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Electric field control of a quantum spin liquid in weak Mott insulators
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The triangular lattice Hubbard model at strong coupling, whose effective spin model contains both Heisenberg
and ring exchange interactions, exhibits a rich phase diagram as the ratio of the hopping t to on-site Coulomb
repulsion U is tuned. This includes a chiral spin liquid (CSL) phase. Nevertheless, this exotic phase remains
challenging to realize experimentally because a given material has a fixed value of t/U , which is difficult to tune
with external stimuli. One approach to address this problem is applying a dc electric field, which renormalizes
the exchange interactions as electrons undergo virtual hopping processes; in addition to creating virtual doubly
occupied sites, electrons must overcome electric potential energy differences. Performing a small t/U expansion
to fourth order, we derive the ring exchange model in the presence of an electric field and find that it not only
introduces spatial anisotropy but also tends to enhance the ring exchange term compared to the dominant nearest-
neighbor Heisenberg interaction. Thus, increasing the electric field serves as a way to increase the importance of
the ring exchange at constant t/U . Through density matrix renormalization group calculations, we compute the
ground-state phase diagram of the ring exchange model for two different electric field directions. In both cases,
we find that the electric field shifts the phase boundary of the CSL towards a smaller ratio of t/U . Therefore, the
electric field can drive a magnetically ordered state into the CSL. This explicit demonstration opens the door to
tuning other quantum spin systems into spin liquid phases via the application of an electric field.

DOI: 10.1103/PhysRevB.109.214423

I. INTRODUCTION

A quantum spin liquid (QSL) is a ground state of a mag-
netically frustrated quantum spin system, where competing
interactions obstruct long-range order and instead yield a
state characterized by long-range entanglement, fractional-
ized excitations, and emergent gauge fields [1–8]. However,
experimentally realizing a QSL is an exceedingly difficult
task. Half a century after their initial proposal [9], experi-
mentalists continue the quest for an indisputable experimental
realization of a QSL. Because QSLs are typically very sen-
sitive to the microscopic parameters of the system, it is
exceedingly hard to find a material that exactly lies within
a QSL regime. This motivates the search for external tuning
parameters that may bring a quantum spin system from an
ordered state into a QSL. Typically, this is attempted via the
application of a magnetic field, external pressure, chemical
doping, or even a periodic driver [10–28]. However, one stim-
ulus that has received relatively little attention is that of an
electric field.

One relevant context in which to study the possibility
of stabilizing QSLs via application of an electric field is
weak Mott insulators on the triangular lattice. Deep in the
Mott insulating phase, the system may be described by an
effective Heisenberg Hamiltonian. Although frustrated, the
ground state is given by a spiral 120° order. Closer to the
Mott transition, further-neighbor Heisenberg couplings and
ring exchange interactions arise due to increased charge
fluctuations [29–31]. These ring exchange interactions lead
to enhanced frustration, which may be sufficient to melt the
long-range 120° order into a QSL. Indeed, recent density
matrix renormalization group (DMRG) calculations have

shown that the system stabilizes a chiral spin liquid (CSL)
at physically relevant parameters [32–34]. CSLs are a well-
studied class of QSLs that spontaneously break time-reversal
symmetry and support a gapless chiral edge state [35–53].

Although an external magnetic field may appear to be a
more natural tuning parameter to stabilize the CSL because it
explicitly introduces a chiral exchange term in the effective
spin model [54], this may also polarize the system due to
the relatively large energy scale of the Zeeman term [55]. In
contrast, an electric field couples only to the electron’s charge.
The electric field modifies the energy cost incurred by virtual
hopping processes in the Mott insulating phase as the electron
moves with or against the field. Indeed, a dc electric field
has previously been shown to modify the nearest-neighbor
Heisenberg exchange parameters [56–58]. However, under-
standing the impact of an electric field on four-spin terms,
which are responsible for the chiral spin liquid, is not yet
explored.

This work considers the single-band Hubbard model on the
triangular lattice at half-filling in a spatially uniform dc elec-
tric field. Taking the strong coupling limit, we derive a spin
model of nearest-, next-nearest, and third-nearest-neighbor
Heisenberg couplings and ring exchange interactions. These
interactions, which are typically the same along the different
bonds, become anisotropic in real space. We also find that
the ring exchange interactions are generally enhanced relative
to the nearest-neighbor Heisenberg couplings as the electric
field increases. This provides a mechanism to enhance ring ex-
change interactions relative to Heisenberg couplings without
changing t/U . Since nearest-neighbor Heisenberg coupling
favors 120° magnetic order [59,60] and ring exchange in-
teractions stabilize a CSL [32], the electric field serves as
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an effective way to tune towards the CSL. Using DMRG
calculations, we derive the zero-temperature phase diagram
of the model as a function of t/U and electric field. Most
notably, we demonstrate that the regime of the chiral spin
liquid is modified as the electric field is tuned, meaning that
an initially magnetically ordered state may enter the chiral
spin liquid at fixed t/U . Hence, the application of an elec-
tric field in a weak Mott insulator offers a novel avenue to
reach QSL.

The remainder of the paper is organized as follows. Sec-
tion II introduces the Hubbard model in an electric field
and derives the effective Heisenberg and ring exchange spin
model in the strong coupling limit. Then, in Sec. III, we
establish the quantum phase diagram without an electric field.
In Sec. IV, we introduce the electric field in two different
directions. We conclude in Sec. V with a discussion of our
results.

II. EFFECTIVE SPIN MODEL

A. Hubbard model in an electric field

We start by considering the single-band Hubbard model at
half-filling in a static and spatially uniform electric field [56].
In this general setting, this discussion applies equally well to
any lattice. This model is given by

H = −
∑
i, j;σ

ti jc
†
iσ ciσ + U

∑
i

ni↑ni↓ +
∑

iσ

�iniσ , (1)

where σ =↑,↓ represents the spin of the electrons, i, j run
over all sites in the triangular lattice, and niσ = c†

iσ ciσ is the
number operator for electrons on site i with spin σ . U is the
on-site Coulomb repulsion, �i is the electric potential energy
at site i, and the hopping matrix is given by ti j , which we will
later set to

ti j =
{

t, i, j nearest neighbors
0, else

. (2)

In the limit t/U � 1 and also |��|/U � 1, where �� is
the electric potential energy difference between neighboring
sites, we can perform a Schrieffer-Wolff transformation to find
an effective Hamiltonian governing the low-energy behavior
[56]. The virtual high-energy fluctuations are induced by the
portion of the Hamiltonian that can change the number of
doubly occupied sites. We split the kinetic term into three
parts T +, T −, T 0. It can be identified that T + increases the
number of doubly occupied sites, T − decreases the number of
doubly occupied sites, and T 0 does not change the number of
doubly occupied sites:

T + =
∑

i j

T +
i j , T − =

∑
i j

T −
i j , T 0 =

∑
i j

T 0
i j , (3)

T +
i j = −

∑
σ

ti jni,−σ c†
iσ c jσ h j,−σ , (4)

T −
i j = −

∑
σ

ti jhi,−σ c†
iσ c jσ n j,−σ , (5)

T 0
i j = −

∑
σ

ti j[hi,−σ c†
iσ c jσ h j,−σ + ni,−σ c†

iσ c jσ n j,−σ ], (6)

where hiσ = 1 − niσ is the hole number operator. We set the
perturbation, which produces the charge fluctuations, to be
W = T + + T − and the base Hamiltonian as H0 = T0 + HU +
HE , whereby the potential energies are

HU = U
∑

i

ni↑ni↓, HE =
∑

iσ

�iniσ . (7)

These are included within the base Hamiltonian because they
do not cause charge fluctuations.

B. Canonical transformation

In order to find a low-energy description of the theory, we
perform a canonical transformation of our Hamiltonian. The
transformation is defined by a generator S as

Heff = eiSHe−iS. (8)

Here, S may be computed order by order in t/U , and Heff

is the new effective Hamiltonian whose fluctuations to the
high-energy sector with doubly occupied sites are exactly
eliminated to order O(t3/U 2). The expansion of the generator
S is given by

S = S(1) + S(2) + S(3) + · · · , (9)

where S(n) ∝ (t/U )n. The detailed procedure for calculating
the generator of the canonical transformation is in Ap-
pendix A. We compute S up to third order in t/U . Expanding
the effective Hamiltonian in Eq. (8) yields

Heff = H + [iS, H] + 1
2 [iS, [iS, H]] + · · · . (10)

We solve for S(n) such that no terms in the effective Hamil-
tonian take us out of the singly occupied sector. Such terms
have an unequal number of T + and T − operators. For ex-
ample, at first order we pick T + + T − + [iS(1), HU + HE ] =
0 to cancel the charge fluctuations. The solution for the
generator of the canonical transformation generalizes the
typical expressions without an electric field by introducing
factors that encode the energy difference obtained when an
electron changes its potential energy by moving with or
against the electric field. The expressions for the generators
are

iS(1) = 1

U

∑
i j

�i j (T
+

i j − T −
ji ), (11)

iS(2) = 1

U 2

∑
i j pq

�i j pq
([

T +
i j , T 0

pq

] + [
T −

ji , T 0
qp

])
, (12)

iS(3) = 1

U 3

∑
i j pqab

�i j pqab
([[

T +
i j , T 0

pq

]
, T 0

ab

]−[[
T −

ji , T 0
qp

]
, T 0

ba

])

+ 1

2U 3

∑
i j pqab

�′
i j pqab

([[
T +

i j , T 0
pq

]
, T +

ab

]

− [[
T −

ji , T 0
qp

]
, T −

ba

]) + 1

3U 3

∑
i j pqab

�i j (�pq + �ab)

× �i j pqba([T +
i j , [T +

pq, T −
ba ]] + [T −

ji , [T +
ab , T −

qp]]). (13)
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FIG. 1. Top: The triangular lattice, its primitive lattice vectors
a1 = (

√
3

2 , 1
2 ) and a2 = (0, 1) and our convention for labeling of the

bonds and rings. Bottom: Brillouin zone and high symmetry points
of the triangular lattice.

The information about the electric field is contained within the
various factors of the form

�i j = 1

1 + �i j
, (14)

�i j pq = �i j

1 + �i j/U + �pq/U
, (15)

�i j pqab = �i j pq

1 + �i j/U + �pq/U + �ab/U
, (16)

�′
i j pqab = �i j pq

2 + �i j/U + �pq/U + �ab/U
, (17)

�i j pqab = 1

1 + �i j/U + �pq/U + �ab/U
. (18)

C. Effective Hamiltonian

The effective Hamiltonian obtained, which is obtained by
replacing Eqs. (11)–(13) into Eq. (10), truncating to order
O(t4/U 3), and then projecting to the singly occupied sub-
space, yields a spin model. We need to pick a specific form
of the electric potential to write down this spin model in a
compact form. We choose the potential �i derived from the
uniform electric field E = E [cos(θ + π/6), sin(θ + π/6)],
where θ is measured with respect to a1 = (

√
3/2, 1/2) (see

Fig. 1 for our coordinate convention). The resulting effective
spin model is

Heff =
3∑

n=1

J (n)
1 (θ )

∑
i

Si · Si+an +
3∑

n=1

J (n)
2 (θ )

∑
i

Si · Si+a′
n

+
3∑

n=1

J (n)
3 (θ )

∑
i

Si · Si+a′′
n
+ Hring, (19)

where the sum over n represents the sum over inequivalent
bonds in the presence of an electric field, and the couplings
J1, J2, J3 are the first-, second-, and third-nearest-neighbor
Heisenberg interactions (see Fig. 1). The particular forms of
the couplings and their dependence on the electric field are

FIG. 2. Electric field dependence for the ratio of the ring ex-
change coupling J (m)

r on ring Rm to the nearest-neighbor Heisenberg
coupling J (n)

1 along the an bond direction with an electric field
(a) along bond a1 (θ = 0) and (b) halfway between bond a1 and
a2 (θ = π/6). We slightly shift overlapping curves to make them
visible. In actuality, some of the curves coincide due to symmetry
considerations.

lengthy and listed in Appendix B. Hring is the ring exchange
term generated by the t/U expansion:

Hring =
3∑

n=1

J (n)
r (θ )

∑
i, j,k,
∈R

[(Si · S j )(Sk · S
)

+ (Si · S
)(S j · Sk ) − (Si · Sk )(S j · S
)], (20)

where the detailed expressions of J (n)
r (θ ) are shown in Ap-

pendix B. We note that the exchange constants satisfy the
typical values for the triangular lattice in the limit E → 0 [32]

J1 = 4t2

U
− 28t4

U 3
, J2 = J3 = 4t4

U 3
, Jr = 80t4

U 3
. (21)

The most important feature of the model is that, although
the electric field amplifies many couplings, the ring exchange
grows faster than the other ones as E/U increases. This behav-
ior is illustrated in Fig. 2. It can be noticed that for the case of
the electric field along a1 (θ = 0), almost all of the Jr/J1 ratios
increase except for one of them. Similarly for θ = π/6, every
Jr/J1 ratio increases. This offers a way to tune the ratio Jr/J1

for most directions, which may potentially send the system
into the CSL.

Some intuition about the electric field dependence of the
ring exchange strength can be gained by making the follow-
ing observation. The electric field only enhances a coupling
strength if the electron’s potential energy changes along the
direction of a virtual hopping. For example, the enhancement
of the nearest-neighbor Heisenberg interaction is the strongest
if the electric field is parallel to the bond but is not modi-
fied at all if it is perpendicular. Although the ring exchange
couplings are very complicated, a similar idea emerges. If the
electric field is parallel to a1 (θ = 0), then the ring exchange
interactions for the rings R1 and R3 (see Fig. 1) are equally
enhanced because they both contain a1 bonds, but R2 contains
only a2 and a3 bonds, so it is not as strongly affected. A
similar scenario occurs if the electric field is applied halfway
between the bonds, say θ = π/6. In this case, both R2 and R3

214423-3



DANIEL J. SCHULTZ et al. PHYSICAL REVIEW B 109, 214423 (2024)

have bonds perpendicular to the field direction, but the electric
field has a nonzero projection on all four bonds in R1. For this
reason, the ring exchange for R1 is enhanced the most.

III. QUANTUM PHASE DIAGRAM FOR E/U = 0

We use DMRG to determine the ground state of the ef-
fective spin model using the TENPY package [61]. In two
dimensions, DMRG uses the one-dimensional matrix product
state (MPS) representation by snaking the MPS through a two-
dimensional unit cell of sites. We use iDMRG, wherein the
MPS unit cell has a length of Lx = 2 sites in the a1 direction
and length Ly = 6 sites in the a2 direction, but the unit cell
is repeated infinitely along a1. This facilitates a study of our
spin system on a cylinder with circumference Ly, and allows
us to compute long-ranged correlations along the a1 direction.
Our model has both full SU (2) rotational symmetry, but only
a U (1) symmetry subgroup of rotation is explicitly encoded in
constructing the MPS. Accordingly, we have Sz conservation,
and all results lie in the Sz

tot = 0 sector. The simulations were
done with bond dimension b = 1600.

In our simulations, we further introduce a chiral symmetry-
breaking term of the form

Hχ = Jχ

∑
i, j,k∈�,�

Si · (S j × Sk ). (22)

Here, i, j, k are three sites arranged counterclockwise around
the two triangle types � and �. Hχ is not a part of the t/U
expansion (unless there is an external magnetic field) and is
introduced to gently break chiral symmetry to allow the pos-
sibility of finding the chiral spin liquid. The coupling Jχ is set
to a very small number in the initialization of the simulations
and is subsequently set to zero. Further details regarding the
DMRG are given in Appendix C.

We first establish the results of the simulations in the ab-
sence of the electric field. Previously, a phase diagram has
been established for the J1-Jr model [32]. A sequence of tran-
sitions from spiral order to a chiral spin liquid (CSL), then to a
valence bond solid (VBS), and ultimately to a zigzag ordered
phase has been predicted as the ratio Jr/J1 increases. The ring
exchange model obtained from the t/U expansion is expected
to be similar because J2 and J3 are very small compared to Jr

(i.e., about Jr/20), and the ratio Jr/J1 increases monotonically
as a function of t/U . Indeed, we find a similar phase diagram
to that by Cookmeyer et al. [32], as shown in Fig. 3. At small
t/U , we find a 120° ordered phase. As we increase t/U , we
enter a chiral spin liquid phase, then a valence bond solid
phase. Lastly, we enter a zigzag-ordered phase at large t/U .
As illustrated in Figs. 3(a)–3(d), the phase transitions can be
clearly identified by jumps in the spin structure factor and
dimer structure factors at specific high symmetry points, as
well as a nonzero average scalar chirality indicating the CSL.
We expand further on the four different phases at zero electric
fields and how they can be identified.

Spiral order. The 120° ordered phase is a classical long-
range ordered phase. It can be identified by strong peaks in
the spin structure factor

S(k) =
∑

i j

eik·(Ri−R j )(〈Si · S j〉 − 〈Si〉〈S j〉), (23)

FIG. 3. Phase diagram and values of correlators as a function of
t/U for zero electric field. (a) Spin structure factor at the K point in
the Brillouin zone (BZ), (b) Spin structure factor at the Y point in the
BZ, (c) Scalar chirality, (d) dimer structure factor along the a2 bond
at the M ′′ point in the BZ, (e) phase diagram as a function of t/U .

at K, K ′ points in the Brillouin zone (i.e., the ordering wave
vector). The classical spin configuration is a three-site unit
cell with the three spins angled at 120° relative to one an-
other. When the electric field is nonzero, the ordering wave
vector shifts slightly from the high symmetry K, K ′ points and
changes continuously with the electric field strength. To be
general, we shall accordingly refer to this phase as a spiral
order. The spiral phase should be understood as a classically
ordered magnet with an ordering wave vector close to the
K point adiabatically connected to the 120° order. The 120°
order name will only be used when the spiral phase is at zero
electric field and has a commensurate order.

Chiral spin liquid. The CSL is a QSL that supports
deconfined fractional excitations and breaks time-reversal
symmetry. It can identified by the nonzero scalar chirality χ ,
defined by

χ = 1

2LxLy

∑
i, j,k∈�,�

〈Si · (S j × Sk )〉, (24)

where we average over all triangles of the lattice (there are
2LxLy many triangles). The nonzero spin chirality is not
definitive evidence for the CSL since classical noncoplanar or-
ders also have χ �= 0. More conclusive evidence for the CSL
can be obtained by investigating the entanglement spectrum
of this state shown in Fig. 4. The spectrum breaks inversion
symmetry, which is indicative of the presence of the chiral
edge modes. It is identical to the one reported in Ref. [32]
where it has been argued that each of the levels with spin
quantum numbers |Sz| ∈ {0, 1, 2} shows the degeneracy pat-
tern expected for the Kalmeyer-Laughlin wave function [62].

Valence bond solid 1. A valence bond solid describes a cov-
ering of the lattice with singlet states of two spins. The trian-
gular lattice has six simple nearest-neighbor dimer coverings,
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FIG. 4. The momentum resolved entanglement spectrum of the
chiral spin liquid at t/U = 0.097 and E/U = 0. The y axis is
− log(s2

α ), where sα are the Schmidt values, and the x axis is the
momentum ky around the cylinder.

depicted pictorially in Appendix D 2. To probe different dimer
coverings, we can compute different dimer structure factors
defined in terms of dimer operators Dn

i = Si · Si+an by

Dn(k) =
∑

i j

eik·(Ri−R j )
(〈

Dn
i Dn

j

〉 − 〈
Dn

i

〉〈
Dn

j

〉)
. (25)

A VBS state has sharp peaks in its dimer structure factors. The
dominant dimer covering correlation can further be identified
by the position by the peak locations of three different dimer
structure factors, as explained in Appendix D 2. For the va-
lence bond solid 1 (VBS1) state, the dominant dimer-dimer
correlations have been determined to be along the a1 and
a3 bonds (see Figs. 11–13). As a first-order approximation,
one can then think schematically of VBS1 as an equal-weight
superposition of the two dominant dimer coverings

(26)

Zigzag. The zigzag phase is a long-range ordered phase
with ordering momentum at the Y point in the Brillouin zone.
We identify it by strong peaks in the static spin structure factor
at this high symmetry point. The spin configuration of this
order is given by Fig. 5.

FIG. 5. Zigzag spin configuration. The order has a four-site unit
cell, and two unit cells are shown.

FIG. 6. Phase diagram with an electric field along the a1 bond
(θ = 0). Observables along the vertical dash-dotted line are depicted
in Fig. 7

A detailed characterization of all phases identified in this
work is provided in Appendix E. There, we present the spin-
spin correlations in real and momentum space, the three
dimer-dimer correlations in real and momentum space, as
well as the entanglement spectrum as a function of transverse
momentum and total spin quantum number Sz for all phases.

IV. QUANTUM PHASE DIAGRAM FOR E/U �= 0

In the previous two sections, we made the following ob-
servations: the electric field introduces spatial anisotropy in
the spin exchange Hamiltonian and (typically) increases the
ring exchange relative to the Heisenberg exchange for specific
directions depending on the electric field orientation. These
effects lead to a competition between two opposite trends.
On the one hand, the resulting spatial anisotropy reduces the
amount of frustration and would favor magnetic order. On the
other hand, increasing the magnitude of the ring exchange
(and correspondingly increasing the frustration) can drive the
system towards a CSL. This naturally leads to the question:
Is the increased frustration due to the enhanced ring exchange
sufficient to overcome the reduced frustration caused by the
spatial anisotropy and shift the CSL towards smaller t/U?
That is the question that we will address in this section.

Having established the phase diagram without an electric
field, we now set E �= 0 and modify the effective exchange
couplings. The angle θ of the electric field is defined with
respect to the vector a1 = (

√
3, 1)/2, as shown in Fig. 1. We

will consider two different high symmetry directions of the
electric field, namely θ = 0 (aligned along a1), and θ = π/6
(aligned along a1 + a2).

A. Electric field along θ = 0

As illustrated in Fig. 6, aligning the electric field along
a1 makes the phase boundaries shift as the electric field
increases. More precisely, the phase boundaries are generally
shifted towards smaller t/U . The general shifting of the
phase boundaries to smaller t/U as the field is increased

214423-5
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FIG. 7. Phase diagram and values of correlators at fixed t/U =
0.09 as a function of E/U for the electric field pointing along the a1

bond (θ = 0). (a) The spin structure factor at the K point in the BZ.
(b) The scalar chirality. (c) The dimer structure factor along the a1

bond at the M ′ point in the BZ. (d) The dimer structure factor along
the a2 bond at the M ′′ point in the BZ. (e) The overall phase diagram
for this line.

is logical, considering that the electric field enhances the
relative importance of the ring exchange. The effect of a
nonzero electric field is thus naively comparable to a direct
increase of t/U . This general shifting of the phase boundaries
implies that starting from a classically ordered state, one can
promote the system to a CSL by applying an external electric
field. Figure 6 explicitly demonstrates that a dc electric field
can be used as an efficient tuning parameter to promote QSLs.

This possibility to stabilize QSL by applying an electric field
is the central point we wish to convey in this work.

Let us see in more detail how the chiral spin liquid arises
as we travel along a vertical line. The evolution of different
observables as the electric field is increased for a fixed value
of t/U = 0.09 is presented in Fig. 7 (this corresponds to the
dash-dotted vertical line in Fig. 6). Starting from the spiral
phase, it transitions to a CSL with nonzero chirality at around
E/U = 0.1. However, because we are traveling roughly par-
allel to the phase boundary, the order parameter grows slowly
until it reaches its typical value of around χ = 0.01 at around
E/U = 0.18. It has been explicitly determined that this CSL
is the same for zero electric field by directly comparing their
entanglement spectra. For any nonzero electric field, the CSL
entanglement spectrum remains identical to Fig. 4, and we do
not see any sign of a phase transition. Finally, as we leave the
CSL at around E/U = 0.22, we enter a new phase, labeled
VBS2, which does not occur at zero electric field.

The VBS2 phase, just like the VBS1 phase, is a VBS phase
as seen from its strong peaks in the dimer structure factors at
high symmetry points in the Brillouin zone [see Figs. 8(a1)–
8(a3)]. In order to determine the dominant dimer coverings
in the wave function, we compare the peaks of the dimer
structure factor with those expected for the various dimer
coverings in (see Figs. 11–13 of Appendix D 2). The highest
peaks are in the dimer structure factor for singlets along the a2

direction. Thus, we can conclude that the translation vectors
of the dimer covering are given by a1 and 2a2 − a1. From this
analysis, one can then consider that the VBS2 wave function
is conceptually of the form

(27)

(a1)

(b1) (b2) (b3)

(a2) (a3)

V
B
S 2

V
B
S 3

FIG. 8. Dimer structure factors D1(k), D2(k), and D3(k) for the VBS2 (a1)–(a3) phase with t/U = 0.099 and E/U = 0.200 at an angle
θ = 0, and the VBS3 (b1)–(b3) phase with t/U = 0.102 and E/U = 0.250 at an angle θ = π/6 = 0.524.
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FIG. 9. Phase diagram with an electric field between the a1 and
a2 bonds (θ = π/6). Observables along the vertical dash-dotted line
are depicted in Fig. 10

Of course, there may be contributions from other dimer cov-
erings, but we only include the dominant one to provide an
intuitive understanding of the different VBS phases.

B. Electric field along θ = π/6

If we instead align the electric field along a1 + a2 (θ =
π/6), then the coupling constants evolve in a slightly different
way, as can be seen in Fig. 2. The phase diagram obtained
in this configuration is presented in Fig. 9. The same overall
behavior as for the θ = 0 case can be observed with the phase
boundaries roughly shifting at smaller ratios of t/U as the
electric field strength increases. As illustrated by the vertical
dash-dotted line in Fig. 9 and the evolution of observables
along that line in Fig. 10, the electric field can once again be
used to stabilize a CSL starting from a spiral ordered phase.
For the specific ratio t/U = 0.09 presented in Fig. 10, one
can observe that the electric field necessary to stabilize the
CSL is approximately the same as for the θ = 0 case (i.e.,
see Fig. 10). Despite these similarities, some salient differ-
ences remain between the phase diagrams obtained for the
two field directions. In particular, for large electric fields, the
VBS2 (which has form given in Eq. (27); see Figs. 11–13)
phase becomes more stable than the CSL much faster with
θ = π/6 whereas the CSL ground state persists for the largest
values of the electric field examined in the θ = 0 case. For
θ = π/6, there is also a new exotic phase, labeled as VBS3

and discussed below, that emerges for large values of t/U and
electric field strength that is absent from the θ = 0 phase dia-
gram. These differences between the phase diagrams obtained
with the two field directions demonstrate that the electric
field direction can be used as a further degree of freedom to
potentially promote QSLs and other exotic magnetic phases
even for SU(2) symmetric models in the absence of spin-orbit
coupling.

As mentioned above, we find a new phase (VBS3) at a large
electric field and ratio of t/U , which we tentatively label as a
valence bond solid. This state has weak spin-spin correlations
that decay fast in real space and rather strong dimer-dimer

FIG. 10. Phase diagram and values of correlators at fixed t/U =
0.09 as a function of E/U for the electric field pointing between
the a1 and a2 bonds (θ = π/6). (a) The spin structure factor at the
K point in the BZ. (b) The scalar chirality. (c) The dimer structure
factor along the a1 bond at the M ′ point in the BZ. (d) The dimer
structure factor along the a1 bond at the M point in the BZ. (e) The
overall phase diagram for this line

correlations as seen from the sharp peak in its dimer structure
factor illustrated in Figs. 8(b1)–8(b3) and the associated
slow decay of the dimer-dimer correlations in real space
(see Figs. 14–21). This rules out the possibility of magnetic
order and suggests that the phase is once again another VBS
state. However, we could not conclusively identify it because
the sharp peaks in the dimer structure factor are not at high
symmetry points in the Brillouin zone. Thus, we cannot asso-
ciate the presumed dimer covering with one of the six simple
coverings listed in Appendix D 2. At this level of analysis,
the most likely scenario is that this phase corresponds to a
nontrivial dimer covering with a large unit cell and that the
related peaks in its dimer structure factor are at momentum
points we cannot access due to our unit cell choice. DMRG
simulations could potentially confirm this with a different
cylinder circumference Ly that would have access to new
points in momentum space. Nevertheless, this phase only
appears at large values of t/U and electric field strength that
are likely not experimentally relevant. The unambiguous de-
termination of the nature of this phase is also beside the main
point of this work (i.e., studying the possibility of stabilizing
a QSL by applying an electric field). Further investigation of
the nature of this phase is thus left for future work.

V. CONCLUSIONS

In summary, we have derived the ring exchange model in
the Mott insulating regime of the triangular lattice Hubbard
model in the presence of a dc electric field. The result-
ing model has a nearest-neighbor, next-nearest-neighbor, and
third-nearest-neighbor Heisenberg interaction and ring ex-
change interaction. For each of the different orientations
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of bonds and rings, the electric field causes the exchange
parameters to be spatially anisotropic. The dependence is
quite complicated, but the electric field generally tends to
enhance the ring exchange couplings compared to the domi-
nant (nearest-neighbor) Heisenberg interaction. This provides
a way of effectively tuning t/U by instead increasing the
electric field.

By performing DMRG simulations, we have computed the
phase diagram of the model for two directions of the electric
field. Without the electric field, the system magnetically
orders at large and small t/U into spiral and zigzag orders,
respectively. The system enters a CSL phase or valence bond
solid in the intermediate regime. Increasing the electric field
along a bond of the lattice, we find that we are able to start in
the spiral-ordered phase and enter the CSL. We also find that
the VBS switches to a different VBS at a large electric field. If
we instead increase the electric field along a direction halfway
between two lattice bonds, a magnetically ordered phase can
once again be promoted to a CSL. For the two different angle
choices, the overall phase diagrams look slightly different and
contain different phases, implying that the field direction can
be used as an extra degree of freedom to potentially stabilize
exotic magnetic phases even in the absence of spin-orbit
coupling.

The physical origin of the CSL shifting towards smaller
t/U under increasing E/U may be understood in the fol-
lowing way. Without an electric field, the system’s energy
is lowered when virtual hopping is possible, which is only
allowed by the Pauli principle when the two spins are in op-
posite directions. The virtual hopping event incurs an energy
cost of U , and weaker U allows for more frequent charge
fluctuations. This explains the origin of the ordinary antiferro-
magnetic Heisenberg interaction of strength J = 4t2/U . In the
presence of an electric field, the energy cost of performing the
virtual hopping between sites instead becomes U ± ��, with
�� being the change in electric potential energy between the
two sites. Hopping with the electric field increases the energy
cost of the virtual state, whereas hopping against decreases the
energy cost. The average of the two is what gives rise to the
nearest-neighbor Heisenberg coupling of

J = 2t2

(
1

U + ��
+ 1

U − ��

)
= 4t2

U

1

1 − (��)2/U 2
,

(28)

which satisfies J � 4t2/U [i.e., this equation is the general
form of Eq. (B14) truncated to order t2/U ]. Thus, enhance-
ment occurs whenever the field has a component along the
hopping direction. This reasoning similarly applies to the
fourth-order processes we compute in this work. The only
additional complication is that the number of virtual hopping
paths is vastly increased, but the intuition is still appli-
cable overall. It then makes sense that the ring exchange
couplings would increase relative to the nearest-neighbor
Heisenberg ones because there may be multiple bonds in
the ring that are enhanced by the electric field, whereas the
nearest-neighbor Heisenberg has only one such bond. Such a
relative enhancement of the ring exchange term is illustrated
in Fig. 2.

It is then of concern to note why the enhanced ring ex-
change may promote the chiral spin liquid phase. As noted
by Cookmeyer et al. [32], the ring exchange term can be
rewritten in terms of chiral terms in the following way.
Defining O�(i, j, k) = 2Si · (S j × Sk ), where i, j, k are ori-
ented counterclockwise around a triangle of orientation
� (defined similarly, also in the counterclockwise direc-
tion, for O�), and also χ2

i jk
 = O�(i, j, 
)O�(k, 
, j) +
O�(k, 
, j)O�(i, j, 
), then the ring exchange interaction can
be rewritten as [32]

Ri jk
 = (Si · S j )(Sk · S
) + (Si · S
)(S j · Sk )

− (Si · Sk )(S j · S
) (29)

= aχ2
i jk
 + bχ4

i jk
 + cχ6
i jk
 + spin bilinears, (30)

for some coefficients a, b, c, whose values are not important
here. The connection between ring exchange interactions and
chiral symmetry breaking is evident if one performs a mean-
field decoupling on the above rewriting. This observation,
combined with the relative enhancement of the ring exchange,
explains why the CSL tends to become favorable as one in-
creases E/U .

We have demonstrated that a CSL can be obtained from
a spiral-ordered state by applying a dc electric field to the
half-filled triangular lattice Hubbard model at strong coupling.
Although one needs to start relatively close to the phase
boundary of the CSL, this is an essential proof of concept for
the ability of the electric field to act as an experimentally tun-
ing knob to stabilize QSL. It would be interesting to explore
the impact of an electric field on the phase diagram of other
spin models, where it may have a more pronounced effect.
Furthermore, the formalism for deriving the ring exchange
model in an electric field applies in principle to any lattice,
although the specific forms of couplings would change. Our
results present new opportunities for studying field-induced
spin liquid behavior.
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APPENDIX A: DETAILS OF THE
CANONICAL TRANSFORMATION

The Hubbard Hamiltonian in the electric field is composed
of several terms:

H = T + + T − + T 0 + HU + HE . (A1)
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These terms are defined in the main text, but we will repeat
their definitions here for convenience:

T + =
∑

i j

T +
i j , T − =

∑
i j

T −
i j , T 0 =

∑
i j

T 0
i j , (A2)

T +
i j = −

∑
σ

ti jni,−σ c†
iσ c jσ h j,−σ , (A3)

T −
i j = −

∑
σ

ti jhi,−σ c†
iσ c jσ n j,−σ , (A4)

T 0
i j = −

∑
σ

ti j[hi,−σ c†
iσ c jσ h j,−σ + ni,−σ c†

iσ c jσ n j,−σ ] (A5)

HU = U
∑

i

c†
i↑c†

i↓ci↓ci↑ (A6)

HE =
∑

iσ

�ic
†
iσ ciσ . (A7)

We define the potential to be V = HU + HE and the perturba-
tion to be W = T + + T −. As mentioned in the main text, we
perform a canonical transformation by defining

Heff = eiSHe−iS, (A8)

where we write S = S(1) + S(2) + S(3) + · · · as an expansion
in terms of S(n) ∝ (t/U )n. Each term in the expansion is
defined so that it will exactly eliminate operators in Heff,
which changes the number of doubly occupied sites to order
t n/U n−1. After we solve for S to a certain order n, then we
project everything to the half-filled subspace. To solve for S(n),
we must do an iterative procedure, first finding S(1), then using
S(1) to find S(2), and so on. Let us start by expanding Eq. (A8)

to order t2/U :

H (2)
eff = H + [iS(1), H] + 1

2 [iS(1), [iS(1), H]]

= T + + T − + T 0 + V + [iS(1), T + + T − + T 0 + V ]

+ 1
2 [iS(1), [iS(1), T + + T − + T 0 + V ]]. (A9)

To determine S(1), we want to remove operators that change
the number of doubly occupied sites. These terms at order
t are T + + T −. We see that [iS(1),V ] is also of order t and
therefore wish to use it to cancel T + + T −, and thereby set

[iS(1),V ] + T + + T − = 0. (A10)

Solving this equation for iS(1) is often done with a guess
and check method. However, when such commutator equa-
tions become increasingly complicated, it is beneficial to
use the following general formula. To solve the commu-
tator equation [X, A] = B for an unknown X , we have
that

X = i lim
η→0+

∫ ∞

0
eiArBe−iAre−ηrdr. (A11)

Thus, the solution for iS(1) is given by

iS(1) = 1

U

∑
i j

�i j (T
+

i j − T −
ji ), (A12)

whereby the factor �i j encodes the electric field:

�i j = 1

1 + �i j
. (A13)

It reduces to one when the electric field is constant, or �i j =
0. Note that S(1) reduces to the familiar expression in this case.
Now, we can move on to the next order. The effective Hamil-
tonian to order t3/U 2 is given by using the first two terms in
the canonical transformation generator, iS = iS(1) + iS(2):

H (3)
eff = H + [iS(1) + iS(2), H] + 1

2
[iS(1) + iS(2), [iS(1) + iS(2), H]] + 1

3!
[iS(1) + iS(2), [iS(1) + iS(2), [iS(1) + iS(2), H]]]. (A14)

Truncated to order t3/U 2, this gives us

H (3)
eff = T + V + [iS(1) + iS(2), T + V ] + 1

2
([iS(1), [iS(2),V ]] + [iS(2), [iS(1),V ]] + [iS(1), [iS(1), T ]])

+ 1

3!
[iS(1), [iS(1), [iS(1),V ]]]. (A15)

We now want to use iS(2) to remove operators which, at order t2/U , bring us away from the half-filled subspace. Expanding
out the commutators in the above equation, we have

H (3)
eff = T 0 + V + [iS(1), T 0] + 1

2
[iS(1), T + + T −] + [iS(2),V ] + [iS(2), T ]

+ 1

2
([iS(1), [iS(2),V ]] + [iS(2), [iS(1),V ]] + [iS(1), [iS(1), T ]]) + 1

3!
[iS(1), [iS(1), [iS(1),V ]]], (A16)

where the only term that changes the number of doubly occupied sites is [iS(1), T 0], which we will cancel out with the [iS(2),V ]
term. We can set the sum of these equal to zero and use it to solve for iS(2). Therefore,

[iS(1), T 0] + [iS(2),V ] = 0. (A17)

The solution of this commutator equation is given by

iS(2) = 1

U 2

∑
i j pq

�i j pq
([

T +
i j , T 0

pq

] + [
T −

ji , T 0
qp

])
. (A18)
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The �i j pq factor, containing information about the electric field, is given by

�i j pq = �i j

1 + �i j/U + �pq/U
. (A19)

Finally, we can calculate the Hamiltonian at fourth order in perturbation theory. We now want to eliminate all operators at
t3/U 2 order that leave the singly occupied sector. There are, unfortunately, many more terms that need to be eliminated now.
Expanding out the Hamiltonian to fourth order,

H (4)
eff = H + [iS(1) + iS(2) + iS(3), H] + 1

2
[iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), H]]

+ 1

3!
[iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), H]]]

+ 1

4!
[iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), [iS(1) + iS(2) + iS(3), H]]]], (A20)

which, truncated to order t4/U 3 is given by

H (4)
eff = H + [iS(1),V ] + [iS(1), T ] + [iS(2),V ] + 1

2
[iS(1), [iS(1),V ]]

+ [iS(2), T ] + [iS(3),V ] + 1

2
([iS(1), [iS(1), T ]] + [iS(1), [iS(2),V ]] + [iS(2), [iS(1),V ]]) + 1

3!
[iS(1), [iS(1), [iS(1),V ]]]

+ [iS(3), T ] + 1

2
([iS(1), [iS(2), T ]] + [iS(2), [iS(1), T ]] + [iS(2), [iS(2),V ]] + [iS(1), [iS(3),V ]] + [iS(3), [iS(1),V ]])

+ 1

3!
([iS(1), [iS(1), [iS(2),V ]]] + [iS(1), [iS(2), [iS(1),V ]]] + [iS(2), [iS(1), [iS(1),V ]]] + [iS(1), [iS(1), [iS(1), T ]]])

+ 1

4!
[iS(1), [iS(1), [iS(1), [iS(1),V ]]]]. (A21)

The first line has order U, t, t2/U terms, the second and third lines have order t3/U 2 terms, and the last three are order t4/U 3.
Of course, there are cancellations of terms that occur due to plugging in the forms of iS(1), iS(2) derived above, but this is simply
the general expression. At this stage, we want to remove all operators that change the number of doubly occupied sites to order
t3/U 2. The operators in this order, which change the number of doubly occupied sites are canceled by the [iS(3),V ] term, yielding
the condition

[iS(3),V ] + [iS(2), T 0] + 1

2U 2

∑
i j pq

�i j pq
([[

T +
i j , T 0

pq

]
, T +] + [[

T −
ji , T 0

qp

]
, T −]) + 1

3
[iS(1), [iS(1), T + + T −]] = 0 (A22)

Solving this equation gives the canonical transformation to be

iS(3) = 1

U 3

∑
i j pqab

�i j pqab
([[

T +
i j , T 0

pq

]
, T 0

ab

] − [[
T −

ji , T 0
qp

]
, T 0

ba

]) + 1

2U 3

∑
i j pqab

�′
i j pqab

([[
T +

i j , T 0
pq

]
, T +

ab

] − [[
T −

ji , T 0
qp

]
, T −

ba

])

+ 1

3U 3

∑
i j pqab

�i j (�pq + �ab)�i j pqba([T +
i j , [T +

pq, T −
ba ]] + [T −

ji , [T +
ab , T −

qp]]), (A23)

where the factors encoding the electric field are given by

�i j pqab = �i j pq

1 + �i j/U + �pq/U + �ab/U
, (A24)

�′
i j pqab = �i j pq

2 + �i j/U + �pq/U + �ab/U
, (A25)

�i j pqab = 1

1 + �i j/U + �pq/U + �ab/U
. (A26)

The effective Hamiltonian, then simplifying Eq. (A21) as much as possible without substituting in the specific forms of
iS(1), iS(2), and iS(3), gives us

H (4)
eff = T 0 + V + 1

2U

∑
i j

�i j ([T
+

i j , T −] − [T −
ji , T +]) + 1

2U 2

∑
i j pq

�i j pq
([[

T +
i j , T 0

pq

]
, T −] + [[

T −
ji , T 0

qp

]
, T +])
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+ [iS(3), T 0] + 1

2
[iS(3), T + + T −] + 1

3
[iS(1), [iS(2), T + + T −]] + 1

3
[iS(2), [iS(1), T + + T −]]

− 1

24
[iS(1), [iS(1), [iS(1), T + + T −]]] − 1

4U 2

∑
i j pq

�i j pq[iS(1), [[T +
i j , T 0

pq], T +] + [[T −
ji , T 0

qp], T −]]. (A27)

The resulting Hamiltonian now has exactly zero fluctuations to and from the doubly occupied sector to order t3/U 2. The final
step, which is to project to the singly occupied subspace, thus incurs an error of order t4/U 3. The projection immediately
provides numerous simplifications. The key observations are that, since a state |�〉 in the singly occupied subspace Hspin has no
doubly occupied sites, so T − |�〉 = 0 and 〈�| T + = 0. Furthermore, T 0 |�〉 = 0 because it involves the annihilation of empty
and doubly occupied states, neither of which exist in Hspin. We also note that terms with an unequal number of T + and T −
operators go to zero because they cannot return to Hspin. Additionally, V |�〉 is a constant we can ignore. Due to this, most of
the terms in the above disappear completely because they are either constant or every operator in the commutator string has an
unequal number of T + and T −. The remaining nontrivial terms then become

H (4)
eff = 1

2U

∑
i j

�i j ([T
+

i j , T −] − [T −
ji , T +]) + 1

2U 2

∑
i j pq

�i j pq
([[

T +
i j , T 0

pq

]
, T −] + [[

T −
ji , T 0

qp

]
, T +])

+ 1

2
[iS(3), T + + T −] − 1

24
[iS(1), [iS(1), [iS(1), T + + T −]]]. (A28)

Now, plugging the explicit expressions of iS(1) and iS(3) in and relabelling indices appropriately yields

H (4)
eff = − 1

2U

∑
i j

(�i j + �ba)T −
ab T +

i j + 1

2U 2

∑
i j pq

(�i j pq + �abqp)T −
ab T 0

pqT +
i j

− 1

2U 3

∑
abi jmnpq

Aabi jmnpqT −
ab T 0

i j T
0

mnT +
pq + 1

6U 3

∑
abi jmnpq

Babi jmnpqT −
ab T +

i j T −
mnT +

pq

− 1

6U 3

∑
abi jmnpq

Cabi jmnpqT −
ab T −

i j T +
mnT +

pq

− 1

24U 3

∑
abi jmnpq

Dabi jmnpqT −
ab T +

i j T −
mnT +

pq + 1

24U 3

∑
abi jmnpq

Eabi jmnpqT −
ab T −

i j T +
mnT +

pq, (A29)

where the electric field-dependent constants are

Aabi jmnpq = �ba jinm + �pqmni j, (A30)

Babi jmnpq = (�ba�i j + 2�ba�nm + �nm�i j )�nmba ji + (�pq�nm + 2�pq�i j + �i j�nm)�i j pqmn, (A31)

Cabi jmnpq = �ba(�mn + � ji )�ba jinm + �pq(� ji + �mn)�pqmni j, (A32)

Dabi jmnpq = �ba�i j�nm + 3�ba�i j�pq + �i j�nm�pq + 3�ba�nm�pq, (A33)

Eabi jmnpq = 2�ba�mn�pq + 2�ba� ji�pq. (A34)

The last step is to convert the strings of second quantized operators into the spin Hilbert space. To do this, one can compute
the matrix elements of the H (4)

eff in the basis of spin up/down on every site. This will yield bilinear terms across nearest-neighbor,
next-nearest-neighbor, and third-nearest-neighbor sites, as well as ring exchange terms that connect four spins in a ring. Three
spin terms are prohibited by time-reversal symmetry, which the electric field does not break. This gives the result Eq. (19) in the
main text, with coupling constants given in Appendix B. Explicitly, if we have some operator O, which acts on N sites (in the
singly occupied subspace), then we wish to express it in terms of spin operators as

O =
∑

i1,...,iN =x,y,z

ci1,...,iN Si1
1 . . . SiN

N , (A35)

where Si
n is the ith component (i = x, y, z) of a spin operator acting on site n. To do this, we note that the strings of fermionic

operators appear in two forms, both of which are related to spin operators:

h−αc†
αcβh−β = |α〉 〈β| = δαβ (S0 + η(α)Sz ) + δα,−β (Sx + iη(α)Sy), (A36)

cαn−αn−βc†
β = η(α)η(β ) |−α〉 〈−β| = η(β )[δαβ (S0η(α) − Sz ) + δα,−β (Sxη(α) − iSy)], (A37)
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where η(↑) = 1, η(↓) = −1, and the S operators are half of
the Pauli matrices (including S0, which is half of the 2 × 2
identity matrix). Note that when putting operators into the
above form, one needs to be careful of fermionic exchange
statistics. Doing this leads to the spin model in Eq. (19).

APPENDIX B: ELECTRIC-FIELD DEPENDENT
COUPLING CONSTANTS

We take the matrix elements of the effective Hamiltonian
in Eq. (A29) on different numbers of sites, which essentially
leads to different site indices being set equal to one another be-
cause the electrons must undergo virtual hoppings in a closed
loop. For the second-order (t2/U ) contribution, the effective
Hamiltonian becomes

H (2) = 2

U

∑
i j

t2
i j

1

1 − �2
i j/U 2

Si · S j . (B1)

The order t3/U contribution yields nothing because time-
reversal symmetry is not broken. The terms at order t4/U 3

have numerous contributions. First, there is the case when the
electrons undergo four hopping processes but just on two sites,
which leads to only nearest-neighbor interactions. Then, there
are contributions where the electrons hop four times, but this
time on three different sites. If these three sites are collinear,
this leads to third-nearest-neighbor interactions, but if they are
not, it leads to second-nearest-neighbor interactions. Both of
these also contain nearest-neighbor terms as well. Lastly, the
contributions where electrons hop on four sites in a closed
loop gives contributions on a rhombus, which yields terms for

nearest-neighbor, second-nearest-neighbor, and ring exchange
couplings. It is somewhat involved to obtain these electric-
field-dependent coupling constants. Thus, we will show how
it is done in detail for the two site contributions, and then show
only a couple intermediate steps for the three- and four-site
contributions.

1. Two-site contributions

At fourth order, there are three operator strings to con-
sider: T −T 0T 0T +, T −T +T −T +, and T −T −T +T +. For the
two-site contribution, the operator string T −T 0T 0T + first cre-
ates a doubly occupied site, meaning one of the two sites
is empty and the other is full. From here, there is no way
to move a single electron without changing the number of
doubly occupied sites (which is the role of T 0), which tells
us that (T −T 0T 0T +)2-site = 0. Furthermore, it is not possible
to create two doubly occupied sites if you only have two sites
to work with, so also (T −T −T +T +)2-site = 0. Thus, we only
need to find the representation of T −T +T −T + on two sites.
We therefore overlap the eight sites to get two nonzero terms,
when projected to the singly occupied subspace:

(T −
ab T +

i j T −
mnT +

pq )2-site = − 4δbiδa jδnpδmqδamδnbt4
baSa · Sb

− 4δbiδa jδnpδmqδanδbmt4
baSa · Sb. (B2)

Note that, strictly speaking, taking matrix elements of an
operator such as T −

ji T +
i j T −

ji T +
i j , we would half

T −
ji T +

i j T −
ji T +

i j = 4t4
i j

(
S0

i S0
j − Si · S j

)
, (B3)

where S0 = σ 0/2 is half of the identity matrix, which only leads to a constant offset in energy and is therefore discarded.
Plugging Eq. (B2) into Eq. (A29) therefore gives us

H (4)
2-site =

∑
i j

t4
i j

[
1

6U 3
(Bjii j jii j + Bjii ji j ji )(−4Si · S j ) − 1

24U 3
(Djii j jii j + Djii ji j ji )(−4Si · S j )

]
(B4)

= − 2

U 3

∑
i j

t4
i j�i j

(
2�2

i j + �i j� ji + �2
ji

)
Si · S j . (B5)

Since the hopping is symmetric, we can symmetrize the above expression to get

H (4)
2-site = − 1

U 3

∑
i j

t4
i j

[
�i j

(
2�2

i j + �i j� ji + �2
ji

) + � ji
(
2�2

ji + � ji�i j + �2
i j

)]
Si · S j (B6)

= − 8

U 3

∑
i j

t4
i j

1 + �2
i j

/
U 2(

1 − �2
i j

/
U 2

)3 Si · S j . (B7)

2. Three-site contributions

We again consider the three operator strings: T −T 0T 0T +, T −T +T −T +, and T −T −T +T +. On three sites, again it is not
possible to create two doubly occupied sites (we only have three electrons total, because the system is half-filled), so we have
that (T −T −T +T +)3-site = 0. We thus need to consider the other two terms. These two terms yield(−T −

ab T 0
i j T

0
mnT +

pq

)
3-site

= 2δa jδinδmqδbpδamt2
pat2

ai(Sp · Sa) + 2δbiδ jmδaqδnpδpit
2
ait

2
im(Sa · Si )

+ δbiδanδ j pδmqδimt2
amt2

mp(Sm · Sp − Sa · Sp + Sa · Sm)

+ δa jδbmδiqδpnδapt2
mat2

ai(Sa · Si − Sm · Si + Sm · Sa),

(T −
ab T +

i j T −
mnT +

pq )3-site = δbiδa jδnpδmqδamt2
bat2

an(−Sa · Sn + Sb · Sn − Sb · Sa) (B8)
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+ δbiδa jδnpδmqδant2
batam(−Sa · Sm + Sb · Sm − Sb · Sa)

+ δbiδa jδnpδmqδbmt2
abt2

bn(−Sb · Sn + Sa · Sn − Sa · Sb)

+ δbiδa jδnpδmqδbnt2
abt2

bm(−Sb · Sm + Sa · Sm − Sa · Sb),

where the δ functions cause the sites to overlap. The δ functions are explicitly kept to illustrate how the site indices on the
A, B,C, D, E coefficients need to be replaced as the different overlapping configurations are considered. As in the two-site
case, the resulting A, B,C, D, E coefficients will simplify when the symmetrized combinations are taken. Doing this gives the
three-site Hamiltonian to be

H (4)
3-site = 2

U 3

∑
i jk

t2
i jt

2
jk

⎧⎨
⎩Si · Sk

⎡
⎣2

1 − �2
i j�

2
jk/U 4(

1 − �2
i j/U 2

)2(
1 − �2

jk/U 2
)2 − 1 + �i j�ik/U 2 + �i j� jk/U 2 + �ik� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

jk/U 2
)(

1 − �2
ik/U 2

)
⎤
⎦

+ 2Si · S j

⎡
⎣ 1 + 2�i j�ik/U 2 + �2

i j/U 2(
1 − �2

i j/U 2
)2(

1 − �2
ik/U 2

) − 2(1 − �2
i j�

2
jk/U 4)(

1 − �2
i j/U 2

)2(
1 − �2

jk/U 2
)2

+1 + �i j�ik/U 2 + �i j� jk/U 2 + �ik� jk/U 2(
1 − �2

i j/U 2
)(

1 − �2
jk/U 2

)(
1 − �2

ik/U 2
)

⎤
⎦

⎫⎬
⎭. (B9)

The reason that this three-site contribution yields nearest-neighbor interactions is clear from the Si · S j term, but in fact, the
Si · Sk term can also contribute to the nearest-neighbor interaction on the triangular lattice (but not on the square lattice). Finally,
the Si · Sk term contributes to both the second- and third-nearest-neighbor interactions because three sites participate in virtual
hoppings connecting those spins.

3. Four-site contributions

The three operator strings T −T 0T 0T +, T −T +T −T +, and T −T −T +T + all contribute to the four-site Hamiltonian. This
time however, the T −T +T −T + term only produces disconnected terms, which have intermediate hoppings of the form
t2
i jt

2
k
. These disconnected terms are canceled by further terms in T −T −T +T +. Below, we will only list the connected

terms:(−T −
ab T 0

i j T
0

mnT +
pq

)
4-site

= 1
2 taptpmtmitiaδa jδinδmqδbp(4Rapmi − Sm · Si + Sp · Si + Sp · Sm − Sa · Si − Sa · Sm + Sa · Sp)

+ 1
2 taitiptpmtmaδbiδanδ j pδmq(4Raipm − Sp · Sm − Si · Sm + Si · Sp + SaSm − Sa · Sp − Sa · Si )

+ 1
2 tamtmptpitpaδa jδbmδiqδpn(4Rampi − Sp · Si − Sm · Si + Sm · Sp + Sa · Si − SaSp − Sa · Sm)

+ 1
2 taitimtmptpaδbiδ jmδaqδnp(4Raimp − Sm · Sp − Si · Sp − Si · Sm + SaSp + SaSm + Sa · Si ), (B10)

and the ring exchange contribution (ignoring the disconnected part) from the T −T −T +T + term is given by

(−T −
ab T −

i j T +
mnT +

pq )4-site = 1
2 tamtmitiptpaδqaδp jδinδbm(4Ramip − Si · Sp + Sm · Sp − Sm · Si − Sa · Sp + Sa · Si − Sa · Sm)

+ 1
2 taptpitimtmaδqiδpbδanδ jm(4Rapim − Si · Sm + Sp · Sm − Sp · Si − Sa · Sm + Sa · Si − Sa · Sp). (B11)

Here, Ramip is as defined in Eq. (29). Plugging these in and applying the δ functions, and also symmetrizing everything, we find
that we have, first, a ring exchange term:

H ring
4-site = 1

4U 3

∑
i jk


ti jt jktk
t
i
(
(Si · S j )(Sk · S
) + (Si · S
)(S j · Sk ) − (Si · Sk )(S j · S
)

)

×
{

4
1 − �i j� j
/U 2 − � jk�i j/U 2 + � j
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
jk/U 2

) + 4
1 + �i j�ik/U 2 − �i j�k
/U 2 − �ik�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

ik/U 2
)(

1 − �2
k


/U 2
)

+ 4
1 − �i j� j
/U 2 − �i j�k
/U 2 + � j
�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
k


/U 2
) + 4

1 + �i j�ik/U 2 + �i j�i
/U 2 + �ik�i
/U 2(
1 − �2

i j/U 2
)(

1 − �2
ik/U 2

)(
1 − �2

i
/U 2
)

+ 4
1 − � jk�ki/U 2 − �k
� jk/U 2 + �ki�k
/U 2(

1 − �2
jk/U 2

)(
1 − �2

ki/U 2
)(

1 − �2
k


/U 2
) + 4

1 + � jk� j
/U 2 − � jk�
i/U 2 − � j
�
i/U 2(
1 − �2

jk/U 2
)(

1 − �2
j
/U 2

)(
1 − �2


i/U 2
)

+ 4
1 − � jk�ki/U 2 − � jk�
i/U 2 + �ki�
i/U 2(

1 − �2
jk/U 2

)(
1 − �2

ki/U 2
)(

1 − �2

i/U 2

) + 4
1 − �k
�
 j/U 2 − �
i�k
/U 2 + �
 j�
i/U 2(

1 − �2
k


/U 2
)(

1 − �2

 j/U 2

)(
1 − �2


i/U 2
)
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+ 3
1 + �i j�k
/U 2 − �i j�
i/U 2 − �k
�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
) − 1 + �i j�k
/U 2 − �i j� jk/U 2 − �k
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)

+ 3
1 − �i j� jk/U 2 − �i j�
i/U 2 + � jk�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

) − 1 − �k
� jk/U 2 − �k
�
i/U 2 + � jk�
i/U 2(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

)
+ 3

1 − � jk�k
/U 2 − � jk�i j/U 2 + �k
�i j/U 2(
1 − �2

jk/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

) − 1 − �
i�k
/U 2 − �
i�i j/U 2 + �k
�i j/U 2(
1 − �2


i/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

)
+3

1 − �k
�
i/U 2 − �k
� jk/U 2 + �
i� jk/U 2(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
)(

1 − �2
jk/U 2

) − 1 − �i j�
i/U 2 − �i j� jk/U 2 + �
i� jk/U 2(
1 − �2

i j/U 2
)(

1 − �2

i/U 2

)(
1 − �2

jk/U 2
)

}
. (B12)

There are two types of spin bilinear Hamiltonians. The first contributes only to the nearest-neighbor interaction:

Hbilin,1
4-site = 1

4U 3

∑
i jk


ti jt jktk
t
iSi · S j

×
{

4
1 − �i j� j
/U 2 − � jk�i j/U 2 + � j
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
jk/U 2

) − 4
1 + �i j�ik/U 2 − �i j�k
/U 2 − �ik�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

ik/U 2
)(

1 − �2
k


/U 2
)

− 4
1 − �i j� j
/U 2 − �i j�k
/U 2 + � j
�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
k


/U 2
) − 4

1 − � jk�ki/U 2 − �k
� jk/U 2 + �ki�k
/U 2(
1 − �2

jk/U 2
)(

1 − �2
ki/U 2

)(
1 − �2

k

/U 2

)
+ 4

1 + � jk� j
/U 2 − � jk�
i/U 2 − � j
�
i/U 2(
1 − �2

jk/U 2
)(

1 − �2
j
/U 2

)(
1 − �2


i/U 2
) + 4

1 − � jk�ki/U 2 − � jk�
i/U 2 + �ki�
i/U 2(
1 − �2

jk/U 2
)(

1 − �2
ki/U 2

)(
1 − �2


i/U 2
)

− 4
1 − �k
�
 j/U 2 − �
i�k
/U 2 + �
 j�
i/U 2(

1 − �2
k


/U 2
)(

1 − �2

 j/U 2

)(
1 − �2


i/U 2
) + 4

1 − �
i�ik/U 2 − �i j�
i/U 2 + �ik�i j/U 2(
1 − �2


i/U 2
)(

1 − �2
ik/U 2

)(
1 − �2

i j/U 2
)

− 3
1 + �i j�k
/U 2 − �i j�
i/U 2 − �k
�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
) + 1 + �i j�k
/U 2 − �i j� jk/U 2 − �k
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)

− 3
1 − �i j� jk/U 2 − �i j�
i/U 2 + � jk�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

) + 1 − �k
� jk/U 2 − �k
�
i/U 2 + � jk�
i/U 2(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

)
− 3

1 − � jk�k
/U 2 − � jk�i j/U 2 + �k
�i j/U 2(
1 − �2

jk/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

) + 1 − �
i�k
/U 2 − �
i�i j/U 2 + �k
�i j/U 2(
1 − �2


i/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

)
−3

1 − �k
�
i/U 2 − �k
� jk/U 2 + �
i� jk/U 2(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
)(

1 − �2
jk/U 2

) + 1 − �i j�
i/U 2 − �i j� jk/U 2 + �
i� jk/U 2(
1 − �2

i j/U 2
)(

1 − �2

i/U 2

)(
1 − �2

jk/U 2
)

}
.

There is another spin bilinear term, which connects either nearest-neighbor or next-nearest-neighbor spins, depending on how
i, j, k, 
 are chosen around a ring:

Hbilin,2
4-site = 1

8U 3

∑
i jk


ti jt jktk
t
iSi · Sk

×
{

−4
1 − �i j� j
/U 2 − � jk�i j/U 2 + � j
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
jk/U 2

) − 4
1 + �i j�ik/U 2 − �i j�k
/U 2 − �ik�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

ik/U 2
)(

1 − �2
k


/U 2
)

− 4
1 − �i j� j
/U 2 − �i j�k
/U 2 + � j
�k
/U 2(

1 − �2
i j/U 2

)(
1 − �2

j
/U 2
)(

1 − �2
k


/U 2
) + 4

1 − � jk�ki/U 2 − �k
� jk/U 2 + �ki�k
/U 2(
1 − �2

jk/U 2
)(

1 − �2
ki/U 2

)(
1 − �2

k

/U 2

)
− 4

1 + � jk� j
/U 2 − � jk�
i/U 2 − � j
�
i/U 2(
1 − �2

jk/U 2
)(

1 − �2
j
/U 2

)(
1 − �2


i/U 2
) − 4

1 − � jk�ki/U 2 − � jk�
i/U 2 + �ki�
i/U 2(
1 − �2

jk/U 2
)(

1 − �2
ki/U 2

)(
1 − �2


i/U 2
)

− 4
1 − �k
�
 j/U 2 − �
i�k
/U 2 + �
 j�
i/U 2(

1 − �2
k


/U 2
)(

1 − �2

 j/U 2

)(
1 − �2


i/U 2
) + 4

1 − �
i�ik/U 2 − �i j�
i/U 2 + �ik�i j/U 2(
1 − �2


i/U 2
)(

1 − �2
ik/U 2

)(
1 − �2

i j/U 2
)

+ 3
1 + �i j�k
/U 2 − �i j�
i/U 2 − �k
�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
) − 1 + �i j�k
/U 2 − �i j� jk/U 2 − �k
� jk/U 2(

1 − �2
i j/U 2

)(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)
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+ 3
1 − �i j� jk/U 2 − �i j�
i/U 2 + � jk�
i/U 2(

1 − �2
i j/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

) − 1 − �k
� jk/U 2 − �k
�
i/U 2 + � jk�
i/U 2(
1 − �2

k

/U 2

)(
1 − �2

jk/U 2
)(

1 − �2

i/U 2

)
+ 3

1 − � jk�k
/U 2 − � jk�i j/U 2 + �k
�i j/U 2(
1 − �2

jk/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

) − 1 − �
i�k
/U 2 − �
i�i j/U 2 + �k
�i j/U 2(
1 − �2


i/U 2
)(

1 − �2
k


/U 2
)(

1 − �2
i j/U 2

)
+3

1 − �k
�
i/U 2 − �k
� jk/U 2 + �
i� jk/U 2(
1 − �2

k

/U 2

)(
1 − �2


i/U 2
)(

1 − �2
jk/U 2

) − 1 − �i j�
i/U 2 − �i j� jk/U 2 + �
i� jk/U 2(
1 − �2

i j/U 2
)(

1 − �2

i/U 2

)(
1 − �2

jk/U 2
)

}
. (B13)

Finally, putting in the potential energy differences �i j for the different sites, we can find the specific form for the triangular
lattice. We define θ1 = θ , θ2 = θ − π/3, θ3 = θ − 2π/3, θ ′

1 = θ − π/6, θ ′
2 = θ − π/2, and θ ′

3 = θ − 5π/6. Then, the coupling
constants for J (1)

1 , the nearest neighbor along a1, for J (1)
2 , the next-nearest neighbor along a′

1, J (1)
3 , the next-next-nearest neighbor

along a′′
1 , and J (1)

r , the ring exchange coupling on R1, are given by the following expressions. The nearest-neighbor coupling
is the most complicated because there are the most number of virtual hopping processes possible for this coupling. When an
electron undergoes a virtual hopping process, its potential energy changes according to the electric field component along that
direction. This is the reason why numerous angles appear in any given coupling, not just the angle along which the coupling
occurs.

J (1)
1 (θ ) = 4t2

U

1

1 − α2 cos2 θ1
+ t4

U 3

[
−24(1 + α2 cos2 θ1)

(1 − α2 cos2 θ1)3
− 16(1 − α4 cos2 θ1 cos2 θ3)

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ3)2

− 16(1 − α4 cos2 θ1 cos2 θ2)

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ2)2
+ 4(

√
3α2 cos θ1 cos θ ′

1 + α2 cos θ1 cos θ2 + √
3α2 cos θ ′

1 cos θ2 + 1)

(1 − α2 cos2 θ1)(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)

+ 4(α2 cos2 θ1 + 2
√

3α2 cos θ1 cos θ ′
1 + 1)

(1 − α2 cos2 θ1)2(1 − 3α2 cos2 θ ′
1)

+ 8(5α2 cos2 θ1 + 1)

(1 − 4α2 cos2 θ1)(1 − α2 cos2 θ1)2

+ 4(−α2 cos θ1 cos θ3 − √
3α2 cos θ1 cos θ ′

3 + √
3α2 cos θ3 cos θ ′

3 + 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ3)(1 − 3α2 cos2 θ ′
3)

+ 4(α2 cos2 θ1 − 2α2 cos θ1 cos θ3 + 1)

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ3)
+ 16(1 − α4 cos2 θ2 cos2 θ3)

(1 − α2 cos2 θ2)2(1 − α2 cos2 θ3)2

+ 4(α2 cos2 θ2 + 2α2 cos θ2 cos θ3 + 1)

(1 − α2 cos2 θ2)2(1 − α2 cos2 θ3)
+ 4(

√
3α2 cos θ ′

1 cos θ2 + α2 cos2 θ2 + 1)

(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)2

− 8

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)
− 4(α2 cos2 θ1 − 2α2 cos θ1 cos θ3 + 1)

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ3)

− 4(α2 cos2 θ1 + 2
√

3α2 cos θ1 cos θ ′
1 + 1)

(1 − α2 cos2 θ1)2(1 − 3α2 cos2 θ ′
1)

− 8

(1 − α2 cos2 θ1)(1 − α2 cos2 θ3)

+ 4(α2 cos2 θ3 + 2
√

3α2 cos θ3 cos θ ′
3 + 1)

(1 − α2 cos2 θ3)2(1 − 3α2 cos2 θ ′
3)

+ 4(2α2 cos θ2 cos θ3 + α2 cos2 θ3 + 1)

(1 − α2 cos2 θ2)(1 − α2 cos2 θ3)2

+ 4

(1 − α2 cos2 θ2)(1 − α2 cos2 θ3)
− 2(2

√
3α2 cos θ ′

2 cos θ3 + α2 cos2 θ3 + 1)

(1 − 3α2 cos2 θ ′
2)(1 − α2 cos2 θ3)2

− 4(
√

3α2 cos θ2 cos θ ′
2 + α2 cos θ2 cos θ3 + √

3α2 cos θ ′
2 cos θ3 + 1)

(1 − α2 cos2 θ2)(1 − 3α2 cos2 θ ′
2)(1 − α2 cos2 θ3)

− 2(α2 cos2 θ2 + 2
√

3α2 cos θ2 cos θ ′
2 + 1)

(1 − α2 cos2 θ2)2(1 − 3α2 cos2 θ ′
2)

− 2(−2α2 cos θ1 cos θ3 + α2 cos2 θ3 + 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ3)2

− 2(α2 cos θ1 cos θ2 + α2 cos2 θ2 + 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)2
+ 4(−α2 cos θ1 cos θ2 + α2 cos θ1 cos θ3 + 3α2 cos θ2 cos θ3 + 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)(1 − α2 cos2 θ3)

]
(B14)

J (1)
2 (θ ) = 8t4

U 3

[
2(1 − α4 cos2 θ1 cos2 θ2)

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ2)2
−

√
3α2 cos θ1 cos θ ′

1 + α2 cos θ1 cos θ2 + √
3α2 cos θ ′

1 cos θ2 + 1

(1 − α2 cos2 θ1)(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)

]
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+ 2t4

U 3

[
2

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)
− α2 cos2 θ2 + 2α2 cos θ2 cos θ3 + 1

(1 − α2 cos2 θ2)2(1 − α2 cos2 θ3)

− 2
√

3α2 cos θ ′
1 cos θ2 + α2 cos2 θ2 + 1

(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)2

+ 2(α2 cos θ1 cos θ2 + α2 cos θ1 cos θ3 − α2 cos θ2 cos θ3 − 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)(1 − α2 cos2 θ3)

+ 2(
√

3α2 cos θ1 cos θ ′
1 + α2 cos θ1 cos θ2 + √

3α2 cos θ ′
1 cos θ2 + 1)

(1 − α2 cos2 θ1)(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)

− α2 cos2 θ1 − 2α2 cos θ1 cos θ3 + 1

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ3)
− α2 cos2 θ1 + 2

√
3α2 cos θ1 cos θ ′

1 + 1

(1 − α2 cos2 θ1)2(1 − 3α2 cos2 θ ′
1)

]
(B15)

J (1)
3 (θ ) = 4t4

U 3

[
2(1 + α2 cos2 θ1)

(1 − α2 cos2 θ1)3
− 5α2 cos2 θ1 + 1

(1 − 4α2 cos2 θ1)(1 − α2 cos2 θ1)2

]
(B16)

J (1)
r (θ ) = 8t4

U 3

[
2

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)
+ α2 cos2 θ2 + 2α2 cos θ2 cos θ3 + 1

(1 − α2 cos2 θ2)2(1 − α2 cos2 θ3)
+ α2 cos2 θ1 − 2α2 cos θ1 cos θ3 + 1

(1 − α2 cos2 θ1)2(1 − α2 cos2 θ3)

+ 2(−α2 cos θ1 cos θ2 − α2 cos θ1 cos θ3 + α2 cos θ2 cos θ3 + 1)

(1 − α2 cos2 θ1)(1 − α2 cos2 θ2)(1 − α2 cos2 θ3)

+ 2(
√

3α2 cos θ1 cos θ ′
1 + α2 cos θ1 cos θ2 + √

3α2 cos θ ′
1 cos θ2 + 1)

(1 − α2 cos2 θ1)(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)

+ 2
√

3α2 cos θ ′
1 cos θ2 + α2 cos2 θ2 + 1

(1 − 3α2 cos2 θ ′
1)(1 − α2 cos2 θ2)2

+ α2 cos2 θ1 + 2
√

3α2 cos θ1 cos θ ′
1 + 1

(1 − α2 cos2 θ1)2(1 − 3α2 cos2 θ ′
1)

]
. (B17)

We note that, in order to obtain the coupling constants
along different bonds, we may use J (2)

1 (θ ) = J (1)
1 (θ − π/3),

and J (3)
1 (θ ) = J (1)

1 (θ − 2π/3). The same relations hold for
the second- and third-nearest neighbors, as well as the ring
exchange.

APPENDIX C: DMRG CALCULATION

We use the TENPY library [61] for the iDMRG calculations.
For any given point in the phase diagram we do the DMRG in
three steps.

(i) First, initialize the system with an up/down product
state, and maximum bond dimension of b = 20. Perform this
initialization run with five sweeps and a chiral symmetry
breaking term of Jχ = 10−5.

(ii) Now, set Jχ = 0. Take the output of the first step as
the initial state for a run with the density matrix mixer on to
escape local minima, with a maximum of 40 sweeps and bond
dimension of b = 1600.

(iii) Take the output of the second step as the initial state
for a run with the density matrix mixer off because we assume
that we are in the global minimum basin, and run until the
energy converges to �E = 10−8. This is also done with bond
dimension b = 1600.

Sometimes the simulation converges in energy, but does
not converge to the true ground state. This is more likely
when the ring exchange is large because there are an increased
number of competing states. For this reason, after determining
which phases appear in the phase diagram, we run points in
the phase diagram again, but with specific initial conditions

corresponding to the different phases of model. For example,
for E/U = 0 and t/U close to 0.1, we would use both the
CSL and VBS initial conditions for such a point in parameter
space, and then check which resulting wave function has a
lower energy. Selecting the one that has the lowest energy
yields the result that we report.

For all calculations, we perform the simulations on a
cylinder whose circumference is Ly = 6 sites, and which is
infinite in the a1 direction. The unit cell we use is Lx = 2
sites long in the a1 direction. We compute spin and dimer
correlations to 24 unit cells along the direction of the cylinder
axis.

APPENDIX D: VALENCE BOND SOLID PHASES

In this section, we will provide some more details of the
valence bond solids described in the main text.

1. Dimer coverings of the triangular lattice

As mentioned in the main text, there are six simple dimer
coverings of the triangular lattice. This is not an exhaustive
list of all coverings, but these six simple ones are sufficient
to yield consistent results with the dimer structure factors for
VBS1 and VBS2. For each covering, we list the translation
vectors of the unit cell in terms of the primitive lattice vectors
of the triangular lattice. Furthermore, we indicate the peak
locations corresponding to the unit cell translation vectors in a
schematic Brillouin zone for each covering. These coverings
are in Figs. 11–13.
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FIG. 11. The two different coverings of the triangular lattice by
dimers along the a1 bond. The two translation vectors of the unit cell
are given for each covering, which allows us to find the peaks of each
structure factor D1(k), given on the right.

2. Valence bond solid 1

There are six possible simple dimer coverings of the trian-
gular lattice. To identify the VBS1 state with particular dimer
coverings, we compute the three different dimer structure
factors. Using the peak heights of each structure factor, we
can identify which are the most dominant dimer coverings.
For VBS1, the highest peaks are for dimers along a1 and a3.
Then, since D1(k) has peaks at M ′, and D3(k) has peaks at
M ′′, we have that the wave function is (approximately) the
equal weight superposition given in Eq. (26). We note that this
is only an approximate wave function because other valence
bond configurations are a part of the wave function, but are
subdominant.

3. Valence bond solid 2

For VBS2, the dimer structure factor with the largest peak
height is the one along the a2. The peaks are at the M ′′ points.
Identifying this with the configurations in Fig. 12, we find the
wave function in Eq. (27).

FIG. 12. The two different coverings of the triangular lattice by
dimers along the a2 bond. The two translation vectors of the unit cell
are given for each covering, which allows us to find the peaks of each
structure factor D2(k), given on the right.

FIG. 13. The two different coverings of the triangular lattice by
dimers along the a3 bond. The two translation vectors of the unit cell
are given for each covering, which allows us to find the peaks of each
structure factor D3(k), given on the right.

4. Valence bond solid 3

The third valence bond solid has strong dimer correlations,
but not at high symmetry points. The dimer correlations are
long ranged, as can be seen in Figs. 19–21. This suggests that
this phase is a valence bond solid whose unit cell is larger than
the size of our finite sized simulation.

APPENDIX E: DMRG DATA

1. Spin structure factor

The spin structure factor is defined by

S(k) =
∑

i j

eik·(Ri−R j )(〈Si · S j〉 − 〈Si〉 · 〈S j〉). (E1)

The spin structure factor is primarily used to identify mag-
netically ordered phases. The peaks of the momentum
space spin structure factor should be at high symmetry
points in the Brillouin zone, and also be sharp, indicat-
ing long ranged correlations. We also include the real-
space spin correlations in order to demonstrate the slow
decay.

2. Dimer structure factors

We define the dimer operator Dn
i = Si · Si+an . This struc-

ture factor probes the formation of singlets between nearest-
neighbor spins in the lattice along the an direction. Then, we
define the dimer structure factor by

Dn(k) =
∑

i j

eik·(Ri−R j )
(〈

Dn
i Dn

j

〉 − 〈
Dn

i

〉〈
Dn

j

〉)
. (E2)

3. Entanglement spectrum

As mentioned in the main text, the entanglement spectrum
is obtained by considering the mixed transfer matrix T T

α1α2α3α4
,

which is constructed by translating the wave function |ψ〉 by
one lattice spacing along the circumferential direction, and
then contracting its physical indices with those of the orig-
inal (untranslated) wave function. The resulting four-index
object (each α index running from 1 to bond dimension b)
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FIG. 14. Momentum space spin structure factor for the difference phases observed in the model.

can be diagonalized, with dominant eigenvalue 1 if the wave
function is translationally invariant (if the wave function is
not translationally invariant, then the momentum is not well
defined). The eigenvector Vα1α2 corresponding to eigenvalue
1 is itself diagonalizable, and its eigenvalues are μα = s2

αeikα ,

where sα are the Schmidt values, and kα is the momentum
around the cylinder [61,63]. The entanglement spectrum is
therefore − log(s2

α ). The corresponding figures of the momen-
tum resolved, and spin number resolved entanglement spectra
are in Figs. 22 and 23.

FIG. 15. Real-space spin structure factor for the difference phases observed in the model. This is defined as S(R0, Ri ) = 〈S0 · Si〉 − 〈S0〉 ·
〈Si〉, where R0 = 3a2 is the site halfway up the cylinder in the first ring. Note that the top row of sites is simply the bottom row copied up, due
to the periodic boundary conditions.
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FIG. 16. Momentum space dimer structure factors for dimers along the a1 direction for all the phases in our model.

FIG. 17. Momentum space dimer structure factors for dimers along the a2 direction for all the phases in our model.
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FIG. 18. Momentum space dimer structure factors for dimers along the a3 direction for all the phases in our model.

FIG. 19. Real-space dimer structure factors for dimers along the a1 direction for all the phases in our model. These are defined as
D1(R0, Ri ) = 〈D1

0D1
i 〉 − 〈D1

0〉〈D1
i 〉, where R0 = 3a2 is the site halfway up the cylinder in the first ring. Note that the top row of sites is simply

the bottom row copied up, due to the periodic boundary conditions.
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FIG. 20. Real-space dimer structure factors for dimers along the a2 direction for all the phases in our model. These are defined as
D2(R0, Ri ) = 〈D2

0D2
i 〉 − 〈D2

0〉〈D2
i 〉, where R0 = 3a2 is the site halfway up the cylinder in the first ring. Note that the top row of sites is

simply the bottom row copied up, due to the periodic boundary conditions.

FIG. 21. Real-space dimer structure factors for dimers along the a3 direction for all the phases in our model. These are defined as
D3(R0, Ri ) = 〈D3

0D3
i 〉 − 〈D3

0〉〈D3
i 〉, where R0 = 3a2 is the site halfway up the cylinder in the first ring. Note that the top row of sites is simply

the bottom row copied up, due to the periodic boundary conditions.
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FIG. 22. Entanglement spectrum − log(s2
α ) by transverse momentum ky for all phases in the model.

FIG. 23. Entanglement spectrum − log(s2
α ) by Sz quantum number for all phases in the model.
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