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Continuum of metastable helical states of monoaxial chiral magnets: Effect of boundary conditions
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In a recent publication, we showed that a monoaxial chiral magnet has a continuum of metastable helical
states differing by the helix wave number. This intriguing result was obtained for the case of an infinite magnet
(or a magnet with periodic boundary conditions). However, it has been pointed out that in a real magnet only
one of these states is compatible with the boundary conditions, because the helix wave number is determined by
the surface chiral twist. Thus, only one of the continuum of states is physically realizable. This is true for the
case of a chiral magnet in contact with a nonmagnetic medium (vacuum or air, for instance), but the boundary
conditions can be altered by setting the chiral magnet in contact with another magnetic medium, which may
be able to absorb the surface chiral twist. We show here that this is indeed the case by studying a composite
magnet system, which consists of one monoaxial chiral magnet of rectangular parallelepiped shape which has
two similar slabs of a uniaxial ferromagnet attached to each of the faces that are perpendicular to the chiral axis.
We show that, in the case of zero applied field, this composite system has a number of metastable helical states
that are proportional to the length L0 of the chiral magnet along the chiral axis, and that the results of our previous
publication are recovered in the limit L0 → ∞.

DOI: 10.1103/PhysRevB.109.214424

I. INTRODUCTION

Chiral magnets, characterized by the presence of a sizable
Dzyaloshinskii Moriya interaction (DMI), are being exten-
sively studied since they host noncollinear magnetic states,
which appear as metastable or equilibrium states at low tem-
perature. In addition to their intrinsic theoretical interest, these
magnetic textures have important potential applications in
spintronics and magnonics [1–4]. Examples of these non-
collinear magnetic textures are the skyrmions of cubic chiral
magnets [5,6], the one-dimensional chiral solitons of monoax-
ial chiral magnets [7,8], and the helical or conical states that
appear in both types of chiral magnets [8,9].

Cubic chiral magnets have been studied in much more
detail than monoaxial chiral magnets, the object of the present
work, but nevertheless the main features of the equilibrium
properties of the latter are rather well understood. In monoax-
ial chiral magnets, the DMI acts only along one specific
direction, which coincides with one crystallographic axis. We
call this direction the chiral axis. To set this work in its
context, let us summarize briefly the equilibrium properties
of monoaxial chiral magnets. At low temperature and zero
applied field, the equilibrium state is a helical structure whose
wave number is determined by the competition between the
Heisenberg exchange interaction and the DMI. When an ex-
ternal field is applied, the helical structure becomes a conical

structure if the field is parallel to the chiral axis, a chiral
soliton lattice if the field is perpendicular to the chiral axis,
or a magnetic structure that interpolates between these two
limiting cases if the field is neither perpendicular nor par-
allel to the chiral axis [10–21]. If the applied field strength
is high enough, the equilibrium state is a forced ferromag-
netic state, which can host metastable isolated solitons [22].
The archetypical monoaxial helimagnet is CrNb3S6 [23,24],
but there are many others, such as CrTa3S6, MnNb3S6,
CuB2O4, CuCsCl3, Yb(Ni1−xCux )3Al9, or Ba2CuGe2O7

[25–31].
Although in recent years the magnetic states that have

received more attention and caused more excitement have
been the topologically nontrivial skyrmions, recently there has
been a revival of interest in helical/conical states, since the
conical phases occupy a larger fraction of the phase diagram
and thus are created more easily. In cubic chiral magnets,
the equilibrium helical states are degenerated since the helix
wave vector can point in different equivalent crystallographic
directions selected by the cubic anisotropy. It has been shown
that the wave-vector direction can be controlled by electric
means, and thus helical states with different wave vectors
can be used to store and manipulate information [32]. The
direction of the helix wave vector can also be changed by
means of thermal currents [33]. Therefore, the orientation of
helical stripes may serve as a building block for devices for
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classical or unconventional computing, in what would be a
new technology that can be named helitronics [34].

In monoaxial chiral magnets, the degeneracy of the helical
state is absent since the helix wave vector points along the
chiral axis in the direction determined by the DMI. However,
it was shown that in monoaxial chiral magnets there is a con-
tinuum of metastable helical states differing by the helix wave
number [35,36] (metastable helical states of this kind exist
also in cubic chiral magnets [37]). In Ref. [35] we showed
that it is possible to switch between these helical states, which
were called p states, by applying magnetic fields and electric
currents along the chiral axis. Therefore, these p states could
serve as building blocks for computing devices.

The existence of this continuum of metastable states, dif-
fering from the equilibrium helical state only by the wave
number, is an intriguing question. Theses states were obtained
by solving the magnetic equilibrium equations for an infinite
magnet, ignoring thus the boundary conditions. However, it
has been pointed out that in a real magnet the surface chiral
twist required by the boundary conditions in the presence of
DMI actually selects the equilibrium helical state, which is the
only p state that satisfies the boundary conditions [38]. This
is true for a chiral magnet that is surrounded by a nonmag-
netic medium (air or vacuum, for instance). But if the chiral
magnet is in contact with another magnet with appropriate
characteristics, the surface chiral twist can be absorbed by the
surrounding magnet, and the continuum of metastable p states
may be present.

The purpose of this work is to show that the multiplicity of
helical states is present also in a real chiral magnet, developing
the ideas put froward at the end of the previous paragraph.
In addition to an intrinsic theoretical interest, the presence of
many metastable helical states is interesting from the point
of view of applications because, as explained in Ref. [35],
they could be used in spintronics as, for instance, elementary
carriers of information. For simplicity, we restrict the analysis
to the case of zero applied field and zero current, because in
this case the theoretical problem can be solved exactly.

The paper is organized as follows. In Sec. II we analyze
carefully the conditions that the magnetization has to satisfy
at the interface that separates two different media; in Sec. III
we describe a system that hosts a continuum of p states, which
consists of a monoaxial chiral magnet of rectangular shape,
with the two faces perpendicular to the chiral axis adhered to
two similar slabs of a uniaxial ferromagnet; Sec. IV is devoted
to the determination of the helical states of this system, and
in Sec. V the stability of these states is analyzed. Finally, in
Sec. VII we summarize the conclusions.

II. CONDITIONS AT THE INTERFACE
BETWEEN THE TWO MEDIA

The magnetization of a composite magnetic system formed
by several magnetic media set in contact is not a smooth
function in general, but it is generically discontinuous at
the interfaces, due to the discontinuity of the saturation
magnetization. However, the mathematical structure of the
Landau-Lifshitz-Gilbert (LLG) equation set constraints on the
nature of the singularity of the magnetization. It turns out that
the vector field that describes the direction of magnetization

has to be continuous at the interface, although its derivative
along the normal vector of the interface may be discontinuous.

The conditions that the magnetization has to satisfy at an
interface were obtained in Ref. [39] (see also Ref. [40]) by
studying the variational problem from which the LLG equa-
tion is derived. In this section, we analyze these conditions
directly from the LLG equation, rather than from the varia-
tional approach.

To set the notation, let the unit vectors x̂ = x̂1, ŷ = x̂2,
and ẑ = x̂3 form a set of Cartesian coordinate axes, and let
x = x1, y = x2, and z = x3 be the corresponding coordinates.
For notational convenience, to analyze the conditions on the
magnetization at the interface between two different media,
it is convenient to work with a system that is slightly more
general than that studied in this work (Sec. III). Thus, in this
section we consider an inhomogeneous magnet in which the
magnetization direction is described by the unit vector field n̂
and whose energy density is given by

W =
3∑

i=1

(A∂in̂ · ∂in̂ − Din̂ · (x̂i × ∂in̂)) + W0(n̂), (1)

where A and Di are the intensities of the ferromagnetic and
DMI exchange interactions, respectively. If D1 = D2 = D3,
we have a chiral cubic magnet, and if D1 = D2 = 0 and D3 �=
0, we have a monoaxial chiral magnet with the chiral axis
along ẑ. The term W0 contains all the terms that do not depend
on the derivatives of n̂. For instance, the single-ion anisotropy
energies, the energy associated with the applied field, and the
magnetostatic interaction are included in W0.

Our goal is to study the conditions that the magnetization
has to fulfill at the sharp interface between two different
media, where the interaction intensities A and Di, and the
other parameters of the system, such us the saturation mag-
netization, are discontinuous. For the mathematical analysis,
however, it is convenient to work with parameters that are
smooth functions of the position, which vary rapidly (but
smoothly) at the interface between different magnets. This
smoothness allows us to apply safely the standard rules of
calculus (integration by parts). We obtain the case of sharp
interfaces as a limit, making the parameters dependent on one
additional regularizing parameter, δ, in such a way that they
are smooth for δ > 0 and become discontinuous at some given
surface (the interface) in the limit δ → 0.

The effective field, obtained from the functional derivative
of the energy with respect to n̂, can be written as �Beff = �B(d )

eff +
�B(0)

eff , where �B(0)
eff does not depend on the derivatives of n̂ and

�B(d )
eff = 1

Ms

∑
i

(∂i(2A∂in̂) − Dix̂i × ∂in̂ − x̂i × ∂i(Din̂)). (2)

In the above equation, Ms is the saturation magnetization,
which is a smooth function of the position that may become
discontinuous at the interface for δ → 0.

In the limit of a sharp interface (δ → 0), the magnetization
may become a nonsmooth function that, nevertheless, has to
fulfill some conditions that are derived from the structure of
the LLG equation, which has the form

∂t n̂ = γ �Beff × n̂ + αn̂ × ∂t n̂, (3)
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FIG. 1. A small cylindric pillbox enclosing a surface element of
the interface, with the axis oriented along the normal of the surface
element, ŝ.

where γ > 0 is the absolute value of the electron gyromag-
netic ratio, and α is the Gilbert damping parameter. Using
the product rule for derivatives, the term �B(d )

eff × n̂ can be
written as

�B(d )
eff × n̂ = 1

Ms

∑
i

[∂i((2A∂in̂ − Dix̂i × n̂) × n̂)

+ Di((x̂i × n̂) × ∂in̂ − (x̂i × ∂in̂) × n̂)]. (4)

To find the conditions at the interface, we consider a small
cylindric pillbox that encloses a surface element of the inter-
face, and whose axis is oriented along the normal vector of
the surface element, ŝ, as in Fig. 1. The pillbox occupies the
volume �p and is bounded by the surface ∂�p. We multiply
both sides of the LLG equation by Ms and integrate over
�p. Using the divergence theorem for the first term of the
right-hand side of Eq. (4), we get∫

�p

Ms∂t n̂ d3r = γ

∫
∂�p

dσ
∑

i

σi(2A∂in̂ − Dix̂i × n̂) × n̂

+
∫

�p

γ

[ ∑
i

Di((x̂i × n̂) × ∂in̂

− (x̂i × ∂in̂) × n̂)

]
d3r

+
∫

�p

Ms
[
γ �B(0)

eff × n̂ + αn̂ × ∂t n̂
]
d3r, (5)

where σ̂ is the normal vector of ∂�p. Now, we take the limit of
a sharp interface, δ → 0, making the following assumptions:
(i) n̂ remains continuous at all points, including the interface;
(ii) the derivatives ∂in̂, ∂t n̂ remain bounded, although ∂in̂ may
be discontinuous at the interface. Next, we take the limit in
which the pillbox thickness tends to zero. In this limit, the
volume integrals and the surface integral over the curved face
of the pillbox vanish, and thus Eq. (5) requires that

�C = 2A(ŝ · ∇)n̂ − (D̃ŝ) × n̂ (6)

be continuous at the interface. Here D̃ is the diagonal 3 × 3
matrix with D1, D2, and D3 in the diagonal. Continuity, obvi-
ously, means that

lim
t→0+

�C(�x − t ŝ) = lim
t→0+

�C(�x + t ŝ) (7)

for any �x at the interface. A consequence of this fact is that if
A or D are discontinuous at the interface, then the derivative

of n̂ along the surface normal has to be discontinuous at the
interface.

For a cubic chiral magnet, D1 = D2 = D3 = D, and then

�C = 2A(ŝ · ∇)n̂ − Dŝ × n̂, (8)

while for a monoaxial chiral magnet with the chiral axis along
ẑ we have D1 = D2 = 0, D3 = D, and then

�C = 2A(ŝ · ∇)n̂ − D(ẑ · ŝ)ẑ × n̂. (9)

If the magnet is in contact with a nonmagnetic medium
(vacuum or air, for instance), then �C has to vanish at the
boundary, because it vanishes in the nonmagnetic medium,
since there A and D vanish. This is the boundary condition
that originates the well-known surface chiral twists.

On the other hand, if a magnet (chiral or not) is in contact
with a very hard magnet, the expression (7) has to be equated
to Ah(ŝ · ∇)n̂, which corresponds to the hard magnet side. If
the stiffness constant of the hard magnet, Ah, is very large,
then (ŝ · ∇)n̂ has to be proportionally small on the hard mag-
net side, and it vanishes in the limit Ah → ∞. In this limit,
n̂ has the direction of the equilibrium magnetization of the
hard magnet, and Eq. (7) is continuous because on the hard
magnet part Ah(ŝ · ∇)n̂ can take any value. We obtain in this
way Dirichlet boundary conditions.

As a word of caution, let us notice that the discussion
on conditions at interfaces presented here, including bound-
ary conditions, ignores the possible existence of surface
anisotropies, in which case the condition at the interface
would be

lim
t→0+

( �C(�x + t ŝ) − �C(�x − t ŝ)) = �S, (10)

where �S is the contribution of the surface anisotropy to the
volume integrals of (5), which does not vanish in the limit of
a sharp interface (δ → 0) and an infinitely thin pillbox, in this
order. Hence, �C could be discontinuous at the interface.

Finally, it is worthwhile to stress that at a sharp interface
that separates two magnetic media, the saturation magnetiza-
tion becomes discontinuous, which induces a surface density
of magnetic charge at each point �x of the surface, given by

lim
t→0+

(Ms(�x − t ŝ) − Ms(�x + t ŝ))ŝ · n̂. (11)

This surface magnetic charge contributes to the magnetostatic
field of the two media, but does not affect the interface condi-
tions given by (7) or (10) [39].

III. A COMPOSITE MAGNETIC SYSTEM

In this work, we consider a magnetic system of rectangular
parallelepiped shape that occupies a region of size 2L along
the ẑ direction, so that −L � z � L (the convention for the
coordinate system is described at the beginning of Sec. II).
The dimensions of the system in the directions x̂ and ŷ are
very large and thus are considered infinite. The system is
inhomogeneous along the ẑ direction and consists of three
homogeneous parts: one monoaxial chiral magnet occupies a
central region of size 2L0, that is, the region −L0 � z � L0;
the peripheral regions, −L � z < −L0 and L0 < z � L, are
occupied by two similar uniaxial ferromagnets, as in Fig. 2.
The materials are oriented so that the chiral axis of the

214424-3



LALIENA, OSORIO, BUSTINGORRY, AND CAMPO PHYSICAL REVIEW B 109, 214424 (2024)

FIG. 2. Composite magnet. The cyan region is occupied by a
monoaxial chiral magnet, and the gray regions by two similar slabs
of a uniaxial ferromagnet. The chiral axis is oriented along the ẑ
direction.

monoaxial chiral magnet is aligned with the ẑ axis, and the
easy axis of each ferromagnet is aligned with the x̂ axis. The
direction of the magnetization is given by the unit vector field
n̂.

It is convenient to introduce the characteristic functions
χc(z) and χu(z), defined by χc(z) = 1 if |z| � L0 and χc(z) =
0 otherwise, and by χu(z) = 1 if L0 < |z| � L and χu(z) = 0
otherwise. The energy of the system is given by

E =
∫

d3r (χcWc + χuWu), (12)

where Wc and Wu are the energy densities of the monoaxial
chiral magnet and of the uniaxial ferromagnet, respectively,
and they have the form

Wc = A
∑

i

∂in̂ · ∂in̂ − Dẑ · (n̂ × ∂zn̂) − Kc(ẑ · n̂)2, (13)

Wu = ρA
∑

i

∂in̂ · ∂in̂ − Ku(x̂ · n̂)2. (14)

In the above expressions, A is the stiffness constant of the
chiral magnet, and the dimensionless parameter ρ is the ratio
between the stiffness constants of the ferromagnet and the
chiral magnet. The chiral magnet has a uniaxial anisotropy,
which is of easy-plane type, whose axis coincides with the
chiral axis ẑ, and whose energy per unit volume is given by the
anisotropy constant Kc < 0. The ferromagnet has its easy axis
along x̂ and its anisotropy constant is Ku > 0. Finally, D sets
the strength of the DMI interaction in the chiral magnet. We
ignore the magnetostatic energy since it can be included in the
anisotropies for the one-dimensional modulations considered
in this work [41]. Notice also that we consider only the case
of zero applied field.

The effective field is given by �Beff = −(1/Ms)δE/δn̂,
where the saturation magnetization Ms is a function of z
given by Ms(z) = Mcχc(z) + Muχu(z), and Mc and Mu are the
saturation magnetizations of the chiral magnet and the ferro-
magnet, respectively. If n̂ satisfies the conditions discussed in
Sec. II, that is, continuity of n̂ and �C, integration by parts can
be applied to obtain the functional derivative in the standard

way, and we obtain �Beff = (2A/Ms)�beff , where

�beff = a∇2
T n̂ + ∂z(a∂zn̂ − q0χcẑ × n̂) − q0χcẑ × ∂zn̂

+ q2
0κχc(ẑ · n̂)ẑ + ρq2

uχu(x̂ · n̂)x̂. (15)

In the above expression, we introduced ∇2
T = ∂2

x + ∂2
y ,

q2
0 = D

2A
, κ = AKc

D2
, q2

u = Ku

ρA
, (16)

and the function a(z) = χc(z) + ρχu(z).
At the interfaces z = ±L0, both n̂ and �C, given by (9) with

ŝ = ẑ, have to be continuous. The condition of continuity of �C
at z = L0 can be cast to the form

lim
z→L−

0

(∂zn̂ − q0ẑ × n̂) = lim
z→L+

0

ρ ∂zn̂. (17)

An analogous condition holds for z = −L0. We call these
conditions at z = ±L0 the matching conditions.

Finally, the ferromagnetic slabs are in contact at ±L with a
nonmagnetic medium, which means that expression (7), with
ŝ = ẑ and D̃ = 0, has to vanish at the boundaries z = ±L. This
provides the Neumann boundary conditions

∂zn̂(−L) = ∂zn̂(L) = 0. (18)

IV. HELICAL STATES

Since we seek static magnetic states with modulations only
along the ẑ direction, the effective field can be written as

�beff =
{

n̂′′ − 2q0ẑ × n̂′ + q2
0κ (ẑ · n̂)ẑ, |z| < L0,

ρ(n̂′′ + q2
u(x̂ · n̂)x̂), L0 < |z| < L,

(19)

where the prime means derivative with respect to z.
The equation for the static states is �beff × n̂ = 0. Equa-

tion (19) implies that we have to solve one differential
equation for |z| < L0 and another one for L0 < |z| < L,
and to impose the matching condition (17) at z = L0 and
the analogous condition for z = −L0, and the boundary
conditions (18).

The static equations admit solutions in which the magne-
tization lies on the easy plane of the chiral magnet, and thus
can be written as

n̂ = cos ϕ x̂ + sin ϕ ŷ, (20)

where the function ϕ(z) is a solution of

ϕ′′ = 0, |z| < L0, (21)

ϕ′′ − q2
u sin ϕ cos ϕ = 0, L0 < |z| < L, (22)

which satisfies the boundary conditions and the matching
conditions. We prove in the next subsections that there exist
a large number of such solutions.

The idea is as follows. The general solution of (21) is
ϕ(z) = C + pq0z, where C and p are arbitrary constants, while
Eq. (22) is the well-known double sine-Gordon equation,
which also has a known two-parameter family of solutions.
This allows us to construct exact solutions for the whole
system, which satisfy the differential Eqs. (21) and (22), the
boundary conditions, and the matching conditions.
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Let ϕsg(z, A, B) be the two-parameter family of solutions of
Eq. (22), where A and B are the parameters (see Appendix A).
We build a solution of the whole system as

ϕ(z) =

⎧⎪⎨
⎪⎩

ϕsg(z, A1, B1), −L < z < −L0,

C + pq0z, −L0 < z < L0,

ϕsg(z, A2, B2), Lo < z < L.

(23)

We have to impose the boundary and the matching conditions,
which are six conditions. Since we have six free parameters—
A1, B1, A2, B2, C, and p—we should expect generically that
the value of p will be fixed by these conditions. However,
as we show in the remainder of this section, the fact that the
magnetic state is of a helical nature within the chiral magnet
implies that the matching conditions have an oscillatory char-
acter and there are many solutions for p, its number growing
linearly with the size of the chiral magnet, L0.

A. Explicit form of the solution

Specifically, we propose a symmetric solution that has a
helical nature within the chiral magnet, given by

ϕ(z) =

⎧⎪⎨
⎪⎩

−σp ϕ0(−z), −L < z < −L0,

pq0z, −L0 < z < L0,

σp ϕ0(z), Lo < z < L,

(24)

where the parameter p, which is the helix wave number in
units of q0, is to be determined. In Eq. (24) we introduce σp =
1 if p � 1 and σp = −1 if p < 1. As will become clear in
the following, σp is needed to satisfy the matching conditions
(17). The function ϕ0(z) is the solution of Eq. (22) with −π <

ϕ0 < 0 and

ϕ0(z0) = −π

2
, ϕ′

0(L) = 0, ϕ′
0(z) > 0, (25)

where z0 < L is a point to be determined by imposing the
matching conditions. The explicit form of ϕ0 is obtained in
Appendix A, and is given by

ϕ0(z) = − arccos(η sn(qu(z − z0), η)), (26)

where sn(x, η) is the Jacobi elliptic function, with ellipticity
modulus η, and z0 < L is chosen such that ϕ0(z0) = −π/2. If
L − L0 is large, we may visualize ϕ0 as a domain wall cen-
tered at z0, which connects two domains with magnetization
pointing along ±x̂ for z → ±∞.

Equation (26) is complemented with

K (η) = qu(L − z0), (27)

where K (η) is the complete elliptic integral of the first
kind. The above equation, which determines the parameter
η, ensures that the boundary condition ϕ′(L) = 0 is satisfied
(see Appendix A). Taking into account that sn(K (η), η) = 1,
Eq. (26) gives η = cos ϕ0(L).

Summarizing, the magnetic state given by (24) consists of
a helical state of wave number pq0 within the chiral magnet
connected at z = L0 to a section of a domain wall hosted by
the ferromagnet in the z > L0 region. The wall center, z0, is a
free parameter tuned to enforce the matching conditions. The
helical state is also connected to a section of another domain-
wall section hosted by the ferromagnet in the z < −L0 region.

This latter domain wall is obtained from the former domain
wall by a symmetry. The domain-wall center, z0, need not be
at a physical point inside the ferromagnetic slab, but can lie in
the region z < L0. Actually, this view of the magnetic states
in the ferromagnetic slabs as sections of domain walls holds
only if the slabs are thick enough. However, we find it useful
to think of these magnetic states as domain walls.

B. Matching conditions

The matching conditions select the possible values of p.
The continuity of n̂(z) is guaranteed if and only if

cos ϕ0(L0) = cos(pq0L0), (28)

σp sin ϕ0(L0) = sin(pq0L0), (29)

that is,

σpϕ0(L0) = (pq0L0) mod 2π. (30)

The matching condition (17) reduces to

ρσpϕ
′
0(L0) = (p − 1)q0, (31)

which, taking into account the form of ϕ′
0 (Appendix A), the

definition of σp, and Eq. (28), can be cast to the form

|p − 1| = ρqu

q0

√
η2 − cos2(pq0L0). (32)

By symmetry, the matching condition at z = −L0 is also sat-
isfied if Eq. (32) holds.

Equations (27), (30), and (32) determine completely the
magnetic states of the form (24). They constitute a system
of three equations with three unknowns: η, z0, and p. Since
0 � η < 1, the right-hand side of (32) is bounded by ρqu/q0,
which implies the following bounds for p:

1 − ρqu

q0
� p � 1 + ρqu

q0
. (33)

C. The number of p states

We show here that Eqs. (27), (30), and (32), which deter-
mine the p states, have many solutions with different values of
p, and that the number of solutions increases proportionally
to the size of the chiral magnet, L0. We provide below an
argument that shows that this statement is true if L0 and
L − L0 are large. The numerical solution of the system of
equations indicates that it is also true if L − L0 is not large.
Therefore, we conclude that there are many states of the form
(24) differing by the wave number pq0 of the helical part (the
magnetization of the ferromagnetic slabs is also different for
different values of p, of course). The values of p for these
states become dense in a certain interval pmin < p < pmax in
the limit L0 → ∞ (but L − L0 may remain finite).

Let us argue in the large L − L0 limit, in which the analysis
is considerably simplified. To work in this limit, it is con-
venient to substitute the ellipticity modulus η by the nome,
defined by q = exp ( − πK/K̄ ), where [42]

K = K (η), K̄ = K (
√

1 − η2). (34)

Hence, from now on we consider that η is a function of q,
given by inverting the equation that defines the nome. Notice
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that Eq. (27) means that the nome is exponentially small, q ∼
exp ( − 2qu(L − L0)), for large L − L0. Using the properties
of the complete elliptic integral K [43], we see that η = 1 +
O(q) and then Eq. (32) has the form

p − 1 = −ρqu

q0
sin(pq0L0) + O(qb), (35)

where b = 1/2 if sin(pq0L0) = 0 and b = 1 otherwise.
Also, using sn(x, η) = tanh x + O(q), we obtain that for
large L − L0

ϕ0(z) = −2 atan e−qu (z−z0 ) + O(q). (36)

Thus, as we said before, ϕ0 has the form of a conventional do-
main wall centered at z0, with some correction exponentially
small with L.

Finally, combining Eqs. (36) and (30), we get

tanh(qu(L0 − z0)) = cos(pq0L0) + O(q). (37)

This gives an explicit solution for z0 if we neglect the O(q)
term.

It is clear that Eq. (35) has many solutions if we neglect
the O(q) term, and it is also clear that this term, exponentially
small with L − L0, cannot change this behavior. Moreover, it
is also clear that the number of solutions increases propor-
tionally to q0L0, and thus the values of p that solve Eq. (35),
or Eq. (32), become dense in the interval (33) in the limit
L0 → ∞. Thus, there is a continuum of helical states in the
limit q0L0 → ∞, as claimed in Ref. [35]. Figure 3 illustrates
these statements.

D. Energy of the p states

The energy density (total energy divided by 2L) can be
readily computed and has the form

e(p) = Aq2
0

L0

L
(ec(p) + eu(p)), (38)

where ec(p) = (p − 1)2 − 1 is the energy density of the he-
lical state within the chiral magnet, which is independent of
its size L0, and eu(p) is the contribution of the ferromagnetic
slabs, which has the form

eu(p) = ρη2

q0L0

qu

q0

∫ K

K−xL

(1 − 2 sn2(x, η))dx, (39)

where xL = qu(L − L0) is the width of the slabs in units of
1/qu. If the slab width is kept constant, eu(p) vanishes in the
large q0L0 limit, and the energy density of the p states attains
the energy density of the chiral magnet part, e(p) → ec(p).

The behavior of the energy of the p states as q0L0 increases
is interesting and will be analyzed, in some examples, in
Sec. VI. For large q0L0 the energy density has its minimum
at p = 1, and thus all the p states with p �= 1 are at most
metastable. It remains to see which, if any, of the p states are
actually metastable. This problem is addressed in Sec. V.

FIG. 3. Graphical illustration of the solutions of Eq. (35). The
straight red line is the left-hand side of the equation, and the oscilla-
tory violet line is the right-hand side. The upper panel corresponds to
q0L0 = 10 and the lower panel to q0L0 = 40. In both cases, ρqu/q0 =
3. The vertical dashed lines signal the bounds (33).

E. A classification of the p states

Before closing this section, we notice an interesting fact
about the solutions of Eq. (32). The derivative with respect to
p of the right-hand side of Eq. (32) is

−ρquL0
sin(pq0L0) cos(pq0L0)√

η2 − cos2(pq0L0)
. (40)

Since the sign of sin(pq0L0) is fixed by σp, see Eq. (29), the
sign of the above expression is determined by cos(pq0L0). It
is clear from Fig. 3 that the solutions of Eq. (32) correspond
alternatively to points in which the right-hand side of Eq. (32)
increases and decreases. These means that cos(pq0L0) is posi-
tive for one-half of the p’s and negative for the other one-half.
Then, Eq. (37) implies that one-half of the p values correspond
to z0 < L0 and the other one-half to z0 > L0. In the case
z0 < L0, the center of the wall is outside the physical region
occupied by the ferromagnetic slab, while if z0 > L0, it is
within the slab. To lighten the writing, let us call the former
case a virtual domain wall and the latter a real domain wall.
Hence, half of the p correspond to virtual domain walls and
the other half to real domain walls. We will see in the next
section that, if L − L0 is large, all p states with a real domain
wall are unstable and that the p states with a virtual domain
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wall are stable if pmin < p < pmax, with

pmin = max

{
1 −

√
hc, 1 − ρqu

q0

}
,

pmax = min

{
1 +

√
hc, 1 + ρqu

q0

}
, (41)

where hc = 1 − κ > 1 is the dimensionless critical field of the
chiral magnet.

The case p = 1 is somehow special. In this case, Eqs. (30)
and (31) give cos (ϕ0(L0)) = ±η. Then, from Eq. (A6), we
get sn(x0, η) = ±1, where x0 = qu(L0 − z0). The solution for
the plus case is x0 = K (η), which, on account of (27), is only
possible if L0 = L, that is, if the thickness of the ferromag-
netic slabs vanishes. So, this possibility is realized only if
the system consists of a monoaxial chiral magnet in contact
with a nonmagnetic material. For the minus case, we have
x0 = −K , and this gives z0 = (L0 + L)/2. This means the
center of the wall is in the middle of the ferromagnetic slab,
hence it is a real wall, and therefore unstable. In spite of this
discussion, p = 1 can also be realized if the chiral magnet is
in contact with ferromagnetic slabs, in the sense that we can
get metastable states with p as close to 1 as wanted by making
q0L0 sufficiently large.

V. STABILITY OF THE HELICAL STATES

To be useful, the p states have to be metastable, that is,
they have to be local minima of the energy. Let n̂p be the
magnetization of the p state, given by Eq. (20), with ϕ given
by Eq. (24). A necessary condition for the p state to be a local
minimum of the energy is the positivity of the second variation
of the energy, δ(2)E , at n̂p. Thus, the analysis of δ(2)E allows
us to select the metastable p states among all those found by
the procedure of the previous section.

To analyze the stability of the p state, we ignore the magne-
tostatic energy, which cannot contribute to destabilizing the p
state. This is due to the fact that the magnetostatic field created
by the p state vanishes, since its sources vanish: ∇ · n̂p = 0
and ẑ · n̂p = 0. Then, the magnetostatic energy of the p state
is zero and, since it cannot be negative, a perturbation can only
increase it.

The argument of the previous paragraph relies on the fact
that we consider a system that is infinite in the directions
perpendicular to the chiral axis (x̂ and ŷ). In a real system
with finite but very large dimensions along x̂ and ŷ, the
magnetostatic energy of the p states is not zero due to the
magnetic poles on the surfaces perpendicular to x̂ and ŷ.
In the chiral magnet section, the poles on each surface are
alternatively positive and negative, due to the helical character
of the magnetization, and thus the magnetostatic energy will
not be large. The effect of magnetostatic energy on the modu-
lated states of monoaxial ferromagnets is studied in Ref. [21],
where it is concluded that it is only relevant in the case of
thin films, although some distortion of the magnetization may
be expected near the surface to optimize the magnetostatic
energy. If the ferromagnetic slabs are very thin, with thickness
of the order of the domain-wall width, the contribution of
its surface magnetic poles will be negligible. If the slabs are
thick, but the thickness is much smaller than the dimension of

the system along the x̂ direction, there will be a single domain
in the slab, since the domain width in a uniaxial ferromagnet is
proportional to its size along the easy axis [44]. Again, some
distortion of the magnetization may be expected near the slab
surfaces (there might even be domain branching) to optimize
the magnetostatic energy. In conclusion, we expect that the
results of this section will hold in a magnet large enough in
the directions perpendicular to the chiral axis.

The second variation of the energy can be written in terms
of two linear self-adjoint operators, K11 and K22 [cf. Eq. (44)].
The positivity of δ(2)E is equivalent to the positivity of these
two operators. The p state with minimum energy, which has
p close to 1, is stable. We call it the equilibrium p state.
For this state, K11 and K22 have to be positive, which means
that their spectra lie on the positive real axis. In the infinite
system studied in Ref. [35], the lower edge of the spectrum
is continuous as a function of p, and then there is a certain
interval around p = 1 in which the p states are metastable.
We show in this section that also in the finite system there are
many metastable p states, the number of which grows linearly
with the size of the chiral magnet, L0.

The existence of metastable helical states with very close
values of the wave number raises a question: Why is it that
a helical state that has a wave number very close to the equi-
librium wave number cannot reduce its energy by changing its
wave number? The answer is that, in spite of appearances, two
states with very close but different wave numbers are not close
in the space of magnetic configurations. In a sense, they are
orthogonal, and one cannot be transformed into the other by a
small perturbation, no matter how close the wave numbers are
[35].

The remainder of this section is devoted to finding the con-
ditions under which K11 and K22 are positive, and to establish
the conditions under which the p states satisfy these condi-
tions. The reader not interested in the mathematical details can
skip the remainder of this section and go directly to Sec. VI,
where the results are discussed.

A. The second variation of the energy

To obtain δ(2)E , we consider a perturbation of n̂p, which if
small enough can be written in terms of two fields ξ1 and ξ2 as

n̂ =
√

1 − ξ 2
1 − ξ 2

2 n̂p + ξ1 ê1 + ξ2 ê2, (42)

where we introduce the unit vector fields

ê1 = −ẑ, ê2 = − sin ϕ(z) x̂ + cos ϕ(z) ŷ, (43)

so that {ê1, ê2, n̂p} is a right-handed orthonormal triad. To have
perturbations of finite energy, we restrict the fields ξi, for i =
1, 2, to square integrable functions. The continuity of n̂ and
the matching conditions at z = ±L0 provide further conditions
for ξi and ∂zξi, to be discussed below.

The second variation of the energy at n̂p can be obtained
by inserting the above perturbation into the energy functional
and expanding in powers of ξ1 and ξ2 to second order. A
straightforward computation gives

δ(2)E = 2A
∫

d3r(ξ1K11ξ1 + ξ2K22ξ2), (44)
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where K11 and K22 are linear differential operators defined by
their action on functions ξ as

Kii ξ = −a∇2
T ξ − ∂z(a∂zξ ) + Qii ξ, i = 1, 2, (45)

where

Q11 = q2
0(hc − (p − 1)2)χc + ρ(q2

uη
2 − 2ϕ′ 2)χu, (46)

Q22 = ρ(q2
uη

2 − 2ϕ′ 2 − ρq2
u(1 − η2)) χu, (47)

and where, we recall, hc = 1 − κ > 1 and a(z) = χc(z) +
ρχu(z) is the function defined at the end of Sec. III.

The positivity of δ(2)E is equivalent to the positivity of K11

and K22. These operators are self-adjoint in an appropriate
domain, and they are positive if and only if their spectrum
lies on the positive real axis.

B. The operators K11 and K22

Since the “potentials” Q11 and Q22 depend only on z, to
study the spectrum of K11 and K22 it is convenient to perform
the Fourier transform in the coordinates x and y. To avoid
symbol proliferation, we use the same notation for functions
and operators in the real and transformed space. After the
Fourier transformation, we have

Kii ξ = −(aξ ′)′ + ak2
T ξ + Qii ξ . (48)

Now ξ is a function of the Fourier wave vector �kT = kxx̂ +
kyŷ, and of z, and the prime denotes a derivative with respect
to z.

The continuity of n̂ and the matching conditions (17) imply
that ξ and aξ ′ have to be continuous (here ξ represents either
ξ1 or ξ2). In particular, the matching condition implies

lim
z→L−

0

ξ ′(z) = lim
z→L+

0

ρ ξ ′(z). (49)

An analogous relation holds for z → −L±
0 . Finally, the bound-

ary conditions for n̂ give

ξ ′(−L) = 0, ξ ′(L) = 0. (50)

After the Fourier transformation, K11 and K22 are particular
cases of a general kind of differential operators thoroughly
studied in Ref. [45]. Their actions are well defined on con-
tinuous functions ξ defined in [−L, L], which are piecewise
continuously differentiable and such that a ξ ′ is also con-
tinuous and piecewise continuously differentiable, and they
satisfy the boundary conditions (50) [46]. The operators are
self-adjoint in the appropriate extended domain and have a
purely discrete spectrum [45].

The eigenvalues of Kii are given by the values of λ for
which the differential equation

Kiiξ = λξ (51)

has solutions that satisfy the matching conditions (49) and
the boundary conditions (50). A necessary condition for the
stability of the p state is that the eigenvalues of K11 and K22 be
positive.

C. Bounds on the spectrum

The spectrum of operators like K11 and K22 is bounded
from below, since Q11 and Q22 are functions bounded from

below. Indeed, multiplying Eq. (51) by ξ , integrating from
[−L, L], and then using integration by parts and the boundary
conditions (50), the following bound for the spectrum of K22

is obtained:

λ � min
{
ρ
(
k2

T − q2
u

)
, 0

}
. (52)

Similarly, for the spectrum of K11 we get the bound

λ � min
{
k2

T + [hc − (p − 1)2]q2
0, ρ

(
k2

T − q2
uη

2
)}

. (53)

D. Eigenvalue equations

To study the spectrum of K11 and K22, it is convenient to
introduce the quantities

β1 = η2 + k2
T − λ/ρ

q2
u

, β2 = 2η2 − 1 + k2
T − λ/ρ

q2
u

, (54)

γ1 = hc − (p − 1)2 + k2
T

q2
0

+ ρq2
u

q2
0

(
β1 − η2 − k2

T

q2
u

)
, (55)

γ2 = k2
T

q2
0

+ ρq2
u

q2
0

(
β2 − 2η2 + 1 − k2

T

q2
u

)
. (56)

Since the operators K11 and K22 commute with the parity
operator, their eigenfunctions can be chosen as even or odd
functions. From the form of these operators, we see that the
eigenfunctions u of Kii, with i = 1, 2, can be written, for
z � 0, as

u(z) = c1v(q0z, γi )χc(z) + c2w(x, βi )χu(z), (57)

where x = qu(z − z0), c1 and c2 are constants to be deter-
mined, v(x, γ ) is a particular (even or odd) solution of

v′′ − γ v = 0, (58)

and w(x, β ) is a particular solution of

w′′ + 2

q2
u

ϕ′ 2
0 w − βw = 0, (59)

which satisfies the condition w′(K, β ) = 0. Equations (58)
and (59) are simply the restriction of Eq. (51) to |z| < L0 and
L0 < z < L, respectively. In Eq. (59) we use the coordinate
x = qu(z − z0), and thus z = L corresponds to x = K , due
to Eq. (27). The form of the eigenfunction for z < 0 can be
obtained from the parity symmetry. It should be clear that, in
Eq. (59), ϕ′ 2

0 , which is given by Eq. (A9) of Appendix A, is
evaluated at z = z0 + x/qu.

We are interested only in studying the existence of nonpos-
itive eigenvalues, λ � 0. For this case, Eqs. (52) and (53) give
the bounds

β
(i)
min � βi � β (i)

max, (60)

where

β
(1)
min = η2 + k2

T /q2
u, β

(2)
min = 2η2 − 1 + k2

T /q2
u, (61)

and

β (1)
max = max

{
2η2, η2 + ρ − 1

ρ

k2
T

q2
u

+ q2
0

ρq2
u

(hc − (p − 1)2)

}
,

(62)

and β (2)
max = 2η2.
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The functions v and w entering Eq. (57) have to fulfill the
matching conditions at z = L0 (then the parity symmetry guar-
antees that they are fulfilled also at z = −L0). This conditions
can hold nontrivially (that is, with u �= 0) only for specific
values of β, which give the eigenvalues of the corresponding
operator.

We observe that we have four matching conditions, corre-
sponding to the even and odd eigenfunctions of K11 and K22.
We identify each condition by a pair (i, s), where i = 1, 2
and s = e, o label the operator and the eigenfunction parity,
respectively. Each matching condition sets a system of two
homogeneous linear equations where the unknowns are the
constants c1 and c2 entering Eq. (57). To have nontrivial solu-
tions, a condition F (s)

i (βi ) = 0 must hold. The four functions
F (s)

i (β ) are given by

F (s)
i (β ) = v′

s(q0L0, γi )w(x0, β ) − ρqu

q0
vs(q0L0, γi )w

′(x0, β ),

(63)

where x0 = qu(L0 − z0). In the above equation, it is under-
stood that γi is computed with βi = β, and vs(x, γ ) are
solutions of Eq. (58) with definite parity, which can be chosen
as

ve(x, γ ) = cosh(
√

γ x), vo(x, γ ) = sinh(
√

γ x), γ > 0,

ve(x, γ ) = 1, vo(x, γ ) = x, γ = 0,

ve(x, γ ) = cos(
√−γ x), vo(x) = sin(

√−γ x), γ < 0. (64)

For given p, equations F (s)
i (β ) = 0 determine the eigenval-

ues of K11 and K22. The p state will be stable if

F (s)
i (β ) �= 0, β

(i)
min � β � β (i)

max (65)

for i = 1, 2 and s = e, o.

E. Solution of Eq. (59)

It remains to find the solutions of Eq. (59), which is studied
in Appendix B. Here, we summarize the results. The solution
that satisfies the boundary condition w′(K, β ) = 0 can be
written as

w(x, β ) = w+(x, α) + d w−(x, α), (66)

where w+ and w− are two linearly independent solutions of
Eq. (59), which can be expressed in terms of the Jacobi theta
functions θ1 and θ2 as

w±(x, α) = ± φ′
1(0, q)

φ1(α, q)

φ2(x ± α, q)

φ2(x, q)
exp

(
∓φ′

1(α, q)

φ1(α, q)
x

)
(67)

with

φi(x, q) = θi

(
i
πx

2K̄
, q

)
, i = 1, 2, 3, 4. (68)

The nome q is defined just above Eq. (34). The parameter
α > 0, which has nothing to do with the Gilbert damping
parameter entering the LLG equation, is related to β through
the equation

sn2(α, η) = 1

β + 1 − η2
, (69)

and the constant d is determined from the boundary condition,
w′(K, β ) = 0, and is given by

d = − exp

(
πα

K̄
− 2

φ′
1(α, q)

φ1(α, q)
K

)
. (70)

Now we can introduce w(x, β ) in the eigenvalue Eq. (63)
and analyze them numerically. However, it is useful to analyze
first the limit of large qu(L − L0), which leads to important
simplifications.

F. Analysis for large qu(L − L0)

The large qu(L − L0) regime corresponds to q → 0. This
limit is studied in Appendix C, where the formulas used in
this section are derived. There, it is observed that we have
to distinguish the case β > 1 from the case β = 1, which is
special.

If β is not too close to 1, the solution of Eq. (69) is

α =
√

β + O(q), (71)

and, taking into account that K = − log
√

q + O(q log q), we
have

d = − exp(2α +
√

β log q + O(q log q)). (72)

Hence d is negligible for large L, which corresponds to small
q. Then w(x, β ) can be approximated by w+(x, α), which in
turn can be expanded in powers of q. For fixed x we obtain the
simple expression

w(x, β ) = (
√

β + tanh x) e−√
βx + O(q log q). (73)

Neglecting the O(q log q) terms, this is the solution we would
have obtained had we considered an infinite system with
u′(x, β ) → 0 for x → ∞ as a boundary condition.

We now analyze F (e)
2 (β ) for kT = 0 and large β. Using

Eq. (73), ignoring the O(q log q) corrections, we obtain that
for β → ∞

F (e)
2 (β ) ∼

(
1 + 1√

ρ

)
ρqu

q0
exp(

√
β(

√
ρquL0 − x0)). (74)

Thus, F (e)
2 (β ) > 0 for large β.

For β = 1, the solution of Eq. (69) has the form α = K −
ᾱ, where ᾱ is of order 1 for q → 0 (see Appendix C). The
leading term in q of w(x, β = 1) is given by Eq. (C12). From
this it is straightforward to get

F (e)
2 (1) = (6 + 2

√
6)

ρqu

q0

tanh x0

cosh x0
+ O(q log q). (75)

Thus, F (e)
2 (1) < 0 if x0 < 0. Therefore, the corresponding

states are unstable because F (e)
2 (β ) has a zero for β > 1. Since

x0 < 0 means z0 > L0, we see that all p states that have a
real domain wall are unstable, as claimed in Sec. IV. These
unstable states correspond to half of the solutions of Eq. (32).

G. Analysis of states with large p

Consider again kT = 0. If |p − 1| >
√

hc, we have that
γ1 < 0 in a neighborhood of β = 1. Then, for β sufficiently
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TABLE I. Number of metastable states, Np, versus q0L0 for the
case of thick ferromagnetic slabs: qu(L − L0) = 40. The system pa-
rameters are given at the beginning of Sec. VI.

q0L0 10 20 40 80 100 120 240 480 960

Np 8 16 32 63 78 93 220 373 746

Np/q0L0 0.8 0.8 0.8 0.79 0.78 0.78 0.77 0.78 0.78

close to 1, we have

F (e)
1 (β ) = −√−γ1 sin(

√−γ1q0L0) w(x0, β ),

− ρqu

q0
sin(

√−γ1q0L0) w′(x0, β ). (76)

By continuity, small changes of β produce small changes
on w(x0, β ), w′(x0, β ), and γ1. But if q0L0 is large, the
trigonometric functions entering the above equation suffer big
oscillations, so that F (e)

1 (β ) changes sign in a neighborhood
of β = 1. Hence, states with |p − 1| >

√
hc are unstable. This

relation, together with Eq. (33), provides the bounds (41).

VI. DISCUSSION OF SOME RESULTS

Let us discuss the results in two cases: one in which the
ferromagnetic slabs attached to the chiral magnet are thick,
and another one in which they are very thin. In both cases, we
consider hc = 6, ρ = 3, and qu = q0. The possible p states
are obtained by solving numerically the coupled Eqs. (27)
and (32), and their stability by evaluating numerically the
functions F (s)

i (β ), defined in Eq. (63).

A. Thick ferromagnetic slabs

We take qu(L − L0) = 40, which can be considered in the
large qu(L − L0) regime, and thus we confirm by numerical
means the results of Sec. V. Recall that we say that the
system has a real domain wall if the center of the wall, which
characterizes the magnetization in the ferromagnetic slab, lies
within the slab, and we say that it has a virtual domain wall if
the center lies outside the slab. We get the following results:

(i) States that have a real domain wall are unstable, what-
ever the value of p, in agreement with the analysis of Sec. V F.

(ii) States with |p − 1| >
√

hc are always unstable, in
agreement with the argument of Sec. V G.

(iii) States with a virtual domain wall and |p − 1| <
√

hc

are metastable.
(iv) The number of metastable p states, Np, grows linearly

with q0L0 (see Table I), and the values of such p are homoge-
neously distributed in the interval 1 − √

hc � p � 1 + √
hc.

Hence, the bounds (41) are saturated.
All of these conclusions are in agreement with the analysis

of the large qu(L − L0) regime presented in Sec. V F, and they
imply that the results of Ref. [35] are recovered in the limit
q0L0 → ∞.

Figure 4 shows the energy density as a function of p for
different values of q0L0. For large q0L0, a convergence to-
wards the energy density of the chiral magnet is observed (see
Sec. IV D). The composite magnet has lower energy density
than the infinite chiral magnet. This is due to the fact that the
magnetic state in the ferromagnetic slabs is almost uniform

FIG. 4. Energy density of p states, in units of Aq2
0, as a function

of p in the case of thick ferromagnetic slabs, qu(L − L0) = 40, for
the values of q0L0 displayed in the legend. The system parameters
are given at the beginning of Sec. VI. The black line, labeled as ∞,
corresponds to the infinite chiral magnet studied in Ref. [35]. The
vertical lines mark the limits pmin and pmax given by Eq. (41).

(it is a virtual domain wall), and the anisotropy energy con-
tributes to lowering the system energy. Observe, however, that
the different sets of points in Fig. 4 correspond to different
systems, and the comparison of energies has no clear meaning.

Figure 5 shows the magnetization in two representative
cases, one for p = 1.068 (the closest value to p = 1) and
another one for p = 2.007 (the closest value to p = 2).
Observe that the magnetization in the ferromagnetic slabs
has the form of a virtual domain wall. The bottom panels
show the derivative ϕ′(z)/q0. The discontinuity at z = 100 is
due to the matching condition (31).

B. Thin ferromagnetic slabs

To analyze the case in which the ferromagnetic slabs are
very thin, we take qu(L − L0) = 1, which means that the
thickness of the slabs is equal to the width of a domain wall
hosted by a very thick (infinite) magnet. Table II shows that
the number of metastable p states is proportional to q0L0. The
metastable p states are grouped into pairs that have very close
values of p (see below), and the pairs are homogeneously
distributed in the interval −0.43 < p < 2.44. This means that
there is a continuum of metastable p states in the limit q0L0 →
∞. The interval of metastable states is within the limits (41),
but it does not saturate them. However, these limits are rapidly

TABLE II. Number of metastable states, Np, versus q0L0 for
the case of thin ferromagnetic slabs: qu(L − L0) = 1. The system
parameters are given at the beginning of Sec. VI.

q0L0 10 20 40 80 100 120 240 480 960

Np 10 19 38 76 92 112 226 453 882

Np/q0L0 1 0.95 0.95 0.95 0.92 0.93 0.94 0.94 0.92

214424-10



CONTINUUM OF METASTABLE HELICAL STATES OF … PHYSICAL REVIEW B 109, 214424 (2024)

FIG. 5. Magnetization of p states in the composite magnet system for the case of thick ferromagnetic slabs, with qu(L − L0) = 40. The
size of the chiral magnet is q0L0 = 100. The system parameters are given at the beginning of Sec. VI. From top to bottom, the figures show nx ,
ny, and ϕ′/q0 vs q0z. The left panels correspond to p = 1.068 and the right panels to p = 2.007.

saturated by increasing the thickness of the slabs, qu(L − L0).
Indeed, with a thickness equal to twice the domain-wall width,
qu(L − L0) = 2, the bounds are already saturated.

Figure 6 shows the energy density as a function of p for
different values of L0. For large q0L0, the convergence towards
the energy density of the magnetic state of the chiral magnet
is again observed (see Sec. IV D). It is clearly seen that the
metastable p states are grouped into pairs. One of the p states
of the pair has lower energy than the infinite chiral magnet
limit, while the other has higher energy. The presence of
these metastable higher-energy states is due to the thinness
of the ferromagnetic slabs. The higher-energy states, and thus
the pairing, disappear quickly as the thickness of the slabs
increases. Indeed, it does not appear if qu(L − L0) = 2.

For illustration, Fig. 7 shows the magnetization compo-
nents and the derivative ϕ′(z) for the cases p = 0.958 (the
closest value to p = 1) and p = 1.997 (the closest value to
p = 2), for a chiral magnet of size q0L0 = 100. The p state of

the left panels is the high-energy state of the pair with p closest
to 1. We see that the magnetization in the ferromagnetic slab
stays very close to the ŷ axis, which is perpendicular to the
easy axis. This causes the increase of energy density with
respect to the infinite chiral magnet case. Since the ferromag-
netic slabs are so thin, this increase of energy is not enough to
destabilize the state. By contrast, the right panels of Fig. 7
correspond to the lower-energy p state of the pair with p
closest to 2. It is seen that, in the ferromagnetic slabs, the mag-
netization rotates towards the easy axis as we move towards
the boundary, and it never crosses the direction perpendicular
to the easy axis. The anisotropic energy compensates for the
ferromagnetic energy due to the rotation, and the energy of
the composite magnet p state is slightly reduced with respect
to the energy of the p state of the infinite chiral magnet.

The bottom panels of Fig. 7 show the derivative ϕ′(z)/q0.
The discontinuity at z = 100 is due to the matching
condition (31).
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FIG. 6. Energy density of p states, in units of Aq2
0, as a function

of p in the case of thin ferromagnetic slabs, with q0(L − L0) = 1, for
the values of q0L0 displayed in the legend. The system parameters
are given at the beginning of Sec. VI. The black line, labeled as ∞,
corresponds to the infinite chiral magnet studied in Ref. [35].

VII. CONCLUSIONS

In Ref. [35], we showed that in an infinite monoaxial chiral
magnet there exists a continuum of metastable helical states
differing by the helix wave vector, pq0. It was pointed out that
in a real finite magnet, only the state with p = 1 is compatible
with the surface chiral twist induced by the natural boundary
conditions [38]. This means that states with p �= 1 are ruled
out by the boundary conditions, and, apparently, the results
of Ref. [35] only hold in the nonphysical cases of an infinite
magnet or of a magnet with periodic boundary conditions.

However, the boundary conditions can be tailored by at-
taching some other magnet to the faces of the monoaxial chiral
magnet, which are perpendicular to the chiral axis. These
magnets may absorb the chiral twist, and thus states with dif-
ferent p may satisfy the boundary conditions. We prove in this
work that this is indeed the case by considering a composite
magnet system formed by a monoaxial chiral magnet attached
to two similar slabs of a uniaxial ferromagnet, as in Fig. 1.
We deal only with the case of zero applied field and zero
applied current, since this problem can be solved exactly. We
show that if the ferromagnets are thick enough (a thickness a
few tens larger than the width of their characteristic domain
wall), the composite system has metastable magnetic states
that are helical within the chiral magnet and look like a virtual
domain wall within the ferromagnets (by virtual we mean
that the wall center is outside the physical region occupied
by the ferromagnetic slab). Those metastable states differ by
the wave number of the helix within the chiral magnet, and its
number increases linearly with the size of the chiral magnet,
L0. The results of Ref. [35] are thus fully recovered in the limit
L0 → ∞.

We also obtain results similar to those of Ref. [35] (for
zero applied field and current) in the limit L0 → ∞ if the
ferromagnetic slabs are thin (thickness approximately equal to
the domain-wall width). In this case, however, the results are

not exactly the same as in [35], since the range of p for which
the helical states are metastable is smaller than that predicted
in [35].

In Ref. [35] we pointed out the possibility of using the
p states as building blocks for information storing, because
there are processes that allow us to switch between different p
states. In particular, we showed that, in the infinite magnet,
the switching between different p states can be performed
by applying suitable combinations of external magnetic field
and electric current. We expect that some analogous switching
can also be performed in the composite magnet. In this case,
however, the behavior of the p states under applied field and
current has to be studied numerically. Work in this direction
is in progress. We expect that the application of an external
magnetic field along the chiral axis will deform the p state
in the vicinity of the magnet interfaces and will destabilize
some of them, gradually, more or less as in the infinite magnet
case. Preliminary results confirm this expected behavior. On
the other hand, in the infinite magnet the application of an
electric current leads to a rigid steady motion of the p state,
and to its destabilization when the current intensity is high
enough. In the composite magnet, it is difficult to conceive the
steady motion state. If the applied current is not too large, we
expect a nonstatic, time-varying state that retains the helical
features of the p state, and an eventual destabilization as the
current reaches some critical value, so that, after removing the
current, the original p state will be replaced by another one
with different p. Then, it seems reasonable to expect that some
switching mechanism between p states can be devised for the
composite magnet.

Let us stress again a theoretical fact discussed at the begin-
ning of Sec. V, which may be of interest beyond the physics
of chiral magnets. The fact is that, despite appearances, two
helical states with very close but different wave numbers are
not close in the space of magnetic configurations. In a sense,
they are orthogonal, and one cannot be transformed into the
other by a small perturbation no matter how close the wave
numbers are [35]. This explains why a helical state cannot
reduce its energy by simply changing its wave number: there
may be an energy barrier between two helical states even if
their wave numbers are arbitrarily close.

At first glance, the existence of so many nondegenerate
metastable states in chiral magnets is also somehow discon-
certing, for a different reason: we usually believe that the
boundary conditions select one of the many solutions of the
differential equations that constrain the state of the system
in the static case. In this case, however, if the temperature is
low enough and if the energy barriers between the p states
are high enough, it is the initial condition that determines
the magnetic state in the long term. Actually, this situation
resembles the physics of ferromagnets, in which the existence
of many metastable states characterized by different spatial
distributions of domains is at the origin of hysteresis.

To conclude, let us stress that the possible uses of the
p states depend strongly on their lifetimes, which in turn
depend on the energy barriers that separate them. If the bar-
riers are high enough, the p states could be experimentally
detected at low enough temperature in a composite magnet
of the kind studied in this work, for instance with SANS
experiments.
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FIG. 7. Magnetization of p states in the composite magnet system for the case of thin ferromagnetic slabs, with qu(L − L0) = 1. The size
of the chiral magnet is q0L0 = 100. The system parameters are given at the beginning of Sec. VI. From top to bottom, the figures show nx , ny,
and ϕ′/q0 vs q0z. The left panels correspond to p = 0.958 and the right panels to p = 1.997.
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APPENDIX A: A SOLUTION OF THE DOUBLE
SINE-GORDON EQUATION

The solution of Eq. (22), which satisfies the conditions
(25), can be obtained as follows. Multiplying Eq. (22) by ϕ′,

we get

d

dz

(
ϕ′ 2 − q2

u sin2 ϕ
) = 0, (A1)

so that the term within brackets has to be a constant. Since we
require ϕ′(L) = 0, the constant has to be −q2

u sin2 ϕ0(L) and
we obtain

ϕ′ = qu

√
sin2 ϕ − sin2 ϕ0(L), (A2)

since we also require ϕ′ > 0. Let us call η = cos ϕ0(L). Notice
that 0 < η < 1. Then, solving the above differential equa-
tion by a separation of variables, we have∫ ϕ0

− π
2

dϕ√
η2 − cos2 ϕ

= qu(z − z0). (A3)
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With the change of variable η t = cos ϕ in the integral, so that
sin ϕ = −

√
1 − η2t2, we obtain∫ 1

η
cos ϕ0

0

dt√
(1 − t2)(1 − η2t2)

= qu(z − z0). (A4)

The integral of the left-hand side is

arcsn(cos ϕ0/η, η), (A5)

where arcsn(x, η) is the inverse Jacobi elliptic function [43].
Hence, we get

cos ϕ0 = η sn(qu(z − z0), η). (A6)

The parameter η is determined by setting z = L in Eq. (A4), in
which case cos ϕ0 = η and the upper limit of the integral (A4)
is 1. Thus the integral becomes the complete elliptic integral
of the first kind, K (η), so that

K (η) = qu(L − z0). (A7)

The above equation determines uniquely η if L and z0 are
given. Then, since −π < ϕ0 < 0, Eq. (A6) determines com-
pletely ϕ0, which is given by Eq. (26). In particular, since
sin ϕ0 < 0, we have

sin ϕ0 = −
√

1 − cos2 ϕ0. (A8)

We also need an explicit form of ϕ′ 2
0 , which, taking into

account (A2) and (A6), has the form

ϕ′ 2
0 (z) = q2

uη
2(1 − sn2(qu(z − z0), η)). (A9)

APPENDIX B: SOLUTION OF EQ. (59)

In this Appendix, we outline a way of solving Eq. (59) that
relies on the Weierstrass elliptic function ℘ with fundamental
half-periods chosen as ω1 = iK̄ and ω3 = −K . We use the
notation of Ref. [47] for the fundamental half-periods, and K
and K̄ are defined in Eq. (34). This choice of fundamental
half-periods gives the nome q = exp(−πK/K̄ ), which is con-
venient if L is large. The related Weierstrass functions ξ and
σ and the Jacobi theta functions also appear in the solution.
The properties of these functions are thoroughly presented,
for instance, in Refs. [48,49], and an exhaustive summary can
be found in Ref. [47]. It should be clear that the Weierstrass
function ξ of this Appendix has nothing to do with the func-
tions ξ1, ξ2, and ξ of Sec. V.

Using Eq. (A2) from Appendix A, we see that Eq. (59) has
the form

u′′ − 2η2sn2(x, η) − (β − 2η2)u = 0. (B1)

This is one of Lame’s equations in Jacobian form [50]. Ex-
pressing sn(x, η) in terms of ℘, the equation is cast as

w′′ − 2℘(x + iK̄ )w − (
β − 2

3 + 4
3 (1 − η2)

)
w = 0. (B2)

For given β, its general solution [50] is a linear combination

w(x, β ) = d1w+(x, α) + d2w−(x, α), (B3)

where d1 and d2 are arbitrary constants,

w±(x, α) = ± σ (x + iK̄ ± α)

σ (x + iK̄ )σ (α)
e±ξ (α)x, (B4)

and α is the solution of

℘(α) = β − 2
3 + 4

3 (1 − η2), (B5)

which, using again the relation between sn(x, η) and ℘(x),
leads to Eq. (69).

If w′
−(K, α) �= 0, the boundary condition w′(K ) = 0 gives

d2

d1
= −w′

+(K, α)

w′−(K, α)
. (B6)

It is convenient to express σ and ξ in terms of theta func-
tions, using Eqs. 23.6.9 and 23.6.13 of Ref. [47], since these
functions have Fourier series rapidly convergent for small q.
We get

σ (x + iK̄ ± α)

σ (x + iK̄ )σ (α)
= φ′

1(0, q) φ1(x + iK̄ ± α, q)

φ1(x + iK̄, q) φ1(α, q)

× exp

(
±ξ (ω1)

ω1
α(x + iK̄ )

)
, (B7)

ξ (α) = ξ (ω1)

ω1
α + φ′

1(α, q)

φ1(α, q)
, (B8)

where the functions φi(z, q) are related to theta functions by
Eq. (68). We also use the periodicity of the theta functions
(formulas 20.2.6 and 20.2.12 of Ref. [47]) to obtain

φ1(z + iK̄ ) = −φ2(z, q). (B9)

Inserting Eqs. (B7), (B8), and (B9) into Eq. (B4), and remov-
ing the factor exp ( ∓ ξ (ω1)α), which is a pure phase factor of
order 1 as q → 0, which amounts merely to a redefinition of
w±(x, α), we obtain Eq. (67).

The derivatives of w±(x, α) can be readily computed from
Eq. (67), obtaining

w′
±(x, α)

w±(x, α)
= ±φ′

2(x ± α, q)

φ2(x ± α, q)
± φ′

2(x, q)

φ2(x, q)
∓ φ′

1(α, q)

φ1(α, q)
. (B10)

To compute d2/d1, Eq. (B6), we have to evaluate w′
±(K, α),

for which we use the behavior of theta functions under transla-
tion by half-periods, given by Eq. 20.2.13 of Ref. [47]. Taking
into account that θ ′

3(0, q) = 0 and setting d1 = 1 and d2 = d ,
we arrive at Eq. (27).

APPENDIX C: EXPANSION IN q FOR LARGE L

1. Case β > 1

For q → 0 and β > 1 + c, where c > 0 is any fixed num-
ber, independent of q, Eq. (69) can be expanded in powers
of q by introducing the expansion α = α0 + α1q + · · · . Since
sn(α, η) = tanh(α) + O(q), we get for the leading order

α0 = atanh
(
1/

√
β
)
. (C1)

It is clear that this expansion is not valid for β → 1, since in
this limit α0 → ∞.

For q → 0 we have K = − log(
√

q) + O(q log q) and

πα

K̄
= 2α + O(q),

φ′
1(α, q)

φ1(α, q)
=

√
β + O(q). (C2)

Inserting these equations into Eq. (70) we arrive at Eq. (72),
and we see that d vanishes exponentially as quL → ∞. Hence,
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w(x, β ) can be approximated by w+(x, α) in this limit. The
expansion of this function in powers of q is obtained from

φ′
1(0, q)

φ1(α, q)
= 1 + O(q),

φ2(x + α, q)

φ2(x, q)
=

√
β − tanh x + O(q), (C3)

and from the second of Eqs. (C2). Inserting these equa-
tions into Eq. (67) for w+(x, α), we obtain Eq. (73).

2. Case β = 1

For β = 1, the expansion in power of q is different. In this
case, the right-hand side of Eq. (69) is 1 + O(q). Taking into
account that sn(K, η) = 1, we see that the solution has the
form α = K − ᾱ, where ᾱ is of order 1 as q → 0. Using the
relation sn(K − ᾱ, η) = cd(ᾱ, η), where cd is the ratio of the
cn and dn Jacobi elliptic functions, we get the equation for ᾱ,

cd2(ᾱ, η) = 1 − 1 − η2

2 − η2
. (C4)

Now we can expand this equation in powers of q, inserting the
expansion ᾱ = ᾱ0 + ᾱ1q + · · · . Using

cd(ᾱ, q) = 1 − 4(cosh(2ᾱ) − 1) q + O(q2),

we obtain ᾱ0 = asinh (
√

2).
Then we insert α = K − ᾱ into the equation for d , (70).

We use the properties of theta functions under translations by
a half-period to obtain

φ′
1(K − ᾱ)

φ1(K − ᾱ)
= π

2K̄
− φ′

4(ᾱ, q)

φ4(ᾱ, q)
. (C5)

Hence, we get

d = exp

(
−πᾱ

K̄
+ 2

φ′
4(ᾱ, q)

φ4(ᾱ, q)
K

)
. (C6)

For q → 0 the term that multiplies K in the exponential is
O(q), while K is O(log q), and therefore d does not vanish as
q → 0:

d = −e−2ᾱ0 + O(q log q). (C7)

For w±(x, K − ᾱ) we use the relations

φ1(K − ᾱ, q) = iq−1/4e
πᾱ
2K̄ φ4(ᾱ, q), (C8)

φ2(x ± K ∓ ᾱ, q) = q−1/4e
π (x∓ᾱ)

2K̄ φ3(x ∓ ᾱ, q), (C9)

obtained from the behavior of theta functions under transla-
tions of half-period. Then we get that, for β = 1,

w±(x, K − ᾱ) = ± φ′
1(0, q)

φ4(ᾱ, q)

φ3(x ± ᾱ, q)

φ2(x, q)

× exp

(
±φ′

4(ᾱ, q)

φ4(ᾱ, q)
x

)
. (C10)

For q → 0, the above expression gives

w±
(
x, K − ᾱ

) = (1 + tanh x) e−x + O(q). (C11)

Hence, we obtain

w(x, β = 1) = C(1 + tanh x) e−x + O(q log q), (C12)
where C = 1 + e−2ᾱ0 = 6 − 2

√
6 > 0.
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