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Mutually coupled spin-Hall nano-oscillators (SHNO) can exhibit a binarized phase state, offering pathways to
realize Ising machines and efficient neuromorphic hardware. Conventionally, phase binarization is achieved in
coupled identical SHNOs via injecting an external microwave at twice the oscillator frequency in the presence
of a strong biasing magnetic field. However, this technology poses potential challenges of higher energy
consumption and complex circuit design. Moreover, differences in the individual characteristic frequencies of
SHNOs resulting from fabrication-induced mismatch in SHNO dimensions may hinder their mutual synchro-
nization. Addressing these challenges, we demonstrate purely dc current-driven mutual synchronization and
phase binarization of two nonidentical nanoconstriction SHNOs without biasing magnetic field and microwave
injection. We thoroughly investigate these phenomena and underlying mechanisms using micromagnetic sim-
ulation. We show how the localized fundamental mode of the spin wave emerging from the magnetization
auto-oscillation reinforces the mutual synchronization, while the second-harmonic spin wave induces the phase
binarization in the coupled SHNO pair. We further demonstrate the bias field free synchronized SHNO pair
efficiently performing a reservoir computing benchmark learning task: sin- and square-wave classification, with
100% accuracy, utilizing the current-tunable phase binarization phenomenon. Our results showcase promising
magnetization dynamics of coupled bias field free SHNOs for future computing applications.

DOI: 10.1103/PhysRevB.109.214425

I. INTRODUCTION

Reservoir computing [1,2] (RC) is a promising computing
paradigm that harnesses the nonlinear dynamics of complex
systems for efficient information processing. RC comprises
a time-dependent recurrent neural network known as the
“reservoir” and a time-invariant “readout” that connects the
reservoir to the output. Unlike traditional neural networks,
only the readout is trained in RC using linear regression
that significantly reduces the training cost [3]. On-chip RC
hardware can be designed by exploiting the rich nonlinear
dynamics of coupled nano-oscillators [4,5]. Parametrically
driven oscillator networks are already established to imple-
ment phase-logic operation via subharmonic injection-locking
(SHIL) method in Boolean computing [6–8]. In such os-
cillators, two possible phase states are observed (phase
binarization) which represent the binary “0” and “1” in phase
logic. This phase binarization can modulate the coupling
between the oscillators and enhance the nonlinearity in the
dynamic variables [9]. Therefore, phase-binarized coupled
nano-oscillators hold significant potential for RC hardware
implementation.

Recently, ferromagnet (FM)/heavy-metal bilayer-based
spin Hall nano-oscillators (SHNO) have emerged as one
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of the top-tier complementary metal-oxide semiconductor
compatible high-frequency nano-oscillators [10] for realiz-
ing RC hardware, owing to their inherent nonlinear mag-
netization dynamics [11–14], miniature footprint [14–16],
straightforward fabrication, and low-power operation [17].
Additionally, efficient control of magnetization dynamics
through bias-current, magnetic field, voltage-controlled mag-
netic anisotropy, and microwave injection locking makes them
suitable for neuromorphic hardware design [13,16,18–23].
Multiple nanoconstriction (NC) SHNOs can be mutually cou-
pled through propagating spin wave, exchange interaction,
and magnetodipolar interaction, eliminating the need for elec-
trical interconnects in SHNO arrays [24–28]. The current state
of the art demonstrates SHIL-induced phase binarization in
a two-dimensional NC SHNO array where the inter-SHNO
coupling is primarily mediated by magnetodipolar interac-
tion [29], paving a way towards realizing spin-Hall Ising
machine for efficiently solving computationally hard combi-
natorial optimization problems. Therefore, phase binarization
in mutually coupled SHNOs can be a promising way for
designing RC hardware as well. Nevertheless, practical imple-
mentation of this route poses major challenges. The reliance
on external biasing magnetic field for typical SHNO op-
eration and external microwave source for implementation
of SHIL lead to complexity in circuit design process, in-
creased circuit area, and higher energy consumption. Hence,
exploring phase binarization routes that exploit intrinsic
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FIG. 1. Schematic of the device geometry and auto-oscillation characteristics. (a) The NC pair geometry designed in COMSOL and the
spatial distribution of current density in the Pt layer. (b) FFT spectrum of the auto-oscillation obtained from the entire NC pair geometry for
Idc = 1.8 mA. (c) FFT spectra of the local auto-oscillation at individual NCs in the NC pair. (d) Current tunability of the first harmonic of
auto-oscillation in the NC pair. (e) Current tunability of the second harmonic of the auto-oscillation in the NC pair.

magnetization dynamics in coupled SHNOs systems with-
out external biasing magnetic field or microwave sources is
imperative.

Recent studies on bias field free single SHNO have
demonstrated nontrivial auto-oscillation properties including
in-plane to out-of-plane transition of auto-oscillation trajec-
tory [30–32], reduction of threshold current [33], and tunable
spiking behavior [31,34]. Investigating mutual synchroniza-
tion of bias field free NC SHNOs, therefore, can unveil
intriguing magnetization dynamics for realization of efficient
RC hardware. However, challenges arise due to fabrication-
induced mismatch in nanoconstriction widths causing a
difference in characteristic frequencies of individual SHNOs
in an NC array. This frequency mismatch is detrimental for
their mutual synchronization. This issue can be resolved by in-
troducing a gradient in the biasing magnetic field [26] which is
technically not allowed for bias field free SHNOs. Therefore,
exploring routes for mutual synchronization of bias field free
SHNOs with nonidentical NC widths is crucial for practical
applications.

In this paper we demonstrate purely dc current-driven
phase binarization in a mutually synchronized NC SHNO
pair without any biasing magnetic field, as well as external
microwave injection. The SHNO pair is designed by defining
two NCs with nonidentical widths, representing two different
SHNOs separated by a distance (d) as shown in Fig. 1(a). We
comprehensively investigate the mechanism of mutual syn-
chronization and dc current-driven phase binarization in bias
field free condition. More importantly, we demonstrate that
the phase-binarized bias field free SHNO pair can efficiently
perform an RC benchmark learning task: sin- and square-wave
classification.

In our previous work, we demonstrated that an in-plane
uniaxial anisotropy can induce bias field free auto-oscillation
of magnetization in a NiFe/Pt bilayer-based NC SHNO device
[33]. Such a magnetic anisotropy can be induced in NiFe by
implementing suitable growth schemes [35–38]. Hence, we
chose a similar NiFe/Pt bilayer-based NC pair as shown in
Fig. 1(a). We defined the in-plane uniaxial anisotropy in the
NiFe layer with the easy axis oriented at an angle φ measured
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from the x axis [Fig. 1(a)]. The uniaxial anisotropy gives rise
to the anisotropy field given as Hanis = 2Ku

Ms
(û · m)û, where Ku,

Ms, m, and û are the uniaxial anisotropy constant, saturation
magnetization of NiFe, reduced magnetization vector (m =
M/Ms), and the unit vector along the easy axis, respectively.
In the stable equilibrium, the orientation of magnetization is
determined by the cumulative effect of magnetic anisotropy,
magnetostatic field, and exchange interaction. As we pass a
charge current through the SHNO device, it induces a trans-
verse spin current via spin-Hall effect in Pt. The spin current
exerts spin-orbit torque (SOT) on the magnetization in NiFe
and destabilizes it from the stable equilibrium. The SOT may
enhance or oppose the intrinsic damping torque in the ferro-
magnet based on the mutual orientation of the magnetization
and the spin polarization (σ) of the injected spin current. In the
latter case, a large enough SOT can completely compensate
for the intrinsic damping torque and lead to the limit-cycle
auto-oscillation of magnetization about the effective internal
field (Heff ). In the absence of any biasing magnetic field, Heff

is given as

Heff = Hanis + Hdemag + Hexch + HOe, (1)

where Hdemag, Hexch, and HOe denote the magnetostatic field,
the exchange field, and the dc current-induced Oersted field,
respectively. The SOT-driven magnetization dynamics can be
quantitatively formulated in terms of the Landau-Lifshitz-
Gilbert (LLG) equation with additional SOT term as follows
[39,40]:

ṁ = −γ m × Heff + αm × ṁ + γ |Jc|h̄θSH

2etFMμ0Ms
m × (σ × m).

(2)

In Eq. (2), α denotes the intrinsic damping parameter,
and θSH is the spin-Hall angle of Pt, which is taken as 0.08
[19,24,25] in the present study. The quantities in the SOT
term, γ , h̄, e, μ0, σ, and tFM, represent the gyromagnetic ratio,
reduced Planck’s constant, electronic charge, permeability of
vacuum, spin-polarization direction, and thickness of the NiFe
layer, respectively. Notably, the fieldlike component of SOT
arising from the bulk of Pt and interfacial Rashba effect has
been found to be significantly smaller than the dampinglike
component of SOT in NiFe/Pt system [40,41]. Therefore, the
SOT-driven magnetization dynamics in such system is effi-
ciently modeled considering only the dampinglike component
of SOT. We have employed the micromagnetic modeling ap-
proach to numerically solve Eq. (2) (see the Appendix) and
obtained the oscillatory magnetization dynamics in bias field
free condition.

II. RESULTS

A. Device design and auto-oscillation properties

We consider an NC SHNO pair consisting of a 5-nm-thick
NiFe layer possessing uniaxial anisotropy, interfaced with a
5-nm-thick Pt layer [Fig. 1(a)]. The two NCs of widths 100 nm
(left NC) and 150 nm (right NC) are separated by a center-
to-center distance, d = 200 nm. From here on, we will refer
to this NC SHNO pair as “NC pair.” Figure 1(a) schemati-
cally represents the device structure of the NC pair and the
spatial distribution of current density (Jc) in the Pt layer

for 1 mA input current (Idc), as obtained from Multiphysics
simulation using COMSOL (see the Appendix). We explicitly
consider the dominant x component of Jc for computing the
current-induced spin-orbit torque as the y and z components
are an order of magnitude smaller than the x component (see
Supplemental Material [42], Fig. S1). Therefore, we defined
σ = −ŷ considering the orthogonality of Jc, σ, and the spin
current (Js) along −ẑ. As obvious from Fig. 1(a), Jc at the left
NC is higher as compared to the right NC. This essentially
leads to lower threshold current for auto-oscillation in the left
NC.

We numerically solved Eq. (2) using the GPU-accelerated
micromagnetic solver MUMAX3 [43] to obtain the SOT-driven
magnetization dynamics in the NC pair (see the Appendix for
details of micromagnetic simulation). We explicitly defined
Ku = 7.5 kJ/m3 to account for the uniaxial anisotropy [33].
This induces an anisotropy field of 25 mT. The solver com-
putes mx as a function of time (t) at each micromagnetic cell.
In the auto-oscillation state, the frequency of limit-cycle oscil-
lation has been extracted by performing fast Fourier transform
(FFT) of the spatial average of mx(t ) obtained from the entire
geometry. In experiments, the oscillation of mx(t ) gives rise
to oscillating anisotropic magnetoresistance (AMR), which is
coupled with Idc and subsequently converted into a longitudi-
nal microwave voltage across the SHNO. The my(t ) and mz(t )
are not associated with this AMR-based detection technique.
Therefore, we analyze the mx(t ) to find the auto-oscillation
characteristics.

A typical FFT spectrum corresponding to the limit-cycle
auto-oscillation for Idc = 1.8 mA is shown in Fig. 1(b). The
sharp peak at 3.3 GHz is accompanied by a weak second
harmonic of 6.6 GHz. We further obtained the local auto-
oscillation characteristics of individual NC SHNO within
the NC pair by averaging mx(t ) over 170 nm×170 nm area
around the center of each NC and applying FFT. Figure 1(c)
shows the frequency and phase extracted from the FFT of
the local magnetization auto-oscillation profile in individual
NCs. It is clear from Fig. 1(c) that both SHNOs in the NC
pair exhibit the same auto-oscillation frequency and phase
at 1.8 mA current, denoting mutual synchronization. There-
fore, the auto-oscillation frequency of individual NC SHNOs
[Fig. 1(c)] matches with the auto-oscillation frequency of the
entire NC pair [Fig. 1(b)]. We further observe the current
tunability of the auto-oscillation frequency and amplitude,
obtained from the entire NC pair for both first harmonic
[Fig. 1(d)] and second harmonic [Fig. 1(e)]. The redshift
behavior of the frequency as a function of Idc is consistent
with our previous study on bias field free single-NC SHNO
[33]. We notice from Figs. 1(d) and 1(e) that despite the dif-
ference in the NC widths, the NC pair exhibits auto-oscillation
synchronously for each Idc value at first harmonic as well as
second harmonic. This persistent mutual synchronization of
both NC SHNOs for more than 1.5 mA span of Idc is com-
parable with the state-of-the-art in-plane field-assisted SHNO
pair [25]. For both harmonics, the NC array exhibits redshift
in auto-oscillation with increase in FFT amplitude for Idc from
about 1.1 to 2.2 mA. A sudden nonlinear blueshift is observed
around 2.2 mA for both harmonics, which is explained later.
For Idc � 2.25 mA, both harmonics show the redshift again
with increasing Idc. However, while the FFT amplitude of
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FIG. 2. Mutual synchronization of NC SHNOs and phase binarization. (a) Comparison of the current tunability of auto-oscillation
frequency in the NC pair at mutually synchronized state, with the single NC SHNOs. The inset shows the current-density distribution at the
vicinity of the NCs in single-NC SHNO and NC pair. (b) Phase difference for the first harmonic between the two NC SHNOs in the NC pair as
a function of Idc. The phase binarization threshold current 2.2 mA has been denoted by the pair. (c) Temporal profile of the local magnetization
auto-oscillation in the individual NCs for input current of 1.5 mA (in-phase auto-oscillation) and 2.5 mA (out-of-phase auto-oscillation).

first harmonic decreases significantly in this Idc regime, the
amplitude of second harmonic continues to increase.

To gain a deeper insight into the mutual synchroniza-
tion phenomenon, we separately simulated and analyzed the
bias field free auto-oscillation in single-NC SHNOs with
100 nm and 150 nm constriction widths. Figure 2(a) shows
the comparison of the current tunability of characteristic
auto-oscillation frequency (the dominant first harmonic) for
100-nm single-NC SHNO (blue), 150-nm single-NC SHNO
(red), and the NC pair (green). We observe that for lower
value of Idc (<1.45 mA) the auto-oscillation in the NC pair
is purely driven by the auto-oscillation of 100-nm-wide NC
(left NC). Therefore, the auto-oscillation frequency of the NC
pair overlaps with the auto-oscillation frequency of 100-nm
single-NC SHNO. However, at Idc � 1.45 mA, the magne-
tization auto-oscillation takes place at the 150-nm-wide NC
(right NC) as well. At this point both SHNOs couple with each
other. Therefore, the auto-oscillation frequency of the NC pair
deviates from the characteristic auto-oscillation frequencies
of single-NC SHNOs. This coupling is identified as negative
coupling [9,44] as the auto-oscillation frequency in mutually
synchronized state is lower than the individual frequencies
of single-NC SHNOs. However, above 2.2 mA, the auto-
oscillation frequency at mutually synchronized state rapidly

shifts towards higher frequency, as compared to the charac-
teristic frequencies of single-NC SHNOs. This indicates a
positive coupling [44] between the SHNOs at higher current.

It should be noted that the frequency of auto-oscillation
in such anisotropy-assisted bias field free SHNO is primar-
ily determined by the anisotropy field Hanis = 2Ku

Ms
(û · m)û

as discussed in our previous report [33]. At higher input
current, stronger SOT leads to increase in the amplitude of
magnetization precession. Hence, m moves away from the
easy axis (along û), resulting in a reduction of Hanis,which
in turn reduces the auto-oscillation frequency. This explains
the redshift behavior of the auto-oscillation frequency in
such bias field free SHNOs. Therefore, the sudden blueshift
at Idc > 2.2 mA can be attributed to the reduction of
auto-oscillation amplitude, which is also evident from the
diminishing FFT amplitude in Fig. 1(d). This could be pos-
sible if there is a substantial phase difference between the
local magnetization auto-oscillation at the NCs. Despite the
high amplitudes of local magnetization auto-oscillation at
the NCs at higher Idc, this phase difference would lead to
a reduction of the resultant oscillation amplitude of m in
the NC pair. Hence, the NC pair exhibits a nonmonotonic
frequency variation as a function of Idc unlike the single NC
SHNOs.
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FIG. 3. Spatial profile of auto-oscillation amplitude and phase in the NC pair. The left colum shows a typical in-phase auto-oscillation
(Idc = 1.5 mA) and the right column shows a typical phase-binarized auto-oscillation state (Idc = 2.5 mA). The spatial profiles of auto-
oscillation amplitude have been shown for first harmonic in (a) and (b), and for second harmonic in (c) and (d). The spatial profiles of phase at
the first harmonic are shown in (e) and (f).

B. Phase binarization in mutually synchronized state

Now we proceed to investigate the behavior of the phase
difference (δ) for the first harmonic between the two SHNOs
in the NC pair at mutually synchronized state. Figure 2(b)
shows the behavior of δ as a function of Idc. We notice that
up to 2.2 mA, δ is quite small (within π /9 rad). That indicates
both the NC SHNOs exhibit (nearly) in-phase auto-oscillation
at this range of Idc. In contrast, for Idc � 2.25-mA current,
δ becomes significant (δ ∼ 8π/9 rad), indicating (nearly)
out-of-phase auto-oscillation in both NCs. Figure 2(c) shows
the local mx(t ) in both the NCs exhibiting in-phase auto-
oscillation at Idc = 1.5 mA and out-of-phase auto-oscillation
at Idc = 2.5 mA.

We observe that the NC pair exhibits two discrete auto-
oscillation states in terms of phase difference (δ) between the
local magnetization auto-oscillation at both NCs. In the out-
of-phase auto-oscillation state, the discretization of individual
phases of the two NCs to two distinctive phase states is known
as the “phase binarization” [29,45]. Of course, the phase bina-
rization observed in our NC pair is not exactly the ideal case,
i.e., δ = π . The reason will be explained later in this section.

However, the phase difference between the individual NCs is
large enough to classify the individual phases as binarized.
Typically, the phase binarization in coupled oscillator system
is realized through the SHIL method [45], where the oscilla-
tion frequency ( f ) of the system is “locked” by an external
periodic signal (referred to as the “locking signal” later on) of
frequency 2 f [29]. We emphasize that the phase binarization
in our NC pair has been achieved in the absence of any biasing
magnetic field and external locking signal; therefore, it is
purely driven by the input dc current.

To understand the underlying mechanism of phase bina-
rization in the NC pair, we first look at the spatial profile
of auto-oscillation amplitude. We look for the interaction
between spin-wave modes, particularly in the vicinity of the
constrictions. Figure 3 depicts these spatial profiles for an in-
phase (Idc = 1.5 mA) and a phase-binarized (Idc = 2.5 mA)
auto-oscillation states. In both cases, the first harmonics are
localized spin-wave edge modes [19]. These edge modes over-
lap between the NCs for Idc = 1.5 mA [Fig. 3(a)], reinforcing
the in-phase synchronization of the local auto-oscillations in
both NCs. On the other hand, the edge modes of the two
NCs are discrete in space for Idc = 2.5 mA [Fig. 3(b)] as
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FIG. 4. Auto-oscillation characteristics in NC pair with d = 800 nm. (a) Current tunability of auto-oscillation frequency obtained from the
entire NC pair geometry. (b) Variation of FFT amplitude as a function of Idc in the mutually synchronized state. (c) Phase difference between
the local auto-oscillation in the NCs. The phase binarization threshold current is denoted as 2.36 mA. (d), (e) Spatial profile of auto-oscillation
amplitude at first and second harmonic, respectively, in phase-binarized state. (f) Spatial profile of phase of first harmonic at the phase-binarized
state.

observed by the well-demarcated existence of nearly zero
FFT amplitude region in between the two NCs. Therefore,
in this case, the first harmonics (the dominant harmonics) of
the auto-oscillation in both NCs hardly drive each other for
in-phase synchronization. In contrast to the first harmonic,
the second harmonic is a propagating spin-wave mode that
creates the interference-like pattern in the spatial profile of
auto-oscillation amplitude as seen in Figs. 3(c) and 3(d) (see
Supplemental material [42], Fig. S2 as well). Hence, the phase
binarization in the first harmonic is possibly being mediated
by the second harmonic through SHIL mechanism, where one
NC serves as the source of the locking periodic signal for
the other NC. This is possible because of the characteristic
frequency matching of the individual single-NC SHNOs at
higher input current [see Fig. 2(a)].

We confirm the second-harmonic mediated phase binariza-
tion in our NC-pair SHNO by analyzing the magnetization
auto-oscillation obtained from a similar NC pair with d =
800 nm. Figure 4 summarizes these results. In Fig. 4(a) we

observe that the two NC SHNOs exhibit auto-oscillation at
their free-running frequencies at lower currents, unlike the
d = 200 nm NC pair. For Idc ∼ 2.1 mA onwards they mu-
tually synchronize as their characteristic frequencies match
in that range [see Figs. 4(a) and 1(a)]. The phase binariza-
tion [Fig. 4(c)] and its effect on auto-oscillation amplitude
[Fig. 4(b)] have been clearly observed in the synchronized
auto-oscillation state. Note that the out-of-phase state is quite
close to the ideal case of phase binarization i.e., δ ∼ π rad.
However, the other phase state corresponding to δ ∼ 2π/5 rad
is weakly binarized. The difficulty of in-phase synchronization
is due to the longer separation between the NCs resulting
in no overlapping of the localized edge modes as shown
in Fig. 4(d). In contrast to the localized first harmonic, the
second-harmonic spin-wave modes propagate from one NC to
the other, resulting in generation of an interference-like pat-
tern as shown in Fig. 4(e). Therefore, the propagating second
harmonic reinforces the out-of-phase auto-oscillation [see the
spatial phase map in Fig. 4(f)] through SHIL.
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FIG. 5. Towards sin- and square-wave classification with phase-binarized NC pair. The time evolution of mx in the NC SHNO pair
(d = 200 nm) is shown for sequential excitation. (a) The time evolution of mx (top subfigure) corresponding to the Idc sequence 1 mA →
2.3 mA → 1 m A (bottom subfigure). The auto-oscillation amplitude at 2.3 mA reduces at the steady state due to phase binarization. (b)
Time evolution of mx for a slightly different Idc sequence: 1.5 mA → 2.3 mA → 1.5 mA. Higher auto-oscillation amplitude at 2.3 mA at the
steady state denotes in-phase auto-oscillation. The bottom subfigures in both (a) and (b) show the spatially averaged Jc as function of time. (c)
Temporal profile of mx for Idc sequence defined by randomly arranged sin- and square waveforms.

We further note that the spin waves exhibit amplitude decay
as they propagate due to the damping present in the ferromag-
net. When the second-harmonic spin wave travels over 800 nm
distance between the NCs, it experiences relatively higher
decay in intensity as compared to the previous case of 200 nm
separation between the NCs. Consequently, for identical input
current, the SHIL-induced phase binarization takes place at
higher threshold current. As seen from Fig. 2(b) and Fig. 4(c),
the phase binarization threshold is 2.2 mA for d = 200 nm
NC array, and 2.36 mA for d = 800 nm NC array.

Last, we would like to mention that the SHIL-induced
phase binarization strongly depends on the power of the lock-
ing signal. SHIL-induced stable phase binarization in bias
field assisted SHNO array is achieved above a certain thresh-
old power of the locking signal. However, these SHNOs may
switch between in-phase and out-of-phase auto-oscillation
states below the threshold power of the locking microwave
[29]. In the present bias field free SHNO pair, the intensity of
the second harmonic is an order of magnitude smaller than
the 1st harmonic. This intensity can only be enhanced by
increasing the Idc. However, change in Idc leads to variation
in the spatial profile of the spin-wave modes in the vicinity
of the NCs (see Supplemental Material [42], Fig. S4), which

may or may not favor the out-of-phase auto-oscillation [46].
Therefore, the phase binarization in our bias field free NC
SHNO pair is current tunable, which is later utilized for im-
plementation of RC scheme.

C. Reservoir computing with phase-binarized SHNO pair

We now demonstrate how the phase binarization can be
utilized to perform efficient binary classification task using
the NC SHNO pair as a reservoir. The learning task we
choose is the classification of points that belong to randomly
sequenced sin and square waveforms with identical period and
amplitude. This is a standard RC benchmark task that requires
significant nonlinearity as well as short-term memory. No-
tably, the points belonging to the extrema of sin- and square
waves are completely identical; therefore, the classification of
these points is not trivial. One must remember the previous
points to classify the extrema points. It has been observed that
the phase binarization in the NC pair strongly depends on the
recent history of input current in a continuous sweep of Idc.
This has been demonstrated in Figs. 5(a) and 5(b). Here, we
observe the auto-oscillation in the full NC pair geometry at
2.3 mA input current pulse, which follows an input current of
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FIG. 6. Modified trilayer SHNO geometry for RC. (a) Schematic of the trilayer NC SHNO pair and the magnetization auto-oscillation
under the change in polarity of Idc. The yellow arrow in the trilayer NC SHNO pair geometry represents the easy axis that primarily decides
the orintation of Heff . (b), (c) Time evolution of mx under the modulated Idc representing the time-multiplexed inputs corresponding to the four
consecutive points in the positive half of sin- and square waves, respectively. The “base” represents the Idc values corresponding to the actual
input data points. The time-multiplexed, i.e., preprocessed, input for the RC is represented by the “modulated” Idc.

1 mA [Fig. 5(a)] and 1.5 mA [Fig. 5(b)] separately. We find
that in the first case, phase binarization is achieved at 2.3 mA
as expected, which results in the reduced auto-oscillation am-
plitude in steady state [Fig. 5(a)]. However, in stark contrast to
the first case, the phase binarization is not achieved at 2.3 mA
in the second case, which results in distinctively higher auto-
oscillation amplitude in steady state [Fig. 5(b)]. Therefore, the
phase binarization depends on the previous auto-oscillation
state. The stable in-phase auto-oscillation state is reinforced
by the spatial overlapping of the localized spin-wave edge
modes corresponding to the stronger first harmonic. There-
fore, it is difficult for the weaker second harmonic to induce
phase binarization through SHIL. Hence, if the initial state is
a steady in-phase auto-oscillation state, higher input current
is required for phase binarization as compared to the stable
initial state of m. We utilize this phenomenon as a short-term
memory feature where the auto-oscillation state associated
with the “present” input (Idc = 2.3 mA in Figs. 5(a) and 5(b)]
is dictated by the “recent past” input [Idc = 1 or 1.5 mA in
Figs. 5(a) and 5(b)]. We further notice that the initial auto-
oscillation state is restored once the input current is reduced
back to 1 mA [Fig. 5(a)] or 1.5 mA [Fig. 5(b)], indicating the
memory is not a long-term memory.

Now, we define a temporal sequence of randomly arranged
sin and square waveforms of equal amplitude and period. Each
waveform consists of eight points equally spaced in time. This
input-time series is encoded in the magnitude of Idc as shown

in Fig. 5(c). For every single point in the time series, the
associated Idc is kept fixed for 50 ns to record the steady-state
auto-oscillation profile. The time evolution of mx obtained
from a continuous simulation for the entire sequence of Idc

consisting of 104 input points (13 waveforms) is shown in
Fig. 5(c). We clearly observe the substantial difference in the
auto-oscillation profiles corresponding to the sin and square
waveforms. The phase binarization takes place only for points
belong to the square waveform, resulting in lower amplitude
of mx(t ). Therefore, the maxima points can be well classified
despite the degeneracy in their values. However, the points in
the lower half of the waveforms including the minima points
do not produce any auto-oscillation as the Idc is lower than
the threshold excitation current [ ∼ 1.1 mA for p = 200 nm
as seen from Fig. 1(d)]. Therefore, these points cannot be
classified using the present NC pair SHNO.

This issue could be resolved using the concept of a bipolar
SHNO [47]. We add two similar NiFe layers with uniaxial
anisotropy at both sides of the Pt layer [Fig. 6(a)]. In this
modified structure, the auto-oscillation can be induced in ei-
ther one of the NiFe layers by altering the polarity of Idc. As
shown in Fig. 6(a), the orientation of spin polarization and m
in the bottom NiFe layer is such that the SOT opposes the
damping torque. Hence, the bottom NiFe layer can exhibit
auto-oscillation. On the other hand, in the top NiFe layer,
the m and the spin-polarization direction are oriented such
a way that the SOT and the damping torque act parallel to
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FIG. 7. Performance of trilayer NC SHNO pair in sin- and square-wave classification task. (a) The input points belonging to randomly
sequenced sin- and square waveforms. First 80 points have been used for training the reservoir. The RC performance in the classification task
has been tested with the remaining 160 data points. The binary labels assigned to the input points are shown in dashed line. (b) Comparison
between the true classifier labels of the points and the prediction by the NC SHNO pair as a reservoir. The match between the true labels and
the predicted labels shows 100% classification accuracy.

each other. This leads to an enhancement of the effective
damping in the FM layer and eventually relaxation of m to
a stable equilibrium state. The scenario reverses for Idc > 0,
where only the top NiFe layer can exhibit auto-oscillation
of m. Therefore, the auto-oscillation can be obtained in
such a trilayer SHNO irrespective of the polarity of input
current.

We now reconstruct the Idc sequence in line with the main
time series such that the amplitudes of the sin and square
waves span symmetrically about Idc = 0. In addition, we
modulate the Idc values through a standard time-multiplexing
algorithm [48,49] (see Supplemental Material, note 5 for
details [42]). The time multiplexing enables us to simulate
multiple virtual neurons randomly connected to each other
from a single dynamic node, which is the trilayer NC SHNO
pair in our case. This essentially maps each point in the input
to a higher-dimensional space as per the requirement of the
reservoir in RC. Here, we simulate 20 virtual nodes (neurons).
Therefore, each input point can be represented by the com-
bined auto-oscillation state of all 20 nodes in the so-called
higher-dimensional space.

Figures 6(b) and 6(c) show the auto-oscillation profile for
the positive half cycles of sin- and square waveform, re-
spectively, each consisting of four points. In Fig. 6(b), the
constant “base” Idc value representing a single point belonging
to the sin waveform is shown in blue dashed-dotted line. The
corresponding “modulated” Idc values representing inputs for
the virtual nodes are shown in continuous red line. Note that
the oscillation amplitude fluctuates due to the modulation in
Idc values, showing the randomness in the system. Similar
auto-oscillation data obtained for the points in the positive
half of the square wave are shown in Fig. 6(c). We observe the
noticeable difference in the auto-oscillation amplitude for sin-
and square-wave points. The same auto-oscillation profiles
have been obtained for the negative half of the waveforms
due to auto-oscillation in the top NiFe layer. However, we still
need to achieve a finite and relatively higher auto-oscillation
amplitude for Idc = 0 mA, to classify the zero-value points in
the sin-wave category. This can be achieved by connecting an
oscillator of comparable frequency and amplitude preceded
by a NOT gate, in parallel to the NC pair (see Supplemental
Material [42], Fig. S6).
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Finally, to demonstrate the classification performance of
our NC pair SHNO as a reservoir, we define the time series
with 240 points (30 waveforms) as shown in Fig. 7(a). We use
the first 80 points for training and the remaining 160 points for
testing. We further define the binary target labels to the points:
“1” for the points in square wave and “0” for the points in sin
wave [the black dotted line in Fig. 7(a)]. Figure 7(b) shows the
efficient prediction of the target labels by the reservoir which
are 100% accurate with the true labels. The classification
task has been performed with different random sequences of
sin and square waves consisting of the same periodicity and
number of points. A few of the results have been shown in
the Supplemental Material [42], Fig. S7. Notably, in all these
cases 100% accurate classification have been achieved.

III. CONCLUSION

We have demonstrated purely dc current-tunable mutual
synchronization and phase binarization in an NC SHNO pair
in the absence of biasing magnetic field as well as external
microwave for injection locking. The coupling between the
two nonidentical SHNOs is mainly mediated by the magne-
todipolar interaction that leads to coherent synchronization of
the SHNOs (see Supplementary Material, note 8 [42]). How-
ever, the characteristic frequencies of the single-NC SHNOs
are tens of megahertz apart at lower input current. Therefore,
mutual synchronization of such nonidentical SHNOs is appar-
ently difficult to achieve at low current regime [ 1.5 mA �
Idc � 1.75 mA; see Fig. 2(a)]. Nevertheless, both the NC
SHNOs in our NC pair with d = 200 nm exhibit mutually
synchronized auto-oscillation state in this regime. This has
been possible through the modulation of the local anisotropy
field at the NCs by the overlapping of the localized spin-wave
edge modes corresponding to the first harmonic. We recall
that the local anisotropy field is directly determined by the in-
stantaneous orientation of magnetization. The magnetodipolar
coupling, as well as overlapping of the localized spin-wave
edge modes, regulates the orientation of instantaneous mag-
netization and reinforces coherent auto-oscillation. This, in
turn, modulates the local anisotropy field in such a way that
leads to similar instantaneous auto-oscillation frequencies in
both SHNOs in the NC pair. In contrast to d = 200 nm NC
pair, there is no overlapping in the spin-wave mode profile
of the first harmonic in d = 800 nm NC pair [Fig. 4(d)].
Therefore, in that case, both the NCs exhibit auto-oscillation
at their characteristic frequencies in unsynchronized state for
low input current [see Fig. 4(a)]. At higher values of input
current, similar characteristic frequencies of both NC SHNOs
lead to mutual synchronization for both d = 200 nm and d =
800 nm NC pairs [Figs. 1(d) and 4(a)]. In addition, we observe
the phase binarization phenomena at mutually synchronized
auto-oscillation state and its strong dependence on the recent
history of dynamic magnetization. These phenomena have
been utilized for performing an RC benchmark classification
task as demonstrated in this paper. It should be noted that
the RC scheme, demonstrated here, is not to contrast different
algorithm and propose a better alternative, but to highlight the
physical phenomena of dc current-driven phase binarization
in realizing a simple RC network.

While all the simulation results presented here are obtained
without considering any thermal effect to focus more on un-

derstanding the physical origin and impact of the observed
phenomena as well as to reduce simulation time, the effect
of finite temperature (T = 300 K) has been presented in the
Supplemental Material [42] (Fig. S9). Similar phenomena
of mutual synchronization and subsequent phase binariza-
tion have been observed for T = 300 K as well in the NC
SHNO pair. Hence, our results hold promises to pave the way
for overcoming challenges in synchronizing nonidentical bias
field free NC SHNOs and utilize them for designing efficient
RC hardware.

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.
The MUMAX3, PYTHON, and MATLAB codes used in this study
are available from the corresponding author upon reasonable
request [50].
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APPENDIX: DEVICE DESIGN AND MICROMAGNETIC
SIMULATION METHODOLOGY

1. Device design in COMSOL

The NC SHNO pair has been designed considering a
bilayer stack of 5-nm-thick NiFe layer interfaced with a 5-nm-
thick Pt layer. Both the round-edged NCs in the NC pair have
been defined with 50 nm radius of curvature and 22◦ opening
angle. The widths of the left and right NCs are defined, respec-
tively, as 100 and 150 nm [Fig. 1(a)]. The centers of both NCs
are collinear and equally apart from the longer sides of the
device. The geometry of this bilayer NC SHNO pair has been
designed in COMSOL MULTIPHYSICS software. In addition, the
spatial distribution of Jc in the Pt layer and the Oersted field
in the NiFe layer corresponding to 1 mA input current (Idc)
have been simulated in COMSOL considering the standard con-
ductivity values of 8.9 MS/m for Pt and 1.74 MS/m for NiFe.

2. Micromagnetic simulation

The micromagnetic simulations have been performed us-
ing the GPU-accelerated open-source software MUMAX3 [43]
that employs a finite-difference discretization of space. A
2048 nm×1024 nm×5 nm simulation area has been uniformly
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discretized into 1024×512×1 rectangular grid. The relevant
SHNO device geometry (NC pair or single-NC SHNOs) for
micromagnetic simulation was extracted from COMSOL as a
black and white image to define the NiFe region. MUMAX3
solves the LLG equation [Eq. (2)] in a ferromagnet. Therefore,
only the NiFe layers of the SHNO devices have been sim-
ulated explicitly considering the Slonczewski-like spin-orbit
torque term. The material parameters have been defined as
follows [19,33]: Ms = 600 kA/m; exchange stiffness constant
Aex = 10 pJ/m; intrinsic damping parameter α = 0.02; effec-
tive gyromagnetic ratio γ /2π = 29.53 GHz/T; and uniaxial
magnetic anisotropy constant Ku = 7.5 kJ/m3. To avoid the
staircase effect at the circular edges of the NCs, the “edges-
mooth” function of MUMAX3 has been used. Finally, absorb-
ing boundary condition [51] has been implemented to avoid
the spurious reflection of spin wave from the boundaries.

The SOT term has been implemented in MUMAX3 using
the built-in Slonczewski spin-transfer torque (STT) model
and disabling the Zhang-Li torque, following the approach
of Dvornik et al. [19]. The distribution of current density and
associated Oersted field are imported from the COMSOL simu-

lation and adjusted for each value of the dc current. The spin-
Hall angle of Pt has been defined as θSH = 0.08 [19,24,25]
and assigned to the variable “Pol” in the Slonczewski STT
model in MUMAX3. The spin-polarization direction (σ =
−ŷ) has been implemented by setting the “Fixedlayer =
vector (0, −1, 0)” command. In addition, the “epsilonprime”
variable in the Slonczewski STT model has been set to “0”
to neglect the fieldlike component of SOT in our simulation.
To simulate only SOT-driven magnetization dynamics, the
initial magnetization has been relaxed into the ground state.
Thereafter, a 5 ns initial delay has been introduced in the
SOT to simulate the transient dynamics of magnetization in
the absence of any SOT and Oersted field and finally relaxes
to a stable magnetization state. For each value of Idc, the
simulation has been carried out for 70 ns and the mx(t ) of the
last 30 ns (steady-state auto-oscillation) has been analyzed.
In case of T = 300 K, the simulation time has been fixed
to 140 ns for each Idc value, while the mx(t ) obtained from
last 40 ns has been analyzed. The postprocessing of the
data has been done using custom-built MATLAB and PYTHON

codes.
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