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Magnetic phase transitions in the triangular-lattice spin-1 dimer compound K2Ni2(SeO3)3
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In our study, we conduct magnetization and heat capacity measurements to investigate field-induced magnetic
phase transitions within the newly synthesized compound K2Ni2(SeO3)3, a spin-1 dimer system arranged on a
triangular lattice. From our first-principles simulations, we determine that the spin system in K2Ni2(SeO3)3 can
be represented as a two-dimensional triangular-lattice spin-1 dimer model, including an intra-dimer exchange
of J1 = 0.32 meV, an inter-dimer exchange of J2 = 0.79 meV, and an easy-axis anisotropy of D = 0.14 meV.
The presence of easy-axis magnetic anisotropy explains the distinct magnetic phase diagrams observed under
c-axis directional and in-plane magnetic fields. Notably, our investigation unveils a two-step phase transition
with the magnetic field aligned with the c direction. Our findings yield valuable insights into the magnetic phase
transitions inherent to geometrically frustrated magnetic systems featuring dimer structures.
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I. INTRODUCTION

The exploration of phase transitions holds profound sig-
nificance in the realm of physics. These transitions reveal
the fascinating world of symmetry breaking [1], a power-
ful concept that aids in organizing our comprehension of
the fundamental laws governing the universe [2]. As time
has progressed, our understanding of phase transitions has
evolved significantly, introducing concepts like “categori-
cal symmetry” through advancements in mathematics and
physics [3–7].

In recent years, there has been a surge in interest in
investigating field-induced magnetic phase transitions
within quantum frustrated magnetic systems [8–23]. These
systems, marked by geometric frustration, exhibit ground
states characterized by multiple degenerate configurations
and strong quantum fluctuations [24,25]. Consequently,
they can manifest various distinct magnetic ground states
when subjected to magnetic fields. Besides the Bose-Einstein
condensation (BEC) of diluted magnons near critical
magnetic fields [14,26], fractional magnetization plateaus
are also observed in frustrated antiferromagnets. For
instance, the 1/3-magnetization plateau appears in triangular
compounds like Cs2CuBr4, Ba3CoSb2O9, and
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Na2BaCo(PO4)2 [8,12,14,15,27], and in the kagome
antiferromagnet Li9Fe3(P2O7)3(PO4)2 [20]. A recently
discovered 1/9-magnetization plateau has been observed in
the kagome antiferromagnet YCu3(OD)6+xBr3−x (x � 0.5)
[28]. Spin dimers can further enhance frustration in triangular
antiferromagnets, leading to rich magnetic phase diagrams
as seen in Ba3Mn2O8 [9–11,29,30]. Therefore, the study of
materials featuring frustrated magnetism in the presence of
magnetic fields provides a unique and intricate context for
delving into magnetic phase transitions.

In this study, we explore magnetic phase transitions
within the newly synthesized compound K2Ni2(SeO3)3,
which shares its isostructural nature with the sister com-
pound K2Co2(SeO3)3 [31,32]. This compound presents a
triangular lattice framework hosting a spin-1 Ni-Ni dimer
system. Combining first-principles simulations with our anal-
ysis, we conclude that the spin system in K2Ni2(SeO3)3 can
be characterized as a two-dimensional spin-1 model. This
model includes an intra-dimer exchange of J1 = 0.32 meV,
an inter-dimer exchange of J2 = 0.79 meV, and an easy-axis
anisotropy of D = 0.14 meV. Our investigation probes the
magnetic phase transitions in K2Ni2(SeO3)3 when subjected
to magnetic fields applied both in-plane and out-of-plane.
Notably, we uncover a successive two-step phase transition
induced by fields for B‖c. The phase transition with the in-
plane field B‖ab is also studied, and exhibits distinct behavior
compared to the case with B‖c, due to the presence of easy-
axis magnetic anisotropy.
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FIG. 1. Crystal structure of K2Ni2(SeO3)3. (a) The unit cell comprises two layers of Ni2O9 dimers (gray polyhedra). (b) The light green
solid lines indicate a Ni-O(II)-Ni bond. (c) Schematic representation of nearest-neighbor (J1), next-nearest-neighbor (J2), and third-nearest-
neighbor (J3) exchange interactions. (d) Side view of the triangular lattice of Ni2+-Ni2+ dimers, stacking in an ABAB arrangement along the c
axis.

The subsequent sections of this paper are structured as fol-
lows. Section II provides details of our experimental methods,
encompassing sample synthesis, sample characterization, and
magnetization as well as heat capacity measurements. Addi-
tionally, we provide the theoretical setup for first-principles
simulations. Moving forward to Sec. III, we unveil the main
outcomes of our investigation. In Sec. III A, we delve into
the crystal structure and thermodynamic properties. Sec-
tion III B takes us into the realm of estimating exchange
interactions within K2Ni2(SeO3)3 by an analysis that com-
bines Curie-Weiss fitting of magnetic susceptibility data with
the first-principles simulations. In Sec. III C, which is also
the most significant part, we explore field-induced mag-
netic phase transitions for both the c-axis directional and
in-plane magnetic fields. Finally, we summarize our results in
Sec. IV.

II. METHODS

The synthesis of K2Ni2(SeO3)3 single crystals was car-
ried out using the flux method, a procedure akin to that for
K2Co2(SeO3)3 [32]. The initial materials, comprising NiO
(Alfa Aesar, Ni: 78.5%), KOH (Alfa Aesar, 99.98%), and
SeO2 (Aladdin, 99.9%), were mixed in a molar ratio of 1 :
4.8 : 4.8 in preparation. In the glovebox, the mixed materials
were ground for five minutes and then transferred into an
alumina crucible, which was subsequently placed inside a
quartz tube. The tube was sealed under a vacuum pressure
of 10−3 Pa. This assembly was subjected to a heating process
of four hours to 700 °C, followed by an eight hour hold at
that temperature. Subsequently, it was cooled over 100 hours
to 200 °C and maintained for an additional four hours, after
which it was gradually cooled to room temperature. Finally,
immersing the resulting materials in deionized water yielded
transparent yellow single crystals, as depicted in the inset of
Fig. 2(b).

The crystal structure of K2Ni2(SeO3)3 was determined
using single crystal x-ray diffraction (SCXRD) at 299 K,
with the Bruker D8 VENTURE diffractometer equipped
with a PHOTON III C14 detector and the SCXRD using

graphite-monochromatized λ = 0.71073 Å Mo Kα radia-
tion. The collected data were used to decide the unit cell
determination, data integration, and absorption correction.
The raw data were corrected using APEX4 software. The
structure was solved by the intrinsic phasing method with
the SHELXT structure solution program1 and further refined
using the SHELXL least squares refinement package [33]
within the Olex-2 program [34]. There were no higher
symmetries for the compound verified by PLATON [35]. Mag-
netization and heat capacity measurements were conducted
utilizing the quantum design magnetic property measure-
ment system and physical property measurement system,
respectively.

First-principles calculations were performed using the
Vienna ab initio simulation package (VASP) with projected-
augmented wave (PAW) potentials [36,37]. The revised
Perdew-Burke-Ernzerhof parametrization (PBEsol) of the
generalized gradient approximation was utilized for the
exchange-correlation interaction [38,39]. Additionally, the
LDA + U approach [40] was employed with an effective
Coulomb repulsion parameter Ueff = U − JH = 8 eV. The en-
ergy tolerance was set to 1 × 10−8 eV, and the energy cutoff
was set at 520 eV. Lattice parameters were obtained from
crystallographic data detailed in Table II and Sec. III. The
initial positions of Se(II) atoms in a unit cell were deter-
mined as 0.78411 and 0.21589 in direct coordinates, with
the randomness of Se atoms disregarded. A 9 × 9 × 2 K-
point mesh was utilized for optimizing the unit cell structure,
with a force tolerance of 1 × 10−5 eV/Å applied to each
atom. The calculations were conducted with ferromagnetic
spin configurations along the c axis and included spin-orbit
coupling [41]. Initially, we assessed the magnetic anisotropy
due to the spin-orbit effect in the unit cell, finding it to
be small compared to the measured Curie-Weiss tempera-
ture obtained from magnetization measurements. Therefore,
we did not include spin-orbit coupling in the self-consistent
collinear spin calculation of the supercell structures. For
the calculation of magnetic exchanges, a 2 × 2 × 1 su-
percell structure was used, along with a corresponding
5 × 5 × 2 K-point mesh.
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FIG. 2. (a) Zero-field specific heat. (b) Temperature dependent
magnetic susceptibility with B = 0.1 T. Inset is the inverse magnetic
susceptibility 1/(χ − χ0)(T) and the green lines are the Curie-Weiss
fittings. (c) Field dependent magnetization at 1.8 K.

III. RESULTS

A. Sample characterization

Tables I and II present detailed crystal structure informa-
tion for K2Ni2(SeO3)3. K2Ni2(SeO3)3 is isostructural with its
sister compound K2Co2(SeO3)3 [31,32], and crystallizes in
the hexagonal space group P63/mmc (No. 194) with the lat-
tice parameters of a = b = 5.4475(3) Å, c = 17.4865(15) Å.
While K(I), Ni(I), O(I), O(II), and Se(I) atoms fully occupy
crystallographic positions, the Se(II) atoms, located on the
Wyckoff position 4 f , exhibit a split into two sites with equal
occupancy. The structural disorder due to the Se(II) random
occupancy is the same as that in K2Co2(SeO3)3, which is
thoroughly discussed in Ref. [32].

TABLE I. Crystal data and structure refinement for K2Ni2(SeO3)3.

Empirical formula K2Ni2(SeO3)3

Temperature/K 299
Formula weight 576.46
Crystal system Hexagonal
Space group P63/mmc
a/Å 5.4475(3)
c/Å 17.4865(15)
Volume/Å3 449.40(6)
Z 2
ρcalc (g/cm3) 4.260
μ (mm−1) 17.30
F (000) 536
Crystal size/mm3 0.05 × 0.04 × 0.02
Radiation Mo Kα, λ = 0.71073 Å
Tmin, Tmax 0.510, 0.746
2θ range for data collection/◦ 4.475 to 29.715
Index ranges −7 � h � 7

−7 � k � 7
−24 � l � 24

Reflections collected 8015
Independent reflections 306
Rint 0.064
R[F 2 > 2σ (F 2)],wR(F 2), S 0.030, 0.062, 1.18

Figure 1 schematically shows the crystal structure of
K2Ni2(SeO3)3, where two NiO6 octahedra share a com-
mon O3-triangle face, forming a Ni2O9 dimer. The NiO6

octahedron exhibits a trigonal elongation along the c axis,
resulting in easy-axis magnetic anisotropy. Within the Ni2O9

dimer, the bond angle ∠Ni-O(II)-Ni [green lines in Fig. 1(b)]
between Ni2+ ions at the bridging O(II) atoms measures
85.4◦, close to 90◦. Consequently, Ni2O9 constitutes an easy-
axis spin-1 dimer. The dimers are interconnected through
Se(I,II)O3 tripods. While the Se(I)O3 tripods establish con-
nections between the Ni2O9 dimers through the oxygen atoms
located on the upper and lower O3 triangles, the Se(II)O3

tripods form connections by utilizing the oxygen atoms shared
on the common middle O3-triangle face. Figure 2 presents
the basic thermodynamic properties of K2Ni2(SeO3)3. The
temperature-dependent zero-field heat capacity divided by
temperature Cp(T )/T in Fig. 2(a), and the magnetic suscep-
tibility χ (T ) with an applied magnetic field of B = 0.1 T in
Fig. 2(b), reveal a well-defined magnetic phase transition oc-
curring at the critical temperature Tc = 5.75 K. No additional
discernible thermodynamic anomalies are observed above Tc

TABLE II. Crystallographic data in K2Ni2(SeO3)3.

Atom Wyckoff site x y z Occupancy

K(I) 4 f 0.33333 0.66667 0.0349(5) 1
Ni(I) 4 f 0.33333 0.66667 0.6666(7) 1
Se(I) 4e 0 0 0.1413(4) 1
Se(II) 4 f 0.33333 0.66667 0.2158(9) 0.5
O(I) 12k 0.16010 0.83990 0.5973(8) 1
O(II) 6h 0.49930 0.50070 0.2500 1
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in either Cp(T ) or χ (T ). Below Tc, the magnetic susceptibility
χ exhibits a larger magnitude when subjected to a c-axis
directional field in comparison to an in-plane field, thereby
indicating the easy-axis magnetic anisotropy, which is further
confirmed by the field dependent magnetization M(B) at 1.8 K
as shown in Fig. 2(c).

B. Exchange interactions

In K2Ni2(SeO3)3, the Ni2+ ions possess a spin-1 3d8

electronic configuration. Within a Ni2O9 dimer, two Ni2+

ions interact magnetically through the three shared oxygen
atoms, resulting in the intradimer exchange interaction [J1 in
Fig. 1(c)]. According to the Goodenough-Kanamori rule [42],
the Ni-O(II)-Ni super-exchange pathways with bond angle
∠Ni-O(II)-Ni of 85.4◦ lead to a ferromagnetic interaction with
J1,super−exchange < 0. However, the direct exchange interaction
leads to an antiferromagnetic interaction with J1,exchange >

0. Therefore, the total intradimer exchange interaction J1 =
J1,super−exchange + J1,exchange requires further estimation.

Within the triangular lattice of Ni2O9 dimers, the inter-
dimer magnetic interactions, denoted as J2 and J3 in Fig. 1(c),
are mediated through two distinct Se(I,II)O3 tripods, involv-
ing the Ni-O(I)-Se(I)-O(I)-Ni and Ni-O(II)-Se(II)-O(II)-Ni
paths, respectively. Se(I)O3 facilitates the super-exchange in-
teraction J2, while Se(II)O3 may play a role in both J2 and J3.
It’s worth noting that the random occupation of Se(II) could
potentially induce disorder effects to J2 and J3. However, the
exploration of these disorder effects is beyond the scope of the
present study, and thus we do not consider them in this paper.

The triangular-lattice layer of Ni2O9 dimers is effectively
isolated from each other by nonmagnetic K+ ions, resulting in
minimal interlayer interactions. Consequently, the spin system
within K2Ni2(SeO3)3 can be described as a two-dimensional
spin-1 dimer model expressed by the following Hamiltonian:

H = J1

∑

i

Si1 · Si2 +
∑

〈i j〉
(J2(Si1 · S j1 + Si2 · S j2)

+ J3(Si1 · S j2 + Si2 · S j1)) − D
∑

i

((
Sz

i1

)2 + (
Sz

i2

)2)
.

(1)

Here, Si,1/2 represents the spin-1 operator of the first/second
Ni2+ ion within the Ni2O9 dimer on the ith site, and 〈i j〉
denotes the nearest-neighbor bond for the dimers. The param-
eters J1, J2, and J3 correspond to the exchange interactions
as illustrated in Fig. 1(b), while D accounts for the easy-axis
magnetic anisotropy.

To provide a preliminary estimate of the magnetic
anisotropy parameter D, we compare the magnetization mag-
nitudes of K2Ni2(SeO3)3 for both c-axis directional and
in-plane magnetic fields (B//a, B//a∗) at 1.8 K in Fig. 2(c).
For fields in the ab plane, the magnetic susceptibility is
nearly isotropic. We find that (Mc − Mab)/Mab � 0.2 under
B = 7 T. This provides a rough determination of the magnetic
anisotropy D, which is on the order of 10% of the interactions
between the Ni2O9 dimers. The magnetic anisotropy plays
a role in the different field-induced phase diagrams for the
c-axis directional and in-plane magnetic fields, which we will
delve into further in Figs. 8 and 11.

FIG. 3. Four different spin configurations in the first-principles
simulation. The arrows indicate spin directions on the Ni2+ irons.

To determine magnetic interactions in K2Ni2(SeO3)3,
we performed fittings on the temperature-dependent mag-
netic susceptibility shown in Fig. 2(b). These fittings are
conducted by utilizing the Curie-Weiss law χ = C

T −�
+ χ0

within the temperature range of 200 K to 300 K, where
C is the Curie constant, � is the Curie-Weiss tempera-
ture, and χ0 denotes the T -independent contribution. The
fittings yield values of �c = −39.77 ± 0.95 K and �ab =
−40.12 ± 1.43 K, indicating the overall antiferromagnetic in-
teractions in K2Ni2(SeO3)3. Additionally, we determine the g
factors, with gc = 2.30 ± 0.01, gab = 2.22 ± 0.01.

The Curie-Weiss fitting, though informative, does not pro-
vide separate values for J1, J2, and J3. To obtain these
individual exchange parameters, we turn to first-principles
simulations, which offer a more detailed insight into the mag-
netic interactions. We initially compared the total energies
for spins along the a and c axes to estimate the magnetic
anisotropy as D = 0.14 meV. Additionally, we estimated the
interdimer interaction along the c axis to be J ′ = 0.03 meV,
confirming the dimensionality of two for the spin system in
K2Ni2(SeO3)3.

In our simulations, we considered four distinct magneti-
zation configurations, as depicted in Fig. 3, and calculated
their corresponding total energies. The two dimer layers in
the unit cell were set to have the same spin configurations.
Considering the Hamiltonian in Eq. (1), the total energies for
the four spin configurations are as follows:

Ea = E0 + 8J1 + 48J2 + 48J3,

Eb = E0 + 8J1,

Ec = E0 + 4J1 + 24J2 + 24J3,

Ed = E0 − 8J1 + 48J2 − 48J3. (2)

Our theoretical calculations yielded J1 = 0.32 meV, J2 =
0.79 meV, and J3 = 0.01 meV. These values, along with D =
0.14 meV obtained through simulations, complement our
experimental findings, and provide a more comprehensive
understanding of the magnetic interactions. The theoretical
Curie-Weiss temperature calculated using these parameters,
approximately � = −2(J1 + 6J2 + 6J3)/3 � −40 K, closely
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FIG. 4. Specific heat Cp(T )/T and successive phase transition
temperatures Tc1 and Tc2 indicated by dashed lines under different
fields B‖c.

aligns with the value derived from the experimental fitting,
reinforcing the consistency of our results.

C. Field-induced magnetic transitions

1. B‖c

We can only resolve a single magnetic phase transi-
tion occurring at Tc = 5.75 K in the zero-field heat capacity
measurement displayed in Fig. 2(a). The introduction of a
magnetic field prompts us to explore the field-induced mag-
netic phase transition, which is depicted in the temperature-
dependent specific heat divided by temperature Cp(T )/T for
K2Ni2(SeO3)3 with the magnetic field aligned along the c
axis, as presented in Fig. 4. As the applied magnetic field
strength increases, the original transition at Tc gradually splits
into two distinct transitions, labeled as Tc1 and Tc2. Notably,
these transition points, Tc1 and Tc2, exhibit distinct behaviors
with respect to the magnetic field strength. The black dashed
line in Fig. 4 signifies the shift of Tc1 to higher temperatures
as the magnetic field is increased, whereas the pink dashed
line indicates the opposite trend for Tc2, shifting to lower
temperatures. It is important to observe that while the peak at
Tc1 retains its sharpness, resembling the zero-field transition,
the transition peak at Tc2 exhibits a significantly broader pro-
file. This contrasting behavior in the peak profiles highlights
the distinct nature of these phase transitions occurring at Tc1

and Tc2.
The heat capacity measurements in Fig. 4 provide com-

pelling evidence for the existence of two successive tran-
sitions, and hence the presence of an intermediate phase.
This intermediate state is anticipated to manifest itself in the
field-dependent specific heat Cp(B) when probed at various
fixed temperatures. As the applied magnetic field induces a
progressive upward shift of Tc1(B), as indicated by the black
dashed line in Fig. 4, one would expect to identify the same
phase transition point Bc1(T ) within Cp(B) when maintaining
a constant temperature above Tc = 5.75 K. Likewise, keep-

ing the temperature fixed below Tc allows us to discern the
phase transition occurring at Bc2(T ), which corresponds to
Tc2(B). To validate the existence of the intermediate phase, a
comprehensive analysis of the detailed data for the field-
dependent specific heat Cp(B) is presented in Fig. 5.

In Fig. 5(a), we examine the field-dependent specific heat
Cp(B) while maintaining a constant temperature of T =
6.75 K above Tc. At this temperature, K2Ni2(SeO3)3 is in a
paramagnetic state under low magnetic fields. As the mag-
netic field B increases, we observe an enhancement in Cp(B),
particularly at low fields. By applying polynomial fitting to the
data within the range of 0 T to 4 T, we find that the increase in
Cp(B) approximately follows a relationship of 	Cp(B) ∝ B2,
where 	Cp(B) = Cp(B) − Cp(0). This behavior aligns with
the field dependence of specific heat typically observed in
paramagnetic states [43]. Upon reaching the critical value of
Bc1 = 7.5 T, a peak emerges in Cp(B), indicating a transi-
tion into the intermediate state for the system. Similar trends
are observed in Figs. 5(b)–5(g) for temperatures above Tc.
In this range, the critical magnetic field Bc1(T ) decreases
as the temperatures at which the measurements are taken
decrease.

Around Tc = 5.75 K [Figs. 5(f)–5(k)], the transition peaks
in Cp(B) become notably broad and challenging to discern
clearly. However, as we continue to lower the temperature
below Tc, the transition peak in Cp(B) becomes pronounced
again, allowing us to confidently identify the critical field
Bc2(T ). When we delve below 5.0 K in Figs. 5(l)–5(o), a
distinct pattern emerges in the field dependence in Cp(B),
differing from that in Figs. 5(a)–5(f). Here, the specific heat
Cp(B) initially decreases as the field increases at low fields,
then experiences an enhancement with further increases in B,
and reaches a peak at Bc2 before transitioning into the interme-
diate phase. Notably, with decreasing holding temperatures,
the critical field Bc2(T ) exhibits a consistent increase. The
distinct trends observed in Bc1(T ) and Bc2(T ) underscore the
intricate interplay between temperature and magnetic field,
providing validation for the existence of the intermediate
phase.

The successive phase transitions in K2Ni2(SeO3)3 are not
only evident in the specific heat measurements [as seen in
Cp(T ) in Fig. 4 and Cp(B) in Fig. 5] but also discernible in
the magnetization data. Figure 6 presents the temperature-
dependent magnetization M(T ) and its associated differential
magnetization concerning temperature (dM/dT ) under vary-
ing magnetic fields. At lower magnetic field strengths, as the
temperature decreases to 2 K, the magnetization in Fig. 6(a)
exhibits a steady increase. Conversely, at higher magnetic
fields, the magnetization initially ascends as the temperature
decreases, but it subsequently begins to decline.

Notably, the temperature-dependent differential magneti-
zation (dM/dT ) in Fig. 6(b) reveals two distinctive kinks.
These kink temperatures, indicated by arrows, agree with
the critical temperatures Tc1 and Tc2 as determined through
specific-heat measurements. A sudden increase in magnetiza-
tion becomes evident at Tc1. While the rate of enhancement
diminishes until reaching Tc2 at low magnetic fields, this
upward trend in magnetization not only decelerates but also
ultimately reverses, leading to a decrease in magnetization at
high magnetic fields.
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FIG. 5. Field-dependent specific heat Cp(B) and critical magnetic fields Bc1 and Bc2 at selected temperatures with B‖c. The solid red lines
in (a)–(d) represent the fitting results of 	Cp(B) ∝ B2.

To further underscore the coherent alignment between the
heat capacity and magnetization measurements, we reconfig-
ure the data by plotting CH = −μ0H ( dM

dT )H in Fig. 7. This
quantity signifies the heat capacity contribution from the work
performed by the magnetic field on the magnetization. Ac-
cording to the second law of thermodynamics,

dQ = dU − μ0HdM, (3)

we know the specific heat at constant field

C = CM + CH , (4)

where CM = ( ∂U
∂T )M represents the specific heat at a con-

stant magnetization, derived from the internal energy U .
Meanwhile CH = −μ0H ( ∂M

∂T )H accounts for the contribution
arising from the work done by the magnetic field. It’s impor-
tant to note that when the magnetic field remains constant, the
magnetization M varies with temperature, and consequently,
CM also depends on the magnetic field. Nonetheless, CH

specifically represents how changes in magnetization influ-
ence the heat capacity due to the work done by the magnetic
field.

Upon heat capacity CH arising from the magnetic field’s
work on the magnetization in Fig. 7, we conduct a com-
parative analysis by examining the temperature-specific heat
Cp(T )/T shown in Fig. 4. We observe that the first transition
peak in Cp(T )/T at Tc1 closely resembles the corresponding

peak in CH . This resemblance suggests that at the transition
point Tc1, there is a substantial alteration in magnetization
aligned with the field direction. However, the situation de-
viates significantly at the second transition Tc2. Here, the
behavior of CH differs notably from that of Cp(T )/T and CH

even exhibits a negative value under strong magnetic fields.
These observations imply that, although the magnetization
along the field direction does not undergo significant changes
at Tc2, the internal energy experiences substantial variations.
This may indicate that the magnetization perpendicular to
the field direction undergoes pronounced shifts during this
phase transition. We can also draw parallels between the field-
dependent heat capacity behavior Cp(B) at low magnetic fields
in Fig. 5, and the patterns observed in CH in Fig. 7. It becomes
evident that as we keep the temperature constant and increase
the magnetic field strength, both CH and Cp(B) exhibit similar
trends in their values at low fields.

Upon gathering critical points from the successive mag-
netic transitions Tc1 and Tc2 in Cp(T )/T (Fig. 4), as well
as M(T ) (Fig. 6), and Bc1 and Bc2 in Cp(B) (Fig. 5), we
can construct the magnetic phase diagram for B‖c, as illus-
trated in Fig. 8. The color intensity in the diagram reflects
the values of Cp/T , and it approximately aligns with the
critical points. The phase diagram is effectively divided into
three distinct phases. From our theoretical investigations,
the magnetic exchanges in K2Ni2(SeO3)3 is dominated by
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FIG. 6. (a) Temperature-dependent magnetization with the mag-
netic field aligned along the c axis. (b) Corresponding temperature
derivative of the magnetization, dM/dT .

FIG. 7. Heat capacity contribution CH = −μ0H ( ∂M
∂T )H from the

work performed by the magnetic field on the magnetization.

FIG. 8. Magnetic phase diagram for B‖c with the phase bound-
aries determined by the collected data from Cp(T ) in Fig. 4, Cp(B) in
Fig. 5, and M(T ) in Fig. 6.

J2 and the spin system can be approximated by the spin-1
triangular antiferromagnet. Leveraging insights gained from
both Monte Carlo simulations [16,19,44] and experimental
studies [45,46] conducted on the traditional triangular-lattice
antiferromagnet under magnetic fields, we propose a sequence
of phase transitions. Initially, the system undergoes a continu-
ous phase transition, transitioning from the paramagnetic state
to the UUD state, which breaks the Z3 lattice symmetry. As the
temperature continues to decrease, a Berezinskii-Kosterlitz-
Thouless phase transition ensues, leading the system into the
“Y state” from the UUD state, which breaks the c-axis spin
rotation symmetry. This effect of the J1 in the phase transition
requires more theoretical investigations for further validation.

2. B‖ab

To comprehensively explore the field-induced magnetic
phases in K2Ni2(SeO3)3, we extend our investigations to
encompass in-plane magnetic fields aligned with the crystal-
lographic ab plane (B‖ab). Following a similar interpretation
approach as outlined in Sec. III C 1, the magnetization data
presented in Fig. 9 and the heat capacity measurements
depicted in Fig. 10 enabled us to extract critical transition tem-
peratures T c(B) and fields Bc(T ), respectively, under in-plane
magnetic fields. These critical values are subsequently used
to construct a magnetic phase diagram, which is presented in
Fig. 11. This phase diagram serves as a visual representation
of how the magnetic phases evolve under the influence of
in-plane magnetic fields.

It is noteworthy that our findings reveal a notable disparity
between the phase diagrams for B‖c and B‖ab. This diver-
gence can be attributed to the impact of on-site magnetic
anisotropy, characterized by parameter D, which significantly
influences the magnetic behavior of the Ni2+ ions within the
crystal structure of K2Ni2(SeO3)3. This observation under-
scores the critical importance of considering crystallographic
orientations and the effects of magnetic anisotropy when in-
vestigating the magnetic properties of intricate materials such
as K2Ni2(SeO3)3.

IV. SUMMARY AND CONCLUSION

In our comprehensive investigation, we delved into the
intriguing field-induced magnetic phase transitions within

214430-7



LEI YUE et al. PHYSICAL REVIEW B 109, 214430 (2024)

FIG. 9. (a) Temperature-dependent magnetization with the in-
plane magnetic field. (b) Corresponding temperature derivative of the
magnetization, dM/dT .

FIG. 10. Specific heat under different in-plane fields B‖ab.

FIG. 11. Magnetic phase diagram for B‖ab.

the newly synthesized compound K2Ni2(SeO3)3, charac-
terized by a spin-1 dimer system arranged on a triangu-
lar lattice. Through an integrated approach encompassing
magnetization and heat capacity measurements, coupled with
Curie-Weiss fitting of the magnetization data and first-
principles simulations, we elucidated the underlying exchange
interactions governing the behavior of the spin-1 Ni2+ ions in
K2Ni2(SeO3)3.

One of the most notable findings of our investigation was
the identification of a two-step phase transition when the mag-
netic field was aligned with the c direction. The first transition,
from a paramagnetic state to an UUD state, was characterized
by the breaking of the Z3 lattice symmetry. Subsequently,
a Berezinskii-Kosterlitz-Thouless transition ensued, marked
by the breaking of the c-axis spin-rotation symmetry, lead-
ing to the formation of what we term the “Y state” at low
temperatures.

In conclusion, our study provides valuable insights into
the intricate magnetic phase transitions inherent to geometri-
cally frustrated magnetic systems featuring dimer structures.
The newly synthesized compound K2Ni2(SeO3)3 serves as
an intriguing model system, shedding light on the rich and
complex behavior of spin-1 systems arranged on triangular
lattices under the influence of magnetic fields. These findings
not only expand our fundamental understanding of quantum
magnetism but also hold promise for potential applications in
emerging technologies.

Note added: After completing our manuscript, we noticed
a similar work [47].
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