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Metamagnetic tricritical behavior of the magnetic topological insulator MnBi4Te7
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We report temperature and magnetic field dependences of the magnetization and ac susceptibility of
MnBi4Te7, aiming to construct a magnetic phase diagram for H ‖ [001]. Its spin Hamiltonian can be described
as an Ising model for a metamagnet. The superlattice structure of MnBi2Te4 · (Bi2Te3)n facilitates the reduction
of interlayer antiferromagnetic interaction. As predicted by the model, there is a tricritical point in the phase
diagram when the ratio of the intralayer to interlayer interaction is less than −3/5. The tricritical point is
determined to be (12.4 K, 660 Oe) by the imaginary part of ac susceptibility due to the dissipation of domain
walls of the mixed phase. The effective tricritical exponents, βeff

2 ∼ 1.10, δeff
2 ∼ 1.65, have been obtained and

differ from the mean-field exponents. When the logarithmic correction factor | ln |t ||0.5 is included, the data
collapse with the mean-field power law. These findings were tested against the tricritical scaling hypothesis. The
deviation from the Landau theoretical values results from the logarithmic correction, similar to another layered
metamagnet FeCl2. As a member of the intrinsic magnetic topological insulator family, MnBi4Te7 features a
tricritical point in its magnetic phase diagram, providing a solid foundation for future research on topological
transitions and tricriticality.

DOI: 10.1103/PhysRevB.109.214428

I. INTRODUCTION

The topologically nontrivial band structure and magnetism
of MnBi2Te4 · (Bi2Te3)n (n = 0, 1, 2, . . .) have made fun-
damental issues associated with the quantum Hall effect a
subject of much attention [1–20]. Specifically, MnBi2Te4 (n =
0) with A-type antiferromagnetic (AFM) order has realized a
quantum anomalous Hall (QAH) insulator and an axion insu-
lator, respectively, in its odd and even layer systems [16,17].
Although topological transitions extend beyond the classi-
cal Landau-Ginzburg phase transition theory, the topological
phases are enriched by the notion of spontaneous symmetry
breaking [21–23]. In the QAH state under zero magnetic field,
the spontaneous magnetization induces the chiral edge states
at the sample edge as well as at the domain walls [24–26].
The investigation of phase transitions in topological systems
are beneficial for understanding novel topological phases.

For critical phenomena accompanied by spontaneous sym-
metry breaking, the fundamental concept of universality class
supplies an effective methodology to investigate and uncover
phase transitions [27–35]. The same universality class can be
described by equations of states, which generates a series of
critical exponents [36]. Tricriticality, as a sibling of critical-
ity, is a fundamental and attractive topic in condensed-matter
physics, which reveals competition and balance among mul-
tiple phases and interactions [37–39]. Such transition points
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were envisaged by Landau in 1937 who called them “crit-
ical points of a continuous phase transition” [40] and the
term tricritical point (TCP) was first proposed by Griffiths
in 1970 [41]. In magnetic systems, an antiferromagnet with
strong axial anisotropy in a uniform magnetic field near the
Néel temperature does not change the property of the critical
point [41,42]. However, below a certain temperature and in
a sufficiently high field, the transition from the antiferromag-
netic to the saturated paramagnetic (SPM) phase, known as
the spin-flip transition, is the first order. The magnetic phase
diagram depends on the competing interaction ratio λ = J‖/J⊥
[43,44]. Notably, when the ratio is less than −3/5, a phase di-
agram with a tricritical point emerges. The range of validity of
Landau theory for the tricritical system is estimated by
Ginzburg criterion, which indicates that the upper critical
dimension d+ is 3 [45]. This means that these tricritical
exponents are expected to take mean-field values for a three-
dimensional lattice but require a logarithmic correction at
marginal dimensionality [46–48]. The mean-field exponents
agree well with measurements on He3-He4 mixtures and the
dysprosium aluminum garnet (DAG) metamagnet [49–51].
However, there are deviations from the mean-field tricritical
exponents, where a fractional power of the logarithmic correc-
tion is applied, as observed in the layered metamagnet FeCl2

[52–55].
Here we focus on MnBi4Te7 (n = 1) with a hexagonal

superlattice crystal structure consisting of alternately stacked
MnBi2Te4 a septuple layer (SL) and Bi2Te3 a quintuple layer
(QL) [2,20,58]. MnBi2Te4 was evidenced as the first A-type
antiferromagnetic topological insulator with ferromagnetic
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TABLE I. Experimental and theoretical tricritical exponents.

Material Author β+
2 β−

2 β2 β1 δ±
2

a γ
(±)

2
b �2

He3-He4 Graf et al. [51] ∼1 ∼1 ∼1
Leiderer et al. [56] ∼1
Giordano et al. [57] 1.95 ± 0.08

FeCl2 Birgeneau et al. [52] ∼1 ∼0.36 ∼0.19 ∼2
Dillon et al. [54] 1 ± 0.02 1 ± 0.07 1 ± 0.08
Griffin et al. [53] 1.03 ± 0.05 1.13 ± 0.14 1.11 ± 0.11

DAG Giordano et al. [50] ∼1 ∼1 0.98 ± 0.05 2.14 ± 0.26 1.01 ± 0.07 1.95 ± 0.11
MnBi4Te7 Present work ∼1 ∼1 1.02 ± 0.10 1.92 ± 0.28
Theory Kincaid et al. [44] 1 1 1 0.5 2 1 2

aWhere δ+
2 and δ−

2 are the exponents for the paramagnetic and antiferromagnetic phases, respectively, and we give one of them.
bWhere γ +

2 , γ −
2 , and γ2 are the exponents along three different phase boundaries and we give one of them.

intralayer interactions J‖ and antiferromagnetic interlayer
coupling J⊥ [18]. Recently, MnBi4Te7 was found to exhibit
much weaker interlayer interaction than MnBi2Te4 due to the
QL intercalation, resulting in a spin-flip transition rather than
a spin-flop transition in the magnetization curve [19]. It is
plausible to use the so-called “Ising model for a metamagnet”
to describe the magnetic effective Hamiltonian of MnBi4Te7,
which predicts a tricritical point in the magnetic phase di-
agram. To explore the nature of tricritical phenomena, we
have performed two kinds of measurements: high-resolution
isothermal static magnetization and ac susceptibility in vary-
ing fields along the crystallographic c axis of MnBi4Te7.

In this work, we constructed a magnetic phase diagram of
MnBi4Te7 and discovered a mixed-phase region terminating
at a tricritical point (12.4 K, 660 Oe). Around the tricritical
point, we demonstrate that the mean-field exponents, β2 =
1, δ2 = 2, do not satisfy the scaling relations for our mag-
netization data. Instead, the predicted behavior aligns with
our data only if these exponents are allowed to take effec-
tive values, βeff

2 ∼ 1.10, δeff
2 ∼ 1.65. This suggests that the

logarithmic factor can be represented by power laws with
effective tricritical exponents for the layered metamagnets
FeCl2 and our MnBi4Te7. We have summarized the tricritical
exponents of MnBi4Te7 and the other systems in Table I.
MnBi4Te7 exhibits tricritical behavior and our data on the
uniform (nonordering) magnetization are sufficiently precise
to permit a careful test of the predictions of tricritical scaling
theory discussed in the Appendix.

II. EXPERIMENTAL DETAILS

A. Sample preparation

Single crystals of MnBi4Te7 were grown using the self-flux
method [10,58]. High-purity Mn (powder 99.95%), Bi (grain
99.999%), and Te (lump 99.999%), with starting elements
were mixed and the molar ratio of Mn:Bi:Te is 1:10:16. The
mixture was loaded in a high-quality alumina crucible, sealed
in a quartz tube under high vacuum, heated to 1050 ◦C, and
held for 6 h. After a quick cooling to 600 ◦C at a rate of
10 ◦C/h, the mixtures were slowly cooled down to 585 ◦C
over two days. The excess molten liquid flux was separated
from the crystals in a centrifuge with silica wool serving as a
filter. Although Bi2Te3 is the inevitable side product, we can

differentiate MnBi4Te7 pieces by measuring their (00l )
diffraction peaks. The phase and quality examinations of
the MnBi4Te7 were performed on a powder crystal x-ray
diffractometer with Cu Kα radiation (λ = 1.54175 Å) at room
temperature. MnBi4Te7 single crystals are stable in the air. For
magnetic material, its magnetic properties are shape depen-
dent. The standard demagnetizing correction Eq. (1) is only
strictly for uniform ellipsoids. As in the case of MnBi4Te7,
the material cannot be shaped. The alternative approach is
then to use a thin sample and cut it into an ellipsoidal platelet
of dimensions 2 × 1 × 0.21 mm3 as shown in the inset of
Fig. 1(b).

B. Magnetization measurements

High-resolution magnetization measurements were per-
formed with a Magnetic Property Measurement System
(MPMS XL-7, Quantum Design). In order to avoid something
like magnetocaloric effects affecting the state of the sample,
measurements were taken point by point rather than using the
sweeping model continuously. Especially, when applying a
field and temperature approach to the phase boundary, one
should repeat each reading until a consistent value was ob-
tained and the magnetization was determined by means of
a standard reciprocating sample option mode. In practice it
is possible to take measurements in steps as small as 10 Oe
with sufficient accuracy to yield dependable values. We use
the standard formula for a demagnetizing correction,

Hi = Ha − 4πNM, (1)

where M is the magnetization, Ha is the applied field, Hi is
the internal field, and N is a demagnetizing factor. For our
sample the effective demagnetizing factor can be estimated
from Fig. S1(b), N = 0.89. This was followed by measure-
ment of the ac susceptibility data. The ac field was only
turned on while recording the susceptibility data and the ac
susceptibility was recorded in the frequency range from 1 Hz
to 500 Hz and at the excitation amplitude of 2 Oe.

III. RESULTS AND DISCUSSION

A. Crystal structure and magnetic properties

In this section, we analyze the crystal structure and mag-
netic properties of MnBi4Te7 crystals, which form the basis
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FIG. 1. Crystal structure and magnetic properties of MnBi4Te7. (a) The view of crystal structure of MnBi4Te7 from the [110] directions.
Blue block: edge-sharing BiTe6 octahedra; pink block: edge-sharing MnTe6 octahedra. Red arrow: magnetic moment directions of Mn ions. J⊥,
the interlayer exchange coupling; J‖, the intralayer exchange coupling. (b) The (00l ) x-ray diffraction peaks of cleaved ab plane of MnBi4Te7.
Inset: a piece of MnBi4Te7 crystal against 1 mm scale. (c) The temperature dependent field-cooled and zero-field-cooled susceptibility and
inverse susceptibility taken at H = 100 Oe for H ‖ c. (d) Magnetic hysteresis loop of isothermal magnetization taken at T = 5.0 K and the
loop with demagnetizing correction.

for our discussion of the tricritical behavior in Sec. III B.
Figure 1(b) shows the (00l ) x-ray diffraction peaks of the
surface of as-grown single crystals along the crystallographic
c axis of MnBi4Te7, which can be well indexed by the struc-
ture proposed in previous reports [10,58]. The MnBi4Te7

single crystal features a superlatticelike structure material
formed by alternating QL and SL layers, as illustrated in
Fig. 1(a).

The magnetic properties depicted in Fig. 1(c) present the
field-cooled (FC) and zero-field-cooled (ZFC) magnetic sus-
ceptibility data measured at H = 100 Oe with H ‖ c axis.
Abrupt transitions around TN = 12.9 K indicate an intrinsic
long range AFM ordering, as shown in Fig. S2(a). As seen
from Fig. 1(c) the paramagnetic regime above TN was fit-
ted with a modified Curie-Weiss law, χ (T ) = χ0 + C/(T −
θCW), in the 100 K to 300 K range. The fitted effective
paramagnetic moment of 5.0µB roughly agrees with the high-
spin configuration of Mn2+ (S = 5/2), and the positive value
of the Curie-Weiss temperature (θCW = 11 K). It is worth
mentioning that MnBi2Te4 has a much higher TN of 24 K
and a lower θCW of 3 K [1]. This indicates that the AFM
exchange interaction of MnBi4Te7 is significantly weaker than
MnBi2Te4, which is consistent with the fact that the non-
magnetic spacer QL layer reduces the interlayer exchange
interaction between adjacent MnTe layers [2,10]. For the
two-sublattice antiferromagnet in molecular field theory, the
ratio of intralayer and interlayer exchange interactions can be
estimated by the ratio TN/θCW = (J‖ − J⊥)/(J‖ + J⊥) [59,60],
showing that J‖/J⊥ ≈ −12.579 < −3/5. For Mn ions in
MnBi4Te7, the six nearest neighboring in-plane atoms and
three nearest neighboring interplane atoms are considered.
The spin-flip transition occurs when the field overcomes the
antiferromagnetic coupling between the interlayer moments.

One can estimate the interlayer molecular field constant as
|λ⊥| = Hc/Ms ∼ 15 [60], where Hc is the critical field at the
spin-flip transition and Ms is the saturation magnetization,
extrapolated to T = 0, as illustrated in Fig. S2.

Figure 1(d) presents the hysteresis loops of isothermal
magnetization data M(Ha) showing that the hysteresis grad-
ually disappears with the increasing temperature shown in
Fig. S1 of the Supplemental Material [61]. As illustrated
in Fig. 1(d), MnBi4Te7 undergoes a spin-flip transition with
hysteresis starting at a field of H−

a = 1500 Oe, in contrast
to MnBi2Te4, which undergoes a spin-flop transition at much
higher fields. The low critical field of MnBi4Te7 again indi-
cates weaker interlayer AFM interactions than in MnBi2Te4

and the Mn ions of MnBi4Te7 exhibit much obvious Ising
spin characteristic [18,19]. The effective spin Hamiltonian of
MnBi4Te7 can be well described by an Ising model for meta-
magnet [44,62] based on these phenomena and other related
studies [1,10,18,19],

H = −
∑
i j‖

J‖sis j −
∑
i j⊥

J⊥sis j − H
∑

i

si, (2)

where s denotes the Ising spins defined at each site, J‖ de-
scribes pairwise nearest-neighbor (NN) interactions within a
single triangular layer, and J⊥ corresponds to an NN inter-
layer coupling, where J‖ > 0 corresponds to ferromagnetic
coupling and J⊥ < 0 corresponds to AFM coupling. H refers
to uniform magnetic fields. According to the magnetic phase
diagram of the model based on mean field theory, there is a
tricritical point when competing interaction ratio λ = J‖/J⊥
is less than −3/5 [44].
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(a)

(b)

FIG. 2. Typical magnetization data and corresponding suscepti-
bility data of MnBi4Te7. (a) Magnetization as a function of applied
magnetic field at various temperatures approaching the tricritical
point. (b) The susceptibility calculated from magnetization (a) as a
function of applied magnetic field. The inset shows the typical curve
at 10 K. We can define critical fields of the spin-flip transition. H−

a

and H+
a are the lower and upper critical fields, respectively.

B. Magnetic phase diagram and tricritical behavior

Typical curves of magnetization and susceptibility as a
function of an external magnetic field at different temperatures
are shown in Fig. 2. If, at this first-order transition, magneti-
zation M were to increase discontinuously, and be affected
in the demagnetizing field shown in Eq. (1), the critical field
would decrease to a value below that required to initiate
the transition. Therefore, the transition cannot occur all at
once, but must proceed gradually under the influence of a
demagnetizing field [63,64]. Two degenerate phases and time-
reversed antiferromagnetic phases (up-down-up-down ↑↓↑↓
and down-up-down-up ↓↑↓↑) exist in the MnBi4Te7 sample
in the absence of magnetic field [65,66]. As the magnetic
field increases, a saturated paramagnetic phase is nucleated
(usually along the antiferromagnetic wall) at metamagnetic
transition resulting in three phases coexisting in the region
[66]. The phenomenon means the original first-order transi-
tion line splits open to enclose the so called “mixed-phase”
region in the magnetic phase diagram as illustrated in Figs. 3,
5, and 6. The upper critical field H+

a and lower critical field

FIG. 3. dM/dH plotted as functions of T and Ha along the c axis
of MnBi4Te7. The mixed phase region gets narrower approaching the
TCP.

H−
a can be determined at temperatures between 10 K and

10.9 K as shown in Fig. 2(a). In the spin flip transition re-
gion, the static susceptibility changes sharply and eventually
reaches a certain value dM/dHa = 1/N [63] depicted in the
inset of Fig. 2(b) and Fig. S1(b).

However, Eq. (1) applied strictly only for uniform el-
lipsoids, in that N becomes a function of the magnetic
equation of states for all other sample shapes [67]. For our
MnBi4Te7 bulk samples, which cannot be shaped into el-
lipsoid, the magnetic field tends to be inhomogeneous. The
effect for nonellipsoidal samples can be quite significant in
regions where dM/dHi is large, particularly near both first
and second order phase transitions. Specifically, as the tem-
perature approaches the tricritical temperature, the slope of
magnetization undergoing the first order transition becomes
temperature dependent rather than equal to the inverse of the
demagnetization factor as shown in Fig. 2(b). These so-called
“rounding effects” are very obvious, making it hard to dis-
tinguish a small discontinuity just below the tricritical point
from a second order inflection just above the tricritical point
[68]. Detailed information about the critical internal field, Hi,
can be found in Fig. S3 and Fig. S4. The internal field vs
temperature phase diagram is shown in Fig. S5 in the Sup-
plemental Material [61]. Some indication of these difficulties
is illustrated by FeCl2, one of the two metamagnetic materi-
als on which most of the tricritical point studies have been
reported [52–54,69].

To overcome these difficulties, we can measure dynamic
magnetization processes. Fortunately, tricritical points in-
volve first order transitions, which are intrinsically susceptible
to hysteresis effects and the formation of domains in the
regions of coexistence [70]. In single-phase regions, mag-
netization proceeds via individual spin reversals with single
spin-flip time τ ∼ 10−10 s. In mixed-phase regions, macro-
scopic processes involving domains take place. Based on our
understanding of such domains [71], with typical spin relax-
ation time τ = (2π f )−1 ∼ 0.1 s, the low frequency response
of the system needs to be measured.
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(a)

(b)

FIG. 4. Typical ac susceptibility data of MnBi4Te7 as a function
of applied magnetic field. Data were recorded for an excitation am-
plitude of 2 Oe parallel to the c axis at different temperatures. (a) The
real part of the ac susceptibility, Reχac, as a function of applied
magnetic field for 10 Hz frequency approaching the tricritical tem-
perature. (b) The imaginary part of the ac susceptibility, Imχac, as a
function of applied magnetic field. The inset shows the typical curve
at 11 K and we define the upper critical fields H+

a and lower critical
fields H−

a . We can determine the fields of the second order transition
Hc above 12.4 K, where the imaginary part of the susceptibility is
approximately equal to zero.

Typical plots of ac susceptibility as a function of applied
field are shown in Fig. 4. The real part of the ac susceptibility,
Reχac, versus magnetic field at different temperatures are
illustrated in Fig. 4(a). Reχac vs magnetic field for different
frequency at 10.99 K are represented in Fig. S9(a) of the
Supplemental Material [61]. We are concerned with the mix-
phase region, where the quantitative difference between Reχac

is measured at different excitation frequencies due to dynamic
effects, as shown in Fig. S9(b).

The imaginary part of the ac susceptibility Imχac versus
magnetic field at different temperatures is shown in Fig. 4(b).
Imχac vs magnetic field plots for different frequencies at
10.99 K and 12.00 K are represented in Figs. S9(c) and
S9(d). Similar measurements at different frequencies yield
the same locations for the onset of the mixed phase bound-
aries. The imaginary component, Imχac, indicates dissipative
processes in the sample. Relaxation and irreversibility in the
mixed phase region give rise to a nonzero Imχac due to

FIG. 5. Imχac plotted as functions of T and Ha along the c axis
of MnBi4Te7. The mixed phase region gets narrower approaching
the TCP.

the irreversible domain wall movement, which was observed
in MnBi4Te7 using cryogenic magnetic force microscopy
[66,72]. In our experiments the imaginary component was
observable very near the tricritical point, allowing us to map
out the phase boundaries below the tricritical temperature. As
the temperature increases, the mixed-phase region decreases
in size until it ultimately disappears above 12.4 K where
Imχac ≈ 0, as illustrated in Fig. 4(b). To locate the second-
order phase boundary for T > Tt , where Imχac = 0, we use
the character of the real part of the ac susceptibility. The peaks
in the expected region, shown in Fig. 4, served to locate the
boundary. The mixed phase narrows as it approaches the TCP
as shown in Figs. 3 and 5. The final phase diagram, accurately
following the definitions of the characteristic field and temper-
ature values, is illustrated in Fig. 6(a), with the tricritical point
identified at (12.4 K, 660 Oe). In the M-T plane the mean-field
theory predicts that the two phase lines (SPM and mixed
phase, AFM and mixed phase) will approach the tricritical
point linearly, with β+

2 ≈ 1 and β−
2 ≈ 1 [45,73]. The most

striking feature of Fig. 6(b) is that these phase boundaries ap-
pear to near the TCP linearly, as predicted. Additionally, along
the first order line the Landau theory predicts that the dis-
continuity in the nonordering magnetization should obey the
linear law [43], that is, �M/Mt = A(1 − T/Tt )β2 , compared
to our result as shown in the inset of Fig. 6(b), β2 = 1.02 ±
0.10, A = 21.66 ± 2.51, and Tt = 12.47 ± 0.04 K. Note that
the fitting data of the reduced temperature ranges from 0.002
to 0.2 and the uncertainties represent statistical errors from the
least-squares fit.

The tricritical exponent δ2 was obtained by a linear
least-squares fitting of the log-log normalized magnetization
(M − Mc)/Mc against normalized field (H − Hc)/Hc, where
(Hc, Mc) is the point where susceptibility is at the maximum.
A typical plot of T = 11.79 K is shown in Fig. 7(a). For both
H > Hc and H < Hc, the slope of curves near the mix-phase
region approaches a limit corresponding to 1. Data away from
the mix-phase and critical region tend to approach another
limiting slope corresponding to 1/δ2 ≈ 0.5 [45,73], dividing
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(a)

(b)

FIG. 6. (a) Magnetic phase diagram of MnBi4Te7 as a function
applied magnetic field and temperature along the c axis. The tricriti-
cal point (Tt , Ht ) for our measurement accuracy is (12.40 K, 660 Oe)
and the Néel temperature is about 12.9 K. (b) M-T phase diagram. Mt

is tricritical magnetization, Mt = 6.39 ± 0.43 emu/cm3. The magne-
tization values plotted in the diagram correspond to the values under
H+

a or H−
a critical fields and the error bars reflect the uncertainty

in locating the onset of the susceptibilities. The exponents β+
2 , β−

2

mean normalized magnetization change along different paths, upper
boundary H+ and lower boundary H− of mixed phase, respec-
tively. We can define β2 according to �M/Mt ∼ (1 − T/Tt )β2 , where
�M = M(H+

a ) − M(H−
a ). The inset shows data for the discontinuity

close to the TCP.

into two distinct parts corresponding to antiferromagnetic
and paramagnetic phases as shown in Fig. 7(b). The separa-
tion of two parts disappears as the temperature approaches
Tt = 12.4 K. These crossover effects arise from competition
between the second-order and tricritical phase transition for
multicomponent systems [39].

Finally, we tested the tricritical scaling hypothesis dis-
cussed in the Appendix using data from eight isotherms
below Tt . Figure 8 shows scaling plots for the isothermal

(a)

(b)

FIG. 7. Tricritical exponent δ2 can be defined by M ∼ H1/δ2

approaching TCP. (a) Typical normalized magnetization versus nor-
malized field at 11.79 K. The inset shows double logarithmic plots
for both the paramagnetic part H > Hc and antiferromagnetic part
H < Hc. The red line is fitted with the tricritical relation, M ∼ H1/2,
and we can determine tricritical region data. (b) Double logarithmic
plots of normalized magnetization and normalized field for differ-
ent isotherms. Lines have slopes 0.95 ± 0.02 (critical) and 0.52 ±
0.09 (tricritical) corresponding to 1/δ2 = 0.52 ± 0.09. The crossover
from critical to tricritical regime is controlled by the crossover expo-
nent �2 = δ2β2.

magnetization, m/|t |β2 vs h2/|t |β2δ2 , where h2 = h + pt ,
t = (T − Tt )/Tt , m = (M − Mt )/Mt , and h = (H − Ht )/Ht ;
(Ht , Tt ) is the TCP, Mt is the tricritical magnetization, and p is
the slope of the phase boundary at the TCP in h − t space. Val-
ues for Tt = 12.40 K, Ht = 660 Oe, and Mt = 6.39 emu/cm3

were taken from Fig. 6, and p = −12.18 ± 3.52 was derived
from Figs. 6(a) and S6 [61]. Using the theoretically predicted
exponents β2 = 1 and δ2 = 2, the data failed to collapse onto
a single curve, violating the scaling hypothesis illustrated in
Fig. 8(a). By varying those exponents β2 and δ2, however,
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(a) (b)

FIG. 8. (a) Scaling plot of m/|t |β2 versus h2/|t |β2δ2 [Eq. (A19)] using mean-field exponents. (b) Scaling magnetization data vs scaling
variable with the effective tricritical exponents βeff

2 = 1.10 and δeff
2 = 1.65. Using Eq. (A22), the dotted line is fitted to the data from the

tricritical region as in Fig. 7.

good data collapsing can be obtained with effective values
δeff

2 = 1.65, βeff
2 = 1.10 as shown in Fig. 8(b). The equa-

tion (A24) where the mean-field power law is corrected by
the logarithmic factor | ln |t ||1/2 and the results are presented
in Figs. 9 and S8 [61]. The tricritical region data were fitted
using each of the relations presented in Figs. 8 and 9 and the
results of the analysis are quantitatively illustrated in Table S1.
This table includes the R-squared, a goodness-of-fit measure
for regression models, and the best-fit coefficients. The fit to
the mean-field theory relation, β2 = 1, δ2 = 2, and Eq. (A22),
resulted in coefficients yielding a value of R2 = 0.965, 0.863,
which is relatively deviated from 1. The mean-field theory

FIG. 9. Data of Fig. 8 scaled according to m/|t |β2 | ln |t ||0.5 vs
h2/|t |β2δ2 with mean-field exponents δ2 = 2, β2 = 1 and logarith-
mic correction. The dotted line is fitted to the tricritical data with
Eq. (A24).

relation is ruled out as would be expected. The fits with
effective exponents βeff

2 = 1.10, δeff
2 = 1.65 and the mean-

field exponents with logarithmic correction obtained R2 =
0.994, 0.951 and R2 = 0.996, 0.924, respectively, which are
summarized in Table S1. Our fits indicate that the effective
power law and predicted logarithmic corrections to a mean-
field theory power law are similar within our experimental
accuracy. However, crystallographic defects such as vacancy,
site mixing, and mismatch of layers have been reported for the
family of compounds [13,20,74]. The size of the region per-
turbed by the defect increases near Tt because the nonordering
parameter, magnetization, changes in the vicinity of the de-
fect. The structure of the substance near Tt becomes “soft”
[75] (those modes in which the eigenfrequency tends to 0)
with respect to the changes of magnetization. In particular, the
characteristic correlation length rc ∼ (1 − T/Tt )−ν for spa-
tial changes of the magnetization fixed at a given point (in
this case on the defect) becomes infinite as (1 − T/Tt ) → 0
[75]. Increasing the dimensions of the region (line defects or
surface defects) leads to an increase of the cross section for
domain formation (where the magnetic moment is polarized)
and therefore an increase of magnetization due to fluctuations
in the defect concentration. For the metamagnetic transition
especially near the tricritical point, the saturated paramagnetic
phase with large magnetization nucleates along the antiferro-
magnetic walls (usually caused by mismatch of layers) or at
the point defect (vacancy and site mixing). Such defects cause
the power law to deviate from the tricritical scaling law near
the tricritical point, preventing the data in Figs. 8(b) and 9
from collapsing completely into a single curve.

Actually, for the tricritical point, Ridel and Wegner et al.
employed the renormalization method to obtain mean-field
exponents and subsequently extended the treatment to include
logarithmic corrections to mean-field behavior at a border-
line lattice dimension d+ = 3 [76,77]. While mean-field
theory does not account for fluctuations, near the tricritical
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point, these fluctuations cannot be ignored. The logarithmic
corrections essentially come from the contributions of non-
negligible fluctuation. However, Shang and Salamon found, in
FeCl2 systems, the fact that the logarithmic correction mimics
a small fractional power law over a restricted range of data,
which makes it difficult to detect the logarithmic correction
unambiguously [55]. They also obtained effective tricritical
exponents that deviated from the mean-field theory prediction.
Therefore, the difference between these exponents and the
mean-field exponents comes from the logarithmic correction.
We have tabulated the tricritical exponents for MnBi4Te7 in
Table I, along with values for tricritical systems. In the future,
the contribution of massless Dirac fermions to the tricritical
exponent in the few layers of MnBi4Te7 should be investi-
gated, which potentially may lead to the discovery of new
classes of universality, such as chiral Ising or tricritical univer-
sality [29–31]. The properties of supersymmetry can emerge
at the quantum tricritical point of a topological phase [32–34].
However, there are Mn vacancies and extra Bi on the Mn site
in the as-grown MnBiTe family, which makes the Fermi level
EF of MnBi4Te7 below the Dirac point [13], but we can tune
its chemical potential by substituting the Sb element for Bi in
MnBi4Te7 [78].

IV. CONCLUSION

In summary, we have studied the tricritical phenomena of
intrinsic magnetic topological insulator MnBi4Te7. We found
that the magnetic phase diagram of MnBi4Te7 has a tricrit-
ical point as a layered metamagnet. Based on the tricritical
scaling theory, we obtain the effective tricritical exponents
βeff

2 ∼ 1.10 and δeff
2 ∼ 1.65, which are different from the

mean-field values and result from the logarithmic correction
| ln |t ||0.5. The scaling plots using these exponents show that
the tricritical hypothesis is correct for our sample MnBi4Te7.
Importantly, the topological metamagnet MnBi4Te7 provides
a suitable platform to further study tricriticality and topo-
logical transition due to the competitive interactions and the
nontrivial band structure.
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APPENDIX A: TRICRITICAL SCALING THEORY

A complete description of asymptotic tricriticality for a
metamagnet, developed by Riedel [39], and Griffiths [79],
requires consideration of the temperature, T , the uniform
magnetic field, H2 = H , and the staggered field, H1. The
phase diagram in the symmetry plane means H1 = 0. It is ap-
propriate to introduce suitable scaling fields, t = (T − Tt )/Tt ,
h2 = (H2 − H2t )/H2t + pt , and h1 = H1, where axis t is tan-
gent to the phase boundary at TCP with slope p as shown
in Fig. 10. The tricritical scaling hypothesis [80,81] can be

FIG. 10. Tricritical phase diagram of a metamagnet in the space
of temperature T , staggered magnetic field H1, and uniform magnetic
field H2. The tricritical point is (Tt , H2t ) [43].

formulated in terms of the scaling fields t and h2: asymptoti-
cally close to the tricritical point we can assume the singular
part of the Gibbs potential, Gsing(t, h1, h2),

Gsing(t, h1, h2) ≈ |t |2−αG(±)

(
h1

|t |φ1
,

h2

|t |φ2

)
, (A1)

where the thermal exponent α and the crossover exponent φ2

are associated specifically with the tricritical point, and the
superscript (±) represents the sign of t .

Leading behavior along the H2 axis in the plane of symme-
try is

Gsing(t, h1, h2) ≈ |h2|2−αtG(±)

(
h1

|h2|φ1t
,

t

|h2|φ2t

)
. (A2)

The scaling and analytic properties of the Gibbs potential are,
of course, inherited by its various derivatives which are the
physical observables.

Therefore, we can define the nonordering magnetization
(uniform magnetization) m2 = M and order magnetization
(staggered magnetization) m1,

m1(T, H1, H2) = −
(

∂G

∂H1

)
T,H2

, (A3a)

m2(T, H1, H2) = −
(

∂G

∂H2

)
T,H1

, (A3b)

and the scaling hypothesis implies that

m1(t, h1, h2) ≈ |t |β1M
(±)
1

(
h1

|t |φ1
,

h2

|t |φ2

)
, (A4a)

m2(t, h1, h2) ≈ |t |β2M
(±)
2

(
h1

|t |φ1
,

h2

|t |φ2

)
. (A4b)

The new tricritical exponent, βi, is given by

βi = 2 − α − φi, i = 1, 2. (A5)
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In a similar way, one can define the corresponding suscep-
tibilities by

χ1(t, H1, H2) =
(

∂m1

∂H1

)
t,H2

, (A6a)

χ2(t, H1, H2) =
(

∂m2

∂H2

)
t,H1

(A6b)

and we have

χ1(t, h1, h2) ≈ |t |−γ1X
(±)

1

(
h1

|t |φ1
,

h2

|t |φ2

)
, (A7a)

χ2(t, h1, h2) ≈ |t |−γ2X
(±)

2

(
h1

|t |φ1
,

h2

|t |φ2

)
, (A7b)

γi = −(2 − α − 2φi ), i = 1, 2, (A8)

where Mi and Xi are the new scaling functions. The behav-
ior of the moment m2 and the susceptibilities, χ2, along the
various paths approach the tricritical point in the space (t, h2).

We can also discuss the leading behavior along the H2 axis,
in which it might be convenient to use the scaling assumption
in the form (A2). One can rewrite those observables as

m1(t, h1, h2) ≈ |h2|β1tM
(±)
1t

(
h1

|h2|φ1t
,

t

|h2|φ2t

)
, (A9a)

m2(t, h1, h2) ≈ |h2|β2tM
(±)
2t

(
h1

|h2|φ1t
,

t

|h2|φ2t

)
(A9b)

and

χ1(t, h1, h2) ≈ |h2|−γ1tX
(±)

1t

(
h1

|h2|φ1t
,

t

|h2|φ2t

)
, (A10a)

χ2(t, h1, h2) ≈ |h2|−γ2tX
(±)

2t

(
h1

|h2|φ1t
,

t

|h2|φ2t

)
, (A10b)

where the corresponding tricritical exponents obey

β1t = 2 − αt − φ1t = β1/φ2 = 1/δ12, (A11a)

β2t = 1 − αt = β2/φ2 = 1/δ2 (A11b)

and

γ1t = −(2 − αt − 2φ1t ) = γ1/φ2, (A12a)

γ2t = αt = γ2/φ2. (A12b)

Based on the above relations one finds

m1(t, h1, h2) ∼ |h2|1/δ12 , (A13a)

m2(t, h1, h2) ∼ |h2|1/δ2 , (A13b)

where

1/δ12 = β1/φ2, (A14a)

1/δ2 = β2/φ2. (A14b)

The tricritical exponents satisfy the Fisher-Essam relation
[82,83] and the Widom relation [84]:

α + 2β2 + γ2 = 2, (A15)

γ2 = β2(δ2 − 1). (A16)

The exponents with subscript t are the tricritical exponents in
the notation of Griffiths [79] and they satisfy the relations as
the above set of exponents

αt + 2βit + γit = 2, i = 1, 2, (A17)

γit = βit (δi2 − 1), i = 1, 2, (A18)

where δ22 = δ2. The exponents can be subdivided into two
classes: (i) the exponents defined with subscript t by regard-
ing the tricritical point as a particular point on the line of
critical points, αt , βit , γit , and (ii) describing the tricritical
behavior in analogy with an “ordinary” critical point, α, βi, γi.
It is apparent from Fig. 10 that the set of exponents (ii)
describes the tricritical behavior along the path tangentially
to the phase boundary in the symmetry plane, whereas the set
of exponents (i) characterizes the singular behavior along a
path approaching the tricritical point at a finite angle with the
phase boundary. Both sets of exponents are related through the
crossover exponent φ2. The exponents discussed in this arti-
cle are predicted to have mean-field values, β2 = 1, γ2 = 1,
δ2 = 2.

The tricritical scaling hypothesis makes specific predic-
tions concerning the form of the nonordering magnetic
equation of state discussed in Eq. (A4). We begin by rewriting
the nonorder magnetic equation of state in the form

m2(t, h1, h2) ≈ |t |β2M
(±)
2

(
h1

|t |φ1
,

h2

|t |φ2

)

using the scaling parameters in favor of the tricritical expo-
nents φ2 = β2δ2, h1 = 0 and the above equation becomes

m2(t, h2)/|t |β2 ≈ M
(±)
2

(
h2

|t |β2δ2

)
. (A19)

Next we can define the variables

m ≡ |t |−β2 m2(t, h2), (A20a)

h ≡ |t |−β2δ2 h2(t, m2). (A20b)

Hence Eq. (A20) can be written in terms of the reduced
variables as

m = F±(h), (A21a)

h = f±(m), (A21b)

where the scaled function f±(m) is the inverse of the scaled
function F±(h). Equations (A20) and (A21) predict that
the plots m vs h should fall on a universal curve for the
tricritical data.
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For Fig. 8, one might expect F±(h) is in the form

m = F±(h) = a0 + a1h + a2h
2 + · · · , (A22)

In Fig. 9 the scaled magnetization is compared to the logarith-
mic correction factor | ln |t ||0.5 and it can be described by the
relation

m2(t, h2)/|t |β2 |ln |t ||0.5 ≈ M
(±)
2

(
h2

|t |φ2

)
. (A23)

It is quite common to define Eqs. (A20)–(A22) in the equiva-
lent form

m′ ≡ |t |−β2 m2(t, h2)|ln |t ||0.5, (A24a)

m′ = F ′
±(h′), (A24b)

h′ = f ′
±(m′), (A24c)

m′ = F±(h′) = a0 + a1h
′ + a2h

′2 + · · · . (A24d)
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