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By circumventing the difficulty of obtaining exact string state solutions to Bethe ansatz equations, we devise a
truncated string state space approach for investigating spin dynamics in a nonintegrable spin- 1

2 Heisenberg chain
subjected to a staggered field at various magnetizations. The obtained dynamical spectra reveal a series of elastic
peaks at integer multiples of the ordering wave vector Q, indicating the presence of multi-Q Bethe string states
within the ground state. The spectrum exhibits a separation between different string continua as the strength
of the staggered field increases at low magnetization, reflecting the confinement of the Bethe strings. This
approach provides a unified string-state-based framework for understanding spin dynamics in low-dimensional
nonintegrable Heisenberg models, which has a successful application to observations across various phases of
the quasi-one-dimensional antiferromagnet YbAlO3.
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I. INTRODUCTION

One-dimensional quantum systems characterized by ex-
act solutions and quantum integrability offer a fascinating
arena to study many-body physics. Notable examples include
the one-dimensional (1D) spin- 1

2 XXZ model [1–4], Gaudin-
Yang model [5–7], Lieb-Liniger model [8,9], and quantum
Ising models [10–13]. Although these models have paved
the way for determining the eigenstates and eigenenergies
of those systems, it has long been a challenge to calculate
their form factors and thus dynamical response, which was
partly tackled recently [7,14–20]. Empowered by the theoreti-
cal development, the spin dynamics of celebrated many-body
quasiparticles, such as spinons [21–23], strings [24–26], and
E8 [27–31] and D(1)

8 particles [32–34], have been extensively
explored, providing crucial guidance for experimental obser-
vations in quasi-1D materials [3,30,31,35–40]. This progress
has led to the cooperative effort of both theorists and ex-
perimentalists to unveil the intricate nature of these exotic
phenomena.

Bearing real materials in mind, it becomes crucial to ask
how robust integrable physics is against nonintegrable pertur-
bations that may partially or fully break the conservation laws
of integrable systems. This has inspired extensive research fo-
cused on nonintegrable models such as spin- 1

2 ladders [41,42],
chains with a staggered magnetic field [43,44], frustrated spin
chains [45], and dimerized spin chains [46,47]. Most studies
are performed using effective field theory [43,44] or numer-
ical methods such as the exact diagonalization (ED) [45,46],
matrix product state [47], and quantum Monte Carlo methods
[48]. However, on the one hand, numerical methods in general
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lack a clear understanding of the essential physical picture;
on the other hand, the effective field theory can provide only
limited insight within the low-energy and long-wavelength
limit. Therefore, a method able to go beyond those limitations
is always desired.

At first glance it may seem promising to apply Bethe states
to study nonintegrable systems. However, a notorious open
problem persists: finding the precise complex solutions of the
Bethe ansatz equation (BAE) for string states [24,49–53]. In
the past few decades, many approaches have been explored,
including a carefully designed iterative method [54] and a
rational Q-system method [55–57]. The former can easily
access large system size but suffers from many unphysical
solutions with repeated roots. Although the latter can solve
the BAE for all exact solutions simultaneously, it is limited
to a small system size. Those shortcomings impede the prac-
tical application of Bethe states to understand nonintegrable
systems of reasonable size.

In this paper, we first outline a solving machine for the
spin- 1

2 Heisenberg chain which can obtain exact solutions for
Bethe string states. Based on these string states, we develop
a truncated string state space approach (TS3A) to study a
nonintegrable Hamiltonian, specifically the spin- 1

2 Heisenberg
chain with a staggered field. The TS3A can determine the
eigenstate and eigenenergy for the nonintegrable Hamiltonian
in the truncated Hilbert space. Additionally, we evaluate its
efficiency for small systems under various truncation schemes
involving different energy cutoffs and string lengths by com-
paring its performance to that of ED calculations.

Following the TS3A, we analyze the nonintegrable spin
dynamics in the spin- 1

2 Heisenberg chain with staggered field
characterized by wave vector Q. In addition to the Q ordering
of the system, a series of elastic peaks appears at nQ (|n| =
2, 3, . . .), indicating the ground state contains multi-Q Bethe
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string states. Moreover, the staggered field plays the role of
the confining field for the Bethe string states, constraining
the motion of spins along the chain. The confinement of
Bethe strings results in two separated continua in dynami-
cal spectra at low magnetization. Notably, the above results
were successfully applied to experimental observations of the
quasi-1D antiferromagnet YbAlO3, aligning with the unified
Bethe-string-based framework provided by the TS3A [58].

The rest of this paper is organized as follows. Section II
introduces the Hamiltonian of the 1D Heisenberg model with
a staggered field. Section III illustrates the Bethe string state
and then presents a method for obtaining exact solutions from
the BAE. The framework of the TS3A is developed, and its
efficiency is investigated in Sec. IV. Then Sec. V discusses the
spin dynamics of the nonintegrable Hamiltonian. Section VI
contains the conclusion and outlook.

II. MODEL

Our parent Hamiltonian is the 1D Heisenberg spin- 1
2 model

with longitudinal field hz,

H0 = J
N∑

n=1

Sn · Sn+1 − hzS
z
n, (1)

with N being the total number of sites, J being antiferromag-
netic coupling, and Sn being spin operators with components
Sμ

n (μ = x, y, z) at site n. With the introduction of a staggered
field hQ = hQ

∑
i cos(Qri )ẑ which couples to the spin chain,

the total Hamiltonian becomes nonintegrable,

H = H0 + H ′, (2)

where

H ′ = −
∑

n

hQ · Sn = −hQ

∑
n

cos(Qrn)Sz
n. (3)

hQ is the strength of the staggered field, and the ordering wave
vector Q = (1 − m)π , where the magnetization density m =
Mz/Ms, which is the ratio of magnetization Mz to its saturation
value Ms. In practice, the staggered field can be effectively
induced from three-dimensional (3D) magnetic ordering of
quasi-1D materials, such as YbAlO3 [58–61], SrCo2V2O8

[62], and BaCo2V2O8 [30]. We note that the staggered field
can be both commensurate and incommensurate, depending
on whether 2π/Q is a rational or irrational number, respec-
tively.

III. EXACT BETHE STRING STATE

In this section, we begin with an introduction to the coordi-
nate Bethe ansatz and Bethe string states for the Hamiltonian
H0 [Eq. (1)]. Then an efficient method is presented for obtain-
ing the exact solutions from the BAE.

A. Bethe ansatz and the Bethe string state

Due to U(1) symmetry of H0 [Eq. (1)] the magnetization
Mz = 1/2 − M/N is the conserved quantity, where M is the
number of down spins, i.e., magnons, with respect to the fully
polarized state with all up spins | ↑ · · · ↑〉. In the coordinate
Bethe ansatz [63–65], the eigenstate of H0 [Eq. (1)] is the

FIG. 1. (a) The rapidities of Bethe strings with different lengths
in the complex plane. (b)–(d) Pictorial spin configurations of the
Bethe strings. View the down spin (red arrows) and up spin (blue ar-
rows) as the magnon and vacuum, respectively. A single Bethe string
χ j contains j bounded magnons. (e) The energy-(quasi)momentum
relation for Bethe strings χ j . (f) Illustration of the truncated string
state space, where each ball denotes a j-string state. The shaded
region is separated by vertical and horizontal lines representing the
cutoffs for string length and the energy, respectively.

Bethe state with M magnons, which is determined by a set
of rapidities {λl}M satisfying the BAE,(

λl + i/2

λl − i/2

)N

=
∏
k �=l

(
λl − λk + i

λl − λk − i

)
, (4)

with l = 1, . . . , M. The corresponding quasimomentum kl =
π − 2 arctan(2λl ). These rapidities {λl}M manifest as ei-
ther complex-conjugate pairs or real numbers [Fig. 1(a)]
[66]. The pair of complex rapidities implies a significant
physical property: the corresponding magnons exhibit an in-
triguing phenomenon in coordinate space, forming effectively
bounded magnons commonly known as a “Bethe string”
[24,64,67]. And the length of the string is determined by the
number of rapidities with a common real center. Intuitively,
Bethe string χ j ( j � 2) of length j is a “big” quasiparticle
in which j bounded magnons move coherently, referred to as
a j-string [Figs. 1(b)–1(d)]. When j = 1, the 1-string χ1 is
just the unbound magnon. Correspondingly, the rapidities of a
string χ j take the form [24,49]

λn
j,α = λ j,α + i

2
( j + 1 − 2n) + dn

j,α, (5)

where n = 1, . . . , j denotes the jth magnon in the j-string.
The number of j-strings is denoted as Mj , and α = 1, . . . , Mj

label different j-strings with the same length j. Thus, we
have

∑
j jMj = M for an M-magnon Bethe state. We refer

to λ j,α as the string center, which gives the real part of the
j-string if the deviation dn

j,α is omitted. Under the assumption
dn

j,α = 0, we obtain the eigenenergy of a Bethe string state,
E = ∑

j,α ε j,α , with ε j,α = −2 jJ/(4λ2
j,α + j2). Therefore, we

can show the relation between energy and quasimomentum for
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TABLE I. The solutions of a 3-string state to Bethe ansatz equation (4) with N = 12 and M = 5. The solutions presented in the first row
are obtained with the method in Ref. [54], while those in the second row are obtained with our method. Note that in the first row, λ3

3 and λ1
1

coincide, indicating an unphysical outcome.

λ1
3 λ2

3 λ3
3 λ1

1 λ2
1

Unphysical 0.4955 + 0.9622i 0.4955 − 0.9622i 0.4458 0.4458 0.1803
Physical 0.4918 + 0.9615i 0.4918 + 0.9615i 0.4448 + 0.0188i 0.4448 − 0.0188i 0.1807

different strings in Fig. 1(e). For finite dn
j,α , the eigenenergy

becomes E = ∑
j,α,n εn

j,α , with εn
j,α = −2J/[4(λn

j,α )2 + 1].
To ensure clarity in terminology, we refer to a Bethe state

with all M magnons being χ1 as the 1-string state. For j > 1,
we classify an n ∗ j-string state with Mj = n and M1 = M −
n ∗ j. When n = 1, it is simply referred to as the j-string state.
This convention can be consistently extended to cover other
cases.

B. Exact solution

To characterize Bethe string states, the initial step is to
obtain rapidities {λ j} ( j = 1, . . . , M) by solving the BAE
[Eq. (4)]. This is commonly achieved by considering the log-
arithmic form of the BAE,

2π

N
Ij = �1(λ j ) − 1

N

M∑
k=1

�2(λ j − λk ), (6)

where � j (λ) = 2 arctan(2λ/ j) and I j is the corresponding
Bethe quantum number. Equation (6) is highly efficient for
finding the real solutions using the iterative method [54,68].
However, for complex solutions, we first need to consider the
reduced Bethe equation with dn

j,α → 0 [67],

2π

N
Ij,α = � j (λ j,α ) − 1

N

M∑
k=1

Mk∑
β=1

(k,β )�=( j,α)

� jk (λ j,α − λk,β ) (7)

∀ j with Mj �= 0 and α = 1, . . . , Mj , with �n(λ) =
2 arctan(2λ/n) and �nm = (1 − δnm)�|n−m| + 2�|n−m|+2 +
· · · + 2�n+m−2 + �n+m. I j,α is referred to as the reduced
Bethe quantum number. Equation (7) can also be tackled
iteratively to obtain the string centers {λ j,α}, whose associated
complex solutions are constructed from Eq. (5) with dn

j,α = 0.
Nevertheless, these solutions are generally not exact because
they disregard the finite deviation dn

j,α . By utilizing the
solutions obtained with Eq. (7) as an initial guess, the finite
deviation is accessible for a majority of the string states
following the method in Ref. [54]. A summary is presented in
Appendix A.

However, the strategy introduced above fails to generate all
exact solutions when the number of lattice sites exceeds N �
12 (see the example in Table I and details in Appendix A). The
limitations arise from the generation of repeated real rapidities
in string states which are physically forbidden [69,70]. The
key to solving this problem is that the repeated real rapidities
actually form a complex-conjugate pair with a minor imagi-
nary part (typically, � 1/N). To implement the observation in
the algorithm, we divide and conquer; the details are given in
Sec. A 3. For instance, for a 3-string state, the typical rapidity

pattern is that three of them share a common real part up to a
finite deviation dn

j,α , while the remaining rapidities are all real.
However, when we encounter repeated real rapidities (see the
first row of Table I), usually involving the 3-string center and
one real rapidity, we introduce a small imaginary part to create
a complex-conjugate pair. This pair and other rapidities are
then treated as a new initial guess for the BAE, from which
we are able to efficiently obtain the exact solution (the second
row in Table I).

Before ending this section, it is imperative that we un-
derscore the importance of exact solutions. As shown in
Appendix B, the determinant expression of 〈μ|σ z|λ〉 becomes
divergent when |λ〉 represents string states with zero devia-
tion due to the failure of regularization. Therefore, assuming
dn

j,α = 0 may not be appropriate for our subsequent TS3A
approach. Therefore, the practical route is to consider string
states with finite dn

j,α .

IV. TRUNCATED STRING STATE SPACE APPROACH

In many physical problems, our focus is on the low-energy
subspace rather than the entire Hilbert space [71–73]. In this
study, we employ the TS3A method, as illustrated in Fig. 1(f),
to gain insights into the low-energy physics of nonintegrable
Heisenberg models [Eq. (2)]. The detailed construction is as
follows.

When considering a nonintegrable perturbation, such as H ′
[Eq. (3)], the Bethe string state is no longer the eigenstate.
Therefore, it becomes necessary to find the new ground state
and low-energy excited states before conducting any calcu-
lations of physical quantities, such as correlation functions.
The first step is to construct the matrix representation of the
nonintegrable Hamiltonian H [Eq. (2)] within a truncated
low-energy subspace of Bethe string states, denoted as H tr

ab =
δabEB

a + 〈Ba|H ′|Bb〉, with EB
a � EB

cut. The truncated dimen-
sion of H tr

ab is typically much less than 2N , which is determined
by the energy cutoff EB

cut and types of Bethe string states
|Ba〉. Following the diagonalization of H tr , a new ground state
|GS〉 and low-energy excited states are obtained, which are
considered to be approximate eigenstates of the Hamiltonian
H .

However, an immediate question arises: How do we select
the types of Bethe string states and determine the energy
cutoff? To answer the first question, we investigate the form
factor between Bethe string states. It is evident from Fig. 2(a)
that the form factors for string states generally diminish
rapidly as the difference in string length increases. For in-
stance, the ground state of H0 [Eq. (1)] is a 1-string state, and
then we can safely truncate the string state space into relevant
subspace in terms of string lengths. For the second issue, we
study the asymptotic behavior of ground state energy EGS and
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FIG. 2. (a) The absolute value of matrix entry 〈1-str|Sz
π |Bb〉, where Bethe string state |Bb〉 ranges from 1-string to 2 ∗ 2-string states.

(b) Ground state energy EGS and (c) staggered magnetization Mz
Q calculated with different energy cutoffs and combinations of string states at

N = 16, depicted by dashed lines with symbols. Note that the gaps of 3- and 2 ∗ 2-string states are 
 2.88J and 
 3.61J , respectively. The
green dashed line denotes the results from exact diagonalization.

the staggered magnetization Mz
Q = ∑

j e−iQ j〈GS|Sz
j |GS〉/√N

as the energy cutoff of the truncated space increases. In
Figs. 2(b) and 2(c), the calculation includes all allowed string
states within a given Ecut. As Ecut increases, the results con-
verge rapidly and approach the exact values obtained from the
ED calculation. Notably, even if only 1- and 2-string states
are considered, the obtained results are already very close to
the exact values, while the impact of 3- and 2 ∗ 2-string states
is marginal. This phenomenon confirms the suggestion that
the relevant string states primarily arise from those with small
length differences, as illustrated in Fig. 2(a).

V. SPIN DYNAMICS

To investigate nonintegrable spin dynamics of H [Eq. (2)],
we focus on the zero-temperature dynamical structure factor
(DSF) for spin along the longitudinal (z) direction (h̄ = 1),

Dzz(q, ω) = 2π
∑

μ

∣∣〈GS|Sz
q|μ〉∣∣2

δ(ω − Eμ + EGS), (8)

with q being the transfer momentum and ω being the transfer
energy between the ground state |GS〉 and excited states |μ〉,
whose energies are EGS and Eμ, respectively. In the following
calculation, the eigenstates |GS〉 and |μ〉 are obtained with
the TS3A developed in Sec. IV. The form factor 〈GS|Sz

q|μ〉
is deeply related to the form factor of Bethe string states,
which can be elegantly expressed in terms of the determinant
[21–23,25,26] (a summary is given in Appendix B).

To begin with, we investigate the TS3A results under dif-
ferent truncation schemes for N = 16, m = 12.5%, and hQ =
0.4J . In Figs. 3(a1)–3(a4), the DSF is calculated with different
selected string types and fixed energy cutoff Ecut = 5J , show-
ing that 1- and 2-strings are the dominant states in the spin
dynamics. In Figs. 3(b1)–3(b4), the DSF is calculated with
different energy cutoffs and fixed string types (including 1-, 2-
, 3-, and 2 ∗ 2-strings), showing that the dynamical spectrum
converges quickly as Ecut increases. Furthermore, we compare
the DSF results at N = 16 obtained with the TS3A to that
of the ED method [74,75], whose results reveal remarkable
agreement in Fig. 4. This excellent comparison suggests that
the TS3A is a highly efficient method for studying the nonin-
tegrable spin dynamics.

In the following, we present the DSF results obtained with
the TS3A at N = 48. Due to the staggered field perturbation
term H ′ [Eq. (3)], where

∑
n cos(Qrn)Sz

n ∝ (Sz
Q + Sz

−Q), the
nonvanishing matrix element of H ′ appears only between
Bethe states with momentum difference �q = ±Q. As a re-
sult, the ground state consists of Bethe states with momenta
nQ (|n| = 0, 1, 2, . . .). For static structure factor Dzz(q, ω =
0), a series of staggered-field-induced peaks appears at nQ
(|n| = 1, 2, . . .), manifesting the presence of multi-Q Bethe
states in the ground state. For instance, in Figs. 5(a)–5(d),
there are satellite peaks at q = 2Q,−2Q + 2π in addition to
the predominant peaks at q = Q,−Q + 2π , with Q = (1 −
m)π .

In Fig. 6, when hQ = 0, the dynamical spectra exhibit
gapless excitations at q = (1 ± m)π , and the 2-string states
are barely separated from the broad continuum of 1-string
states. When hQ > 0, an energy gap emerges both near the
elastic line and between the continua of 1- and 2-string
states. This phenomenon arises because the staggered field
acts as a confining field for the Heisenberg spin chains, ef-
fectively restricting the motion of spins [43,44,76–78]. These
induced gaps reflect the energy cost of the excitation of Bethe
strings, which is known as the confinement of Bethe strings.
At small magnetization [Figs. 6(a1)–6(a3)], 2-string states
are effectively confined and become separated from the 1-
string continuum. However, as magnetization m increases, the
2-string continuum gradually dissipates into higher energy
ranges.

Notably, the capability of larger size calculations of the
TS3A not only reduces the finite size effect but also renders
the characteristics of the spectra more transparent and dis-
cernible. And the TS3A offers two key advantages compared
to the ED method: First, it has higher efficiency, facilitating
much larger systems (N � 50); second, it naturally provides a
unified Bethe-string-based physical picture for understanding
the underlying physics.

We conclude this section by emphasizing that our model
and findings offer a direct application to comprehending the
low-energy spin dynamics observed in the quasi-1D antiferro-
magnet YbAlO3 [58,59,61]. In this material, the low-energy
effective Hamiltonian is described by the 1D Heisenberg mod-
els [Eq. (1)] and by Eq. (2) if the material is 3D ordered.
In Fig. 5(e), the quasielastic signals obtained from neutron
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FIG. 3. Zero-temperature DSF Dzz at N = 16, m = 12.5%, hQ = 0.4J under different truncation schemes: (a1)–(a4) Different selected
string types with fixed energy cutoff Ecut = 5J . (b1)–(b4) Different energy cutoffs with 1-, 2-, 3-, and 2 ∗ 2-string states. Note that the gap
of 3- and 2 ∗ 2-string states are 
 2.88J and 
 3.61J , respectively. The δ function in the DSF is broadened via the Lorentzian function
1
π
γ /[(ω − Eμ + EGS) + γ 2], with γ = 0.02.

scattering align with the theoretical predictions, providing
compelling evidence of the coexistence of multi-Q Bethe
states in the ordered phase of YbAlO3. Moreover, the stag-
gered field, arising from the 3D ordering, plays the role of
a confining field coupled with the spin chains within the
material. As a result, the distinctive features characterizing
the confined string states are observed through the inelastic
neutron scattering spectra of YbAlO3 [58].

VI. CONCLUSION

We exploited an efficient routine to find exact solutions for
the Bethe string states from the BAE of the spin- 1

2 Heisenberg
spin chain. Based on the exact solutions we further developed
the TS3A, which enabled us to determine eigenstates and
eigenenergies of nonintegrable spin- 1

2 Heisenberg systems
with U(1) symmetry preserved. The method was then ap-
plied to systematically study the spin dynamics of the spin- 1

2
Heisenberg spin chain under staggered field. In the dynamical
spectra, we revealed a series of elastic peaks located at the
integer multiples of the ordering wave vector Q, signifying
the existence of multi-Q Bethe string states within the ground
state. Moreover, the staggered field serves as a confining field
for Bethe string states, inducing confinement gaps between
the continua of 1- and 2-string states.

Our TS3A machine offers a Bethe-string-based scenario,
contributing to a more comprehensive understanding of
Heisenberg spin systems. We have demonstrated the ef-
ficiency and validity of this framework by interpreting
experimental observations of the quasi-1D antiferromagnet
YbAlO3. This intriguing consistency between theoretical

predictions based on the TS3A and experimental results moti-
vates its extended application to ladder and two-dimensional
Heisenberg systems. This broadening of scope not only en-
hances the versatility of the Bethe string picture but also
transcends its conventional one-dimensional limitations.
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APPENDIX A: ITERATIVE METHOD FOR EXACT
SOLUTION

This Appendix presents the iterative method for solving
the Bethe equation. Note that it is sufficient to solve the
highest-weight state containing only finite rapidities, while
other states can be obtained by adding infinite rapidities [54].

1. Deviation dn
j,α = 0

For the 1-string state, all rapidities are real, which can be
directly solved with the iterative form of the Bethe equation,

λ j = 1

2
tan

[
π

N
Ij + 1

N

M∑
k=1

arctan(λ j − λk )

]
, (A1)
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FIG. 4. Zero-temperature DSF Dzz(q, ω) with different magnetizations m and staggered fields hQ with lattice site N = 16. (a1)–(d3) The
results obtained with TS3A consider the string types, including 1-, 2-, 3-, and 2 ∗ 2-string states with fixed energy cutoff Ecut = 5J . (e1)–(h3)
ED results with the same lattice size. The δ function in the DSF is broadened via the Lorentzian function 1

π
γ /[(ω − Eμ + EGS) + γ 2], with

γ = 0.02.

where {I j} is the corresponding Bethe quantum number for
{λ j}.

For the string state, there is at least one complex rapidity in
the pattern of Eq. (5). To obtain the corresponding rapidities,
we convert the reduced Bethe equation (7) into the iterative
form,

λ j,α = j

2
tan

⎡
⎢⎢⎢⎣π

N
Ij,α + 1

2N

M∑
k=1

Mk∑
β=1

(k,β )�=( j,α)

� jk (λ j,α − λk,β )

⎤
⎥⎥⎥⎦,

(A2)
where {I j,α} is the corresponding reduced Bethe quantum
number for string centers {λ j,α}. Following Eq. (5), the com-
plex string states is constructed from {λ j,α} with dn

j,α = 0.

2. Deviation dn
j,α �= 0

To determine the exact deviation {dn
j,α}, the strategy be-

comes more intricate for the XXX model [54] and for the
gapped XXZ model [26]. Here, we consider only 2- and 3-
string states for illustration.

For a string with length j = 2, its two complex rapidities
are λ+,−

j = λ1,2
j = λ0

j ± i
2 + d1,2

j , where the deviations are
purely imaginary, d1

j = iδ1
j and d2

j = iδ2
j = −iδ1

j . Then we

have the first-order deviation,

δ1
j=2 ≈

(
λ+

j − i/2

λ+
j + i/2

)N(
real∏

k

λ+
j − λk + i

λ+
j − λk − i

)
. (A3)

Next, utilizing the first-order deviation, we can determine the
true Bethe quantum number J1,2 from the reduced one I2,

J1 = J2 − �H (δ) = 1

2

(
I2 + N

2
sgn

(
λ0

j

) − �H (δ)

)
, (A4)

where

�H (δ) = N

2
− M + 1 + I2 mod 2. (A5)

Then, considering the sum of the logarithmic Bethe equa-
tion (6),

∑
σ∈{+,−}

�1(λσ ) = 1

N

∑
σ∈{+,−}

(
2π Iσ +

M∑
k=1

�2(λσ − λk )

)
,

(A6)
and the deformation of Bethe equation (4),

λ+ − λ− − i

λ+ − λ− + i
=

(
λ+ − i/2

λ+ + i/2

)N ∏
k

λ+ − λk + i

λ+ − λk − i
, (A7)

we can solve for λ±, along with {λ1}M−2 from the Bethe
equation (6) for 1-strings.
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FIG. 5. (a)–(d) The static structure factor Dzz(ω = 0) with N =
48; hQ = 0J , 0.2J , and 0.4J; and magnetization density m = 12.5%,
25%, 50%, 75%, obtained with the TS3A. (e) Comparison between
experimental data (solid circles) and theoretical predictions (dashed
lines). The solid circles represent satellite peaks obtained from
quasielastic neutron scattering data, extracted from Ref. [61]. The
dashed lines represent the theoretical prediction for the elastic peaks.

For a string with length j = 3, it contains three rapidi-
ties, λ0

j , λ+,−
j = λ1,2

j = λ0
j ± i + d1,2

j , where d1
j = (d2

j )∗ =
ε1 + iδ1. Then we have the first-order deviation,

d1
j=3 ≈ 6i

(
λ1

j + i/2

λ1
j − i/2

)−N(
real∏

k

λ1
j − λk + i

λ1
j − λk − i

)
. (A8)

We note that for the 3-string, Im(λ+) > 1/2 must hold, which
leads to the fact that J± must be a wide pair with J− − J+ = 1.
Then, we still need two more equations to solve the true Bethe
quantum numbers J0 and J±. The first equation is the sum of
the logarithmic Bethe Eq. (6),

J+ + J0 + J− = I3 − 1

2

1-str∑
k=1

sgn(λ − λk ). (A9)

FIG. 6. Zero-temperature DSF Dzz(q, ω) with N = 48 obtained
with the TS3A. The DSFs have hQ = 0J , 0.2J , and 0.4J (from left
to right) and magnetization density m = 12.5%, 25%, 50%, 75%
(from top to bottom). The δ function in the DSF is broadened via
the Lorentzian function 1

π
γ /[(ω − Eμ + EGS) + γ 2], with γ = 0.12.

The data are further interpolated along the horizontal direction for
800 query points with equal spacing.

Another necessary equation is the sum of logarithmic BAEs
of λ±,

2π (J+ + J−) + �2(λ+ − λ0) + �2(λ− − λ0)

= N[�1(λ+) + �1(λ−)] − �2(λ+ − λ−) − �2(λ− − λ+)

−
∑

k=1,β

[�2(λ+ − λk,β ) + �2(λ− − λk,β )]. (A10)

Let A be the right-hand side of Eq. (A10). Because �2(λ+ −
λ0) + �2(λ− − λ0) ∈ (−2π, 2π ), J+ + J− is the even (odd)
integer number in (A/2π − 1, A/2π + 1) when M is even
(odd). Therefore,

J+ + J− = [1 + (−1)M]

⌊
1

2

(
A

2π
+ 1

)⌋

+ [1 − (−1)M]

[⌊
1

2

(
A

2π
+ 1

)
+ 1

2

⌋
− 1

2

]
.

(A11)

Now combing the wide pair condition (J− − J+ = 1),
Eqs. (A9) and (A11), J± and J0 can be determined. The Bethe
quantum number (BQN) {Jk} for real rapidities can be shown
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TABLE II. The solutions of a 3-string state of the Bethe ansatz equation (4) with N = 12 and M = 5. The unphysical solutions with
repeated rapidities are obtained with the method described in Secs. A 1 and A 2. The physical solutions are obtained with the method described
in Sec. A 3.

{J}M=5 {I}M=5 {λ}M=5 Energy

Unphysical 4 0.495521913637784 + 0.962224932131036i −3.632275481625215
3 13 0.445792844757107 + 0.000000000000000i
5 0.495521913637784 − 0.962224932131036i
2 3/21 0.180317318693691 + 0.000000000000000i
3 5/21 0.445792844757134 + 0.000000000000000i

Physical 4 0.491814213695900 + 0.961471132379077i −3.60069325626932
3 13 0.444763506448628 + 0.018770199402376i
5 0.491814213695898 − 0.961471132379085i
2 3/21 0.180714318631831 + 0.000000000000000i
3 5/21 0.444763506448649 − 0.018770199402378i

to have the following expression:

Jk = Ik − 1
2 sgn

(
λk − λ0

j=3

)
. (A12)

To solve rapidities, we first need the sum of the logarithmic
BAE of J± and J0 without setting ε and δ to zero:

2π

N
(J+ + J0 + J−) = �1(λ+) + �1(λ0) + �1(λ−)

− 1

N

real∑
k

�2(λ+ − λk ) + �2(λ0 − λk ) + �2(λ− − λk ).

(A13)

The second equation is the sum of the logarithmic BAE of J±
[Eq. (A10)]. The third one is obtained from Bethe equation (4)
after some simple manipulation,

(λ+ − λ0) − i

(λ+ − λ0) + i
= (λ+ − λ−) + i

(λ+ − λ−) − i

∏
k

(λ+ − λk ) + i

(λ+ − λk ) − i

×
(

λ+ − i/2

λ+ + i/2

)N

.

(A14)

The logarithmic Bethe equation (6) is also needed for real
rapidities.

Here, we present the 3-string state results with N = 12
and M = 5 obtained from the above iterative method in the
unphysical set in Table II. We observe that two real rapidities
coincide; one is the string center, and the other is a 1-string.
However, it is unphysical because of the incorrect eigenenergy
and the absence of a wave function in this set of solutions.

3. Repeated real rapidities

To tackle the issue of the repeated real rapidities of λ0,
we introduce a small imaginary part to create a complex-
conjugate pair, as required by the BAE. Now, we have two
complex-conjugate pairs. The first pair has a small imaginary
part, λ0± = λ0 ± iδ0, while the second one has a larger imag-
inary part around ±i, λ3± = λ3 ± i(1 + δ3). Note that four
complex rapidities need four equations to solve. The strategy
is similar to the procedures mentioned above. Two equa-
tions come from the sum of logarithmic Bethe equations of
λ0± and λ3±. Another two equations come from the original
Bethe equations of λ0+ and λ3+. Combining the logarithmic

Bethe equations for real rapidity, we can solve λ0±, λ3±, and
real rapidities {λ1}M−4.

Then, we redetermine the 3-string state for N = 12 and
M = 5 (in the physical set in Table II). Now, this set of rapidi-
ties is the exact solution of the original Bethe equation (4),
which is consistent with Ref. [69], the rational Q-system
method, and the ED calculation.

APPENDIX B: THE DETERMINANT FORMULA

1. Norm of the Bethe state

Given a set of rapidities λ j ( j = 1, . . . , M) representing
exact solutions of the Bethe ansatz equation (4), the norm of
the corresponding Bethe state is expressed as [2,54,79]

NM ({λ j}) = (−1)M

∏
j �=k (λ j − λk + i)∏

j �=k (λ j − λk )
det �({λ}), (B1)

where the matrix elements of � are

�ab = δab

[
N

4

1 + 4λ2
a

−
∑

k

2

1 + (λa − λk )2

]

+ (1 − δab)
2

1 + (λa − λb)2
. (B2)

2. Form factors

The nonzero form factors associated with σ z correspond to
states characterized by equal magnon numbers,

F z
j ({μ}M, {λ}M ) = 〈{μ}M |σ z

j |{λ}M
〉

= φ j−1({μ}M )

φ j−1({λ}M )

M∏
l=1

(μl + i/2)

(λl + i/2)

× iM det(H − 2P)∏
l>m(μl − μm)

∏
l<m(λl − λm)

,

(B3)
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where φ j ({λ}M ) = e−iqλr j and qλ is the eigenmomentum of the Bethe state |{λ}M〉. The matrix elements of the H and P matrices
are defined as

Hab = 1

(μa − λb)

⎡
⎣ M∏

l �=a

(μl − λb + i) −
(

λb − i/2

λb + i/2

)N M∏
l �=a

(μl − λb − i)

⎤
⎦, (B4)

Pab =
∏M

l=1(λl − λb + i)

(μa + i/2)(μa − i/2)
, (B5)

respectively. Here, we note that both the 2- and 3-string states with dn
j,α = 0 can cause divergence in the P matrix (B5). However,

the divergence cannot be regularized since there are no common terms in the H matrix (B4).
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