,63]. We also show the microscopic conditions
to enhance and suppress either the linear or nonlinear spin
conductivity. The present results can apply to not only polar
crystal systems but also surface systems, the latter of which
often appears in the situation when one tries to engineer quasi-
two-dimensional spintronics devices from three-dimensional
centrosymmetric collinear AFMs.

The rest of this paper is organized as follows. In Sec. II,
we discuss the symmetry conditions needed to exhibit both
linear and nonlinear spin conductivities in polar collinear
AFMs based on the multipole representation. In Sec. III, we
introduce a minimal tight-binding model and AFM structures
accompanying both dipole and quadrupole components in the
magnetic toroidal multipole. In Sec. IV, we show the calcula-
tion results in terms of the electronic band structure, the linear
spin conductivity, and the nonlinear spin conductivity. We
discuss the similar and different tendencies between linear and
nonlinear spin conductivities in Sec. V. Section VI is devoted
to a summary of the paper.

II. SYMMETRY ANALYSIS

In this section, we briefly introduce the correspondence
between linear and nonlinear spin conductivities and the mul-
tipoles under the polar magnetic point group [50,64] rather
than the spin group [51–54,65–67] with the materials to have
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a small but non-negligible SOC in mind. The linear and non-
linear spin conductivity tensors are defined by

Jη(s)
ν =

∑

μ

ση(s)
μν Eμ, (1)

Jη(s)
γ =

∑

μν

σ η(s)
γμνEμEν, (2)

where Jη(s)
ν = Jνση represents the spin current with the spin

ση for the η = x, y, z component and Eμ represents the elec-
tric field for the μ = x, y, z direction; ν, γ = x, y, z. The
spin component in the spin current is parallel to the AFM
moment direction owing to the collinear AFM structure with-
out the SOC. The symmetric component of the linear spin
conductivity tensor, i.e., ση(s)

μν = ση(s)
νμ , and the Hall-type anti-

symmetric component of the nonlinear spin conductive tensor
with ση(s)

γμν = ση(s)
γ νμ can be induced depending on the magnetic

symmetry.
Microscopically, the linear spin conductivity is caused by

the quadrupole-type spin-split band structure in terms of the
wave vector under the collinear AFM structure [26]; the
functional form of the spin splitting in momentum space is
generally given by kμkνση in the k → 0 limit, which indi-
cates that the spin current with the same symmetry as kνση

(kμση) is induced by applying the electric current with the
same symmetry as kμ (kν) driven by the electric field along
the μ (ν) direction. In other words, the spin splitting in the
form of kμkνση naturally induces nonzero ση(s)

μν . The nonzero
component in ση(s)

μν is determined by the crystal symmetry,
which is classified based on group theory [50,68–70]. It is
noted that the breaking of the spatial inversion symmetry is
not necessary in inducing the linear spin conductivity.

In order to systematically describe the appearance of
the quadrupole-type symmetric spin-split band structure in
collinear AFMs, we introduce the concept of the complete
multipole representation, which consists of four types of mul-
tipoles: electric multipoles (Qlm) describing the time-reversal-
even polar tensor quantity, electric toroidal multipoles (Glm)
describing the time-reversal-even axial tensor quantity, mag-
netic multipoles (Mlm) describing the time-reversal-odd axial
tensor quantity, and magnetic toroidal multipoles (Tlm) de-
scribing the time-reversal-odd polar tensor quantity [71]; the
subscripts of multipoles represent the rank l and its compo-
nent m. Since four types of multipoles constitute a complete
set in physical Hilbert space, one can express any physical
quantities in both real and momentum spaces as a linear com-
bination of the above multipoles.

By using the multipole representation, the quadrupole-type
spin splitting kμkνση is described by the magnetic toroidal
quadrupoles T2m = (Tu, Tv, Tyz, Tzx, Txy), which are character-
ized by the functional form of (3z2 − r2, x2 − y2, yz, zx, xy),
respectively, and the magnetic octupoles M3m =
(Mxyz, Mα

x , Mα
y , Mα

z , Mβ
x , Mβ

y , Mβ
z ), which are characterized

by the functional forms of [xyz, x(5x2 − 3r2), y(5y2 − 3r2),
z(5z2 − 3r2), x(y2 − z2), y(z2 − x2), z(x2 − y2)], respectively
[50]. We show the correspondence between the symmetric
spin-split band dispersion and multipoles in Table I. One
finds that a variety of the symmetric spin-split band
dispersions occur when any of T2m and M3m belong to
the totally symmetric irreducible representation under

TABLE I. Relationship between the symmetric spin-split band
structures and multipoles according to the different components of
the spin polarization (σx, σy, σz ). (Tu, Tv, Tyz, Tzx, Txy ) represent the
magnetic toroidal quadrupole and (Mxyz, Mα

x , Mα
y , Mα

z , Mβ
x , Mβ

y , Mβ
z )

represent the magnetic octupole. k2 = k2
x + k2

y + k2
z .

σx σy σz

Tu −kykz kzkx —
Tv −kykz −kzkx 2kxky

Tyz −(
k2

y − k2
z

)
kxky −kzkx

Tzx −kxky −(
k2

z − k2
x

)
kykz

Txy kzkx −kykz −(
k2

x − k2
y

)

Mxyz kykz kzkx kxky

Mα
x

1
2

(
3k2

x − k2
) −kxky −kzkx

Mα
y −kxky

1
2

(
3k2

y − k2
) −kykz

Mα
z −kzkx −kykz

1
2

(
3k2

z − k2
)

Mβ
x −kxky kxky kykz

Mβ
y

1
2

(
k2

y − k2
z

)
1
2

(
k2

z − k2
x

) −kzkx

Mβ
z kzkx −kykz

1
2

(
k2

x − k2
y

)

targeting magnetic point groups. For example, in the case of
Tv , the kykz-type spin splitting is expected when the AFM
moment lies along the x direction, while the kxky-type spin
splitting is expected when the AFM moment lies along the
z direction. As is discussed in Sec. III, T2m and M3m

correspond to the macroscopic AFM order parameter based
on the cluster multipole theory [72–75].

In contrast to ση(s)
μν , the spatial inversion symmetry break-

ing is required for obtaining nonzero nonlinear spin Hall
conductivity ση(s)

γμν [76–80]. From the multipole viewpoint,
the rank-1 magnetic toroidal dipoles T1m = (Tx, Ty, Tz ) and
rank-2 magnetic quadrupoles M2m = (Mu, Mv, Myz, Mzx, Mxy)
with spatial inversion odd contribute to ση(s)

γμν when the spin-
dependent Berry curvature dipole mechanism is considered;
the correspondence between multipoles and the tensor com-
ponents has been discussed in Ref. [63]. It is noted that the
spin-split band structure is not essentially necessary in in-
ducing the nonlinear spin conductivity, since the multipoles
T1m and M2m preserve the product symmetry of the spatial
inversion and time-reversal operations.

The above discussions indicate that the linear spin con-
ductivity is induced when any of the magnetic toroidal
quadrupoles and magnetic octupoles belong to the totally
symmetric irreducible representation under the magnetic point
group, while the nonlinear spin Hall conductivity is induced
when any of the magnetic toroidal dipoles and magnetic
quadrupoles belong to the totally symmetric irreducible repre-
sentation. Since all the multipoles are systematically classified
under 122 magnetic point groups [64], one finds which mag-
netic point groups can exhibit both linear and nonlinear spin
conductivities.

One of the candidate situations to exhibit both linear and
nonlinear spin conductivities is that the electric field is applied
to collinear AFMs with the magnetic toroidal quadrupole
and/or magnetic octupole so that the inversion symmetry is
lost. We consider such a symmetry situation in the following
analysis. There are 21 magnetic point groups with keeping
polar symmetry. We show the active relevant multipoles under
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TABLE II. Active multipoles under 21 polar magnetic point groups without the time-reversal symmetry. T2m = (Tu, Tv, Tyz, Tzx, Txy ) and
M3m = (Mxyz, Mα

x , Mα
y , Mα

z , Mβ
x , Mβ

y , Mβ
z ) represent the magnetic toroidal quadrupole and the magnetic octupole with the spatial inversion

even, respectively, and T1m = (Tx, Ty, Tz ) and M2m = (Mu, Mv, Myz, Mzx, Mxy ) represent the magnetic toroidal dipole and the magnetic
quadrupole with spatial inversion odd, respectively; M3a = (

√
10Mα

x − √
6Mβ

x )/4 and M3b = −(
√

10Mα
y + √

6Mβ
y )/4. The emergence of

(T2m, M3m ) results in the linear spin conductivity originating from the symmetric spin-split band structure, while that of (T1m, M2m ) results
in the nonlinear spin Hall conductivity. The magnetic point groups with the ferromagnetic moment, i.e., the magnetic dipole M1m, are also
shown for reference.

MPG T2m M3m T1m M2m M1m

1 Tu, Tv, Tyz, Tzx, Txy Mxyz, Mα
x , Mα

y , Mα
z , Mβ

x , Mβ
y , Mβ

z Tx, Ty, Tz Mu, Mv, Myz, Mzx, Mxy Mx, My, Mz

2 Tu, Tv, Tzx Mxyz, Mα
y , Mβ

y Ty Mu, Mv, Mzx My

3 Tu Mα
z , M3a, M3b Tz Mu Mz

4, 6 Tu Mα
z Tz Mu Mz

2′ Tyz, Txy Mα
x , Mα

z , Mβ
x , Mβ

z Tx, Tz Myz, Mxy Mx, Mz

4′ Tv, Txy Mxyz, Mβ
z — Mv, Mxy —

6′ — M3a, M3b — — —
m Tu, Tv, Tzx Mxyz, Mα

y , Mβ
y Tx, Tz Myz, Mxy My

m′ Tyz, Txy Mα
x , Mα

z , Mβ
x , Mβ

z Ty Mu, Mv, Mzx Mx, Mz

mm2 Tu, Tv Mxyz Tz Mxy —
3m Tu M3b Tz — —
4mm, 6mm Tu — Tz — —
m′m′2 Txy Mα

z , Mβ
z — Mu, Mv Mz

3m′ — Mα
z , M3a — Mu Mz

4m′m′, 6m′m′ — Mα
z — Mu Mz

m′m2′ Tzx Mα
y , Mβ

y Tx Myz My

4′mm′ Tv Mxyz — Mxy —
6′mm′ — M3b — — —

such polar magnetic point groups without the time-reversal
symmetry in Table II. In each magnetic point group, one
expects the appearance of the linear and/or nonlinear spin
conductivities according to the different types of active multi-
poles. For example, in the case of mm2, the functional form of
the symmetric spin splitting is given by c1kykzσx + c2kzkxσy +
c3kxkyσz with the coefficients c1, c2, and c3 owing to active
Tu, Tv , and Mxyz. Then, we expect nonzero tensor components
of the linear spin conductivity σ x(s)

yz = σ x(s)
zy for the collinear

AFM with the x-spin polarization. In addition, nonzero tensor
components of the nonlinear spin Hall conductivity σ x(s)

yxx =
−2σ x(s)

xyx and σ x(s)
yzz = −2σ x(s)

zyz appear owing to active Tz.

III. MODEL

In order to analyze the difference between linear and
nonlinear spin conductivities from the microscopic point of
view, we investigate a minimal tight-binding model. We
consider a four-sublattice system under the two-dimensional
tetragonal lattice structure with the magnetic point group
4/mmm1′, as shown in Fig. 1(a); the positions of the four
sublattice sites A–D are given by rA = (−1/2,−1/2)a, rB =
(1/2, 1/2)a, rC = (1/2,−1/2)a, and rD = (−1/2, 1/2)a,
with a = b = 0.5. Supposing the single s-orbital degree of
freedom at each lattice site, the tight-binding model is
given by

HT = −
∑

kσ

∑

i j

ti jc
†
kiσ ck jσ − hAFM

∑

kiσ

pi(σ )c†
kiσ ckiσ , (3)

where c†
kiσ (ckiσ ) is the creation (annihilation) operator at wave

vector k, sublattice i, and spin σ . The first term represents

the hopping between different sublattices. We consider four
hopping parameters: the two intraplaquette hoppings ta = 1
and t ′

a = 0.3 and the two interplaquette hoppings tb = 0.9

FIG. 1. (a) Two-dimensional tetragonal crystal structure with
four sublattices A–D. The red and blue spheres represent the spin
polarization along the +z and −z directions, respectively. The mag-
nitude of the spheres represents that of the charge density, which
leads to the potential gradient along the y direction (∇V ‖ ŷ) and
makes the system polar. (b), (c) Spatial distributions of the magnetic
toroidal dipoles on each bond denoted by the magenta arrows for the
four-sublattice plaquette (b) without the charge-density modulation
and (c) with the charge-density modulation. The situation in panel
(b) corresponds to the appearance of the cluster magnetic toroidal
quadrupole T (c)

v , while that in panel (c) corresponds to the appearance
of the cluster magnetic toroidal dipole T (c)

y in addition to T (c)
v .
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and t ′
b = 0.27 [see Fig. 1(a)]; ta is taken as the energy unit

of the model. The other choices of the hopping parameters
do not affect the following results qualitatively. The sec-
ond term represents the molecular field causing the collinear
AFM structure; hAFM represents the magnitude of the molec-
ular field and pA,B(σ ) = +1(−1) and pC,D(σ ) = −1(+1)
represents the up(down)-spin σ = +1 (σ = −1) component,
whose configuration is schematically presented in Fig. 1(a).
Although the direction of the spin moments is arbitrarily taken
owing to the spin rotational symmetry without the SOC, we
set the quantization axis along the z direction for simplicity.
In the presence of nonzero hAFM, the symmetry of the system
reduces from 4/mmm1′ to 4′/mmm′.

In addition to the above Hamiltonian, we take into account
the polar crystalline electric field in order to discuss the effect
of the spatial inversion symmetry breaking. For that purpose,
we consider the following symmetry-lowering term

HCO = −hCO

∑

kiσ

qic
†
kiσ ckiσ , (4)

where qA = qC = 1 and qB = qD = −1. This term corre-
sponds to the charge-density modulation when the polar
electric field (potential gradient) along the y direction ex-
ists. Nonzero hCO leads to further symmetry lowering from
4′/mmm′ to m2m, where the twofold rotational axis remains
along the y direction.

We discuss the corresponding multipole moments under
nonzero hAFM and hCO based on the cluster multipole the-
ory [72–75]. For hAFM �= 0 and hCO = 0, the four-sublattice
collinear AFM structure holds the symmetry combined with
the fourfold rotation and time-reversal operations, as shown
by the square plaquette in Fig. 1(b). When calculating the
magnetic toroidal dipole moment on each bond within the
square plaquette, which is defined as t i j = ri × si + r j × s j

for the i j bond (si is the expectation value of the local spin
moment at site i), one obtains

tAC = (0, s, 0), (5)

tBD = (0,−s, 0), (6)

tAD = (−s, 0, 0), (7)

tBC = (s, 0, 0), (8)

where we set sA = sB = (0, 0, 2s) and sC = sD = (0, 0,−2s)
for notational simplicity. Thus, the magnetic toroidal dipole
on the bond is spatially distributed in the x2-y2-type
quadrupole form of t x

i jb
x
i j − t y

i jb
y
i j , where bi j = (ri + r j )/2 =

(bx
i j, by

i j, bz
i j ) represents the bond center vector for the i j

bond [81–92]. In other words, the collinear AFM struc-
ture induced by hAFM accompanies the cluster magnetic
toroidal quadrupole T (c)

v ; the superscript (c) denotes the
cluster. It is noted that there is no uniform component
in the magnetic toroidal moment, i.e.,

∑
i j t i j = 0 for the

four bonds AB, BC, CD, and DA; no dipole component
appears.

Then, we further consider the situation for hCO �= 0 in addi-
tion to hAFM �= 0, whose spin and charge distributions within
the square plaquette are shown in Fig. 1(c). Reflecting on the

FIG. 2. Electronic band structure along the high-symmetric lines
in the first Brillouin zone at (a) hCO = 0 and (b) hCO = 0.1 for
hAFM = 3. The contour shows the z-spin polarization at each wave
vector (kx, ky ). In panel (b), the dashed (dotted) lines represent the
energy where the absolute value of the linear (nonlinear) spin con-
ductivity becomes maximum.

inequivalence between the A and B (C and D) sublattices,
the uniform component of t i j is induced in the positive y
direction, as shown in Fig. 1(c). This result indicates that the
cluster magnetic toroidal dipole T (c)

y is additionally induced
according to the symmetry lowering by the effective polar
field hCO. Indeed, both the magnetic toroidal quadrupole T (c)

v

and the magnetic toroidal dipole T (c)
y belong to the totally

symmetric irreducible representation under the magnetic point
group m2m [64].

IV. RESULTS

We discuss the behavior of the linear and nonlinear spin
conductivities under the polar collinear AFM without the
SOC. First, we show the electronic band structure under the
collinear AFM structure in Sec. IV A, where the symmetric
spin-split band structure emerges. Then, we show the results
of the linear and nonlinear spin conductivities in Secs. IV B
and IV C, respectively.

A. Electronic band structure

Figure 2(a) shows the electronic band structure
along the high-symmetric lines in the Brillouin zone at
hCO = 0 and hAFM = 3, where only the cluster magnetic
toroidal quadrupole T (c)

v exists. In Fig. 2(a), the spin-split
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band structure appears in the (π, π )–(0, 0)–(−π, π )
line for (kx, ky), while no spin splitting occurs in the
(0, π )–(0, 0)–(π, 0) line. This indicates the emergence
of the symmetric spin splitting in the form of kxkyσz, which is
consistent with the symmetry argument in Sec. II.

When the effect of hCO = 0.1 is introduced so that the mag-
netic toroidal dipole T (c)

y is induced, the band dispersion also
exhibits the symmetric spin splitting, as shown in Fig. 2(b).
Compared to the result in Fig. 2(a), almost the same feature
appears, which indicates that additional T (c)

y does not affect
the spin splitting.

The emergence of the symmetric spin splitting in the band
structure depends on the model parameters. In the present
total Hamiltonian HT + HCO, the symmetric spin splitting
vanishes when the diagonal hoppings t ′

a and t ′
b are turned

off despite the same magnetic symmetry. This is understood
from the fact that only the diagonal hopping includes the
momentum dependence corresponding to the same irreducible
representation as the mean-field term, which results in an ef-
fective coupling between hoppings and AFM molecular fields,
and hence, it is a source of the microscopic origin of the sym-
metric spin-split band structure [27]. Among the hoppings,
only the diagonal hopping includes the functional form of kxky

in terms of the wave vector. Since such momentum depen-
dence of kxky has the same symmetry as the spatial distribution
of the AFM molecular field, both of which belong to the B2g

representation under the magnetic point group 4/mmm1′, the
effective coupling between them can occur under the AFM
ordering. In this way, the type of hoppings is important in
inducing the symmetric spin splitting in the form of kxkyσz.

B. Linear spin conductivity

We examine the linear spin conductivity in Eq. (1) in the
model Hamiltonian HT + HCO based on the linear response
theory. We calculate ση(s)

μν by evaluating the Jη(s)
ν –Jμ correla-

tion function within the Kubo formula following Refs. [34,70]
with the scattering rate τ−1 = 10−2 and the temperature T =
10−2; the unit of T is Kelvin. The summation of the wave
vector k is taken over Nk = 24002 grid points in the first
Brillouin zone. For the collinear AFM structure in Fig. 1(a),
nonzero tensor components are given by σ z(s)

xy = σ z(s)
yx owing

to the active magnetic toroidal quadrupole T (c)
v , as discussed

in Sec. II; it is noted that the symmetric nature of the linear
spin conductivity tensor is different from the antisymmetric
nature of the spin Hall conductivity tensor.

Figure 3(a) shows the electron filling per site ne =∑
kiσ 〈c†

kiσ ckiσ 〉/(4Nk) and hCO dependence of σ z(s)
xy at hAFM =

3. All the regions except for ne = 0 and 2 exhibit nonzero
σ z(s)

xy , although its behavior in terms of the sign and magnitude
is complicated, which might be attributed to the multiband
structure. The intraband process proportional to τ is dominant
in the metallic region, while the interband process is dominant
in the insulating region for ne = 0.5, 1, and 1.5, although
the latter contribution is much smaller compared to the for-
mer one; the typical magnitude of the latter contribution is
around 10−4.

The magnitude of the linear spin conductivity is maximized
for ne ∼ 0.65 and small hCO ∼ 0. We show the ne dependence
of σ z(s)

xy at hCO = 0.1 in Fig. 3(b), where σ z(s)
xy is also

FIG. 3. (a) Contour plots of σ z(s)
xy in the plane of ne and hCO at

ta = 1, tb = 0.9, t ′
a = 0.3, t ′

b = 0.27, and hAFM = 3. It is noted that
σ z(s)

xy values are small but nonzero values in the white region for
0 < ne < 2 owing to the interband process; see the text for details.
(b) ne dependence of σ z(s)

xy at hCO = 0.1. (c) hCO dependence of σ z(s)
xy

at ne = 0.65.

maximized around ne ∼ 0.65. From the viewpoint of the
electronic structure, σ z(s)

xy tends to be larger when the Fermi
level lies on the energy with the high-velocity wave vector in
the spin-split band dispersion, as denoted by the horizontal
dashed line in Fig. 2(b).

In addition, one finds that the values of σ z(s)
xy smoothly

change when hCO changes, which indicates that the polar-type
symmetry lowering does not affect the linear spin conductivity
at the qualitative level. Furthermore, σ z(s)

xy behaves symmetric
in terms of hCO, as shown in Fig. 3(c). The suppression of
σ z(s)

xy for larger hCO might be attributed to the fact that hCO

tends to localize the electrons in real space, which results in
the dispersionless band.

Let us remark on the relationship between σ z(s)
xy and the

symmetric spin-split band structure. As discussed above, σ z(s)
xy
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tends to be larger when the spin-split band is more dispersive.
Meanwhile, σ z(s)

xy remains nonzero even when the effect of the
diagonal hopping is turned off so as to vanish the symmetric
spin splitting. This is owing to the presence of the interband
contribution in σ z(s)

xy , although its magnitude is drastically sup-
pressed; for example, the maximum value of σ z(s)

xy at hCO = 0
and t ′

a = t ′
b = 0 is around the order of 10−1 at most.

C. Nonlinear spin conductivity

Next, we investigate the nonlinear spin Hall conductivity
ση(s)

γμν in Eq. (2), which is evaluated by the second-order Kubo
formula with the relaxation time approximation as follows
[63,93]:

ση(s)
γμν = e3τ

2h̄2Nk

∑

k,n

fnkεγμλDνλ(s)
n (k) + [μ ↔ ν], (9)

where e, h̄, and εημλ represent the electron charge, the reduced
Planck constant, and the Levi-Civita tensor, respectively; we
take e = h̄ = 1. fnk is the Fermi distribution function with
the band index n. Dμν(s)

n (k) corresponds to the spin-dependent
Berry curvature dipole, which is related to the spin-dependent
Berry curvature �ν(s)

n (k) as Dμν(s)
n (k) = ∂μ�ν(s)

n (k) [93,94].
Since the collinear AFM structure with the z-spin polarization
is supposed, Dμν(s)

n (k) is expressed as the difference between
up-spin and down-spin components like the linear spin Hall
conductivity [95]. The nonzero tensor components of ση(s)

γμν in
the present system satisfy the antisymmetric tensor property
in terms of the interchange between γ and μ(ν), i.e., σ z(s)

xyy =
−2σ z(s)

yxy ; factor 2 arises from the symmetrization regarding the
input electric field.

Figure 4(a) shows the contour plot of σ z(s)
xyy against ne and

hCO. σ z(s)
xyy becomes nonzero except for hCO = 0, which indi-

cates that the magnetic toroidal dipole induced by nonzero
hCO plays an important role. In addition, σ z(s)

xyy also vanishes for
the commensurate electron fillings where the band gap opens,
since the expression in Eq. (9) consists of the contribution
from both intraband and interband processes. The magnitude
of σ z(s)

xyy is largely enhanced in the region around ne ∼ 1.5 and
hCO ∼ 0, which is much larger than those in the other regions
by the order of 102–103.

We show the ne dependence of σ z(s)
xyy at hCO = 0.1 in

Fig. 4(b), where σ z(s)
xyy shows the largest positive and negative

values at ne � 1.65 and 1.36, respectively. Such an enhance-
ment of particular electron fillings is understood from the
electronic band structure, where the Fermi level correspond-
ing to ne = 1.36 is shown by the horizontal dotted line in
Fig. 2(b). One finds that σ z(s)

xyy is enhanced when the Fermi
level is located near the band with a small band gap; the small
denominator arising from the small band gap in the expression
in Eq. (9) tends to lead to large σ z(s)

xyy .
σ z(s)

xyy vanishes when setting ta = tb and t ′
a = t ′

b. This is
because the magnetic toroidal moment in the small square
plaquette consisting of ta and t ′

a is canceled out with that
in the large square plaquette consisting of tb and t ′

b in such
a situation. On the other hand, σ z(s)

xyy remains nonzero when
setting t ′

a = t ′
b = 0. In contrast to the linear spin conductivity

σ z(s)
xy , σ z(s)

xyy exhibits a value similar to that for t ′
a, t ′

b �= 0. In

FIG. 4. (a) Contour plots of σ z(s)
xyy in the plane of ne and hCO at ta =

1, tb = 0.9, t ′
a = 0.3, t ′

b = 0.27, and hAFM = 3. (b) ne dependence of
σ z(s)

xyy at hCO = 0.1. (c) hCO dependence of σ z(s)
xyy at ne = 1.36.

other words, the diagonal hoppings do not affect σ z(s)
xy at the

qualitative level.

V. DISCUSSION

Finally, let us compare the behavior of the linear spin
conductivity σ z(s)

xy = σ z(s)
yx and the nonlinear spin conductivity

σ z(s)
xyy = −2σ z(s)

yxy . When the system is polar, i.e., hCO �= 0, both
contributions are nonzero in general, and they show the same
τ dependence. Meanwhile, their angle dependence is different
from each other, which indicates that an experimental signal
is different depending on the input electric field direction
[26,63]. For example, the linear and nonlinear spin currents
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are generated in the x direction when the electric field is
applied in the y direction, whereas only the linear spin current
is generated in the y direction when the electric field is applied
in the x direction. Thus, the measurement of σ z(s)

yx enables us
to extract the pure linear contribution in the spin conductivity
tensor. Similarly, one can extract the pure nonlinear contribu-
tion by appropriately choosing the input electric field and the
output current directions. For example, only the nonlinear spin
current is found in the 〈1̄10〉 direction when the electric field
is applied in the 〈110〉 direction.

When both linear and nonlinear spin conductivities are
nonzero, the magnitude of the linear contribution is much
larger than that of the nonlinear contribution, as shown in
Figs. 3(a) and 4(a). However, such a situation can be changed
depending on the model parameters, since the microscopic
origins of the linear and nonlinear spin conductivities are
different from each other. For the linear spin conductivity,
the symmetric spin-split band structure plays an important
role. Since the presence and the absence of the spin split-
ting depends on the hopping parameters, one might design
the system with a large or small linear spin conductivity.
For example, the magnitude of the diagonal hopping, which
corresponds to the essential ingredient of the spin splitting
in the present four-sublattice tetragonal system, determines
the magnitude of the linear spin conductivity. Meanwhile,
for the nonlinear spin conductivity, the signal is enhanced
when the Fermi level is located near the small band gap, while
it is not affected by the presence and the absence of diagonal
hopping. Thus, one can expect that the contribution from
the nonlinear spin conductivity can become larger than that
from the linear spin conductivity if the situation satisfies the
following two conditions: One is that the hopping contributing
to the spin-split band structure is small and the other is that
the Fermi level is tuned so as to be located near the small
band gap.

VI. SUMMARY

To summarize, we have investigated the effect of the polar-
type symmetry lowering in collinear AFMs without the SOC
by focusing on the behavior of the linear and nonlinear spin
conductivities. Based on the symmetry analysis, we have
shown that the linear spin conductivity is induced when the
magnetic toroidal quadrupole is activated, while the nonlin-
ear spin conductivity is induced when the magnetic toroidal
dipole is activated. Furthermore, we have found the micro-
scopic conditions to enhance the linear and nonlinear spin
conductivities by analyzing the fundamental tight-binding
model. The symmetric spin-split band structure under the
collinear AFM ordering plays an important role in enhancing
the linear spin conductivity, while the tuning of the Fermi level
is important in enhancing the nonlinear spin conductivity. Fi-
nally, we discuss the similarities and the differences between
both spin conductivities. Our results can be straightforwardly
applied to other lattice structures; once the symmetry of the
system under AFMs corresponds to the magnetic point group
in Table II, the linear and nonlinear spin conductivities by the
same mechanisms are expected. Since the polar-type electric
field exists not only in bulk but also at the surface, our results
would be beneficial when the thin film system is considered
with the application to spintronics devices in mind.
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