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The real mechanism of ferromagnetism in diluted magnetic semiconductors (DMSs), in particular in GaMnAs,
is not yet fully understood. The well-known Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, mediated by
itinerant charge carriers, is accepted to be responsible for the ferromagnetism in GaMnAs in its metallic state.
At the same time, GaMnAs can be realized in an insulating state when there are no mobile carriers, and holes
are localized at acceptors. At not too low Mn concentration, the overlap of acceptor-wave-function tails can be
sufficient, and Mn d shells can be aligned by means of indirect mechanism mediated by localized holes. An
increase in the content of Mn ions leads to their incorporation into interstitial positions, which in turn leads
to self-compensation, i.e., the number of localized holes per paramagnetic center decreases. This means that
the pairwise interaction of d shells can be mediated by two holes as well as single hole. In order to study the
microscopic mechanism of indirect exchange, the energy and spin structure of molecule-like complexes with
one and two charge carriers, localized by field of two paramagnetic ions, is investigated. It is shown that at
short interionic distances (high concentration of magnetic component) the established mechanisms of indirect
exchange resemble the well-known mechanisms of double- and superexchange with ferro- and antiferromagnetic
alignment of magnetic moments, respectively. However, these results that can be found perturbatively, are
significantly modified when the interionic distance R increases. Our calculations show that the magnetic ordering
in insulating DMS crystal significantly depends not only on the concentration of magnetic component but on the
compensation degree as well: cases of low or total compensation correspond to the absence of any magnetic
ordering, whereas, the pronounced ferromagnetism is realized at a compensation degree close to a half. The
simple estimate for the Curie temperature is derived in the limit of half-compensation.

DOI: 10.1103/PhysRevB.109.214415

I. INTRODUCTION

Diluted magnetic semiconductors (DMSs), such as
GaMnAs, attract attention due to their interesting magnetic
properties and the ability to integrate with conventional semi-
conductor (and even silicon) electronics. In GaMnAs usually
the indirect exchange interaction in the spirit of Zener [1]
or Ruderman-Kittel-Kasuya-Yosida (RKKY) [2–4] models is
accepted to be responsible for ferromagnetism [5,6]. However,
this consideration is valid when the manganese content is sev-
eral percent, and the exchange is mediated by itinerant holes.
At the same time, it is of interest to consider ferromagnetism
in DMS in an insulating state. In this case, indirect exchange
occurs due to the overlap of the wave functions of holes
localized directly on paramagnetic acceptors. The realization
of metallic or insulating state depends not only on the Mn
content, but on the growth conditions as well. The specifics
of low-temperature growth leads to the compensation, due to
interstitial atoms MnI [7,8] and arsenic antisites AsGa. At the
same total Mn content the insulating phase appears at lower
substrate temperatures; the corresponding phase diagram is
presented in Ref. [9].

*ivan.a.kokurin@gmail.ru

The ferromagnetism in the insulating state is noticeably
weaker and the Curie temperature is lower (up to tens of
Kelvin [10–12]). Insulating samples can find applications
e.g., in superconducting spintronics, more precisely, in hybrid
ferromagnet/superconductor (F/S) structures [13] (see also
recent review [14] and references therein). In this case, the low
Curie temperature is not so critical, since low temperatures
are also required for the existence of superconductivity. The
use of the ferromagnetic insulator instead of a ferromagnetic
metal in hybrid F/S system is preferable because the prox-
imity effect that destroys superconductivity, is limited to the
interface as the electron wave function decays in an insulator
on atomic scales [15]. This was discussed by de Gennes more
than half a century ago [16].

GaAs doped with Mn at low content (up to 1017 cm−3),
when the interaction between magnetic impurities is negli-
gible, is studied very well. In this case, the Mn2+ ion is
embedded into GaAs crystal lattice, substituting the Ga cation.
The usual notation is used for substitutional Mn impurity
MnGa. Because of the lack of one electron, MnGa acts as an
acceptor, i.e., it binds a hole. In addition, Mn inner d shell with
total spin of S = 5/2 is antiferromagnetically aligned with
the hole total angular momentum J = 3/2 (see, for instance,
review [17] and references therein). This coupling provides a
direct access to the Mn spin through photoneutralization of
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impurities (excitation with energies below the gap) by circu-
larly polarized light in compensated semiconductors [18,19].

The interaction of impurities becomes important at def-
inite concentration, which depends on the spatial extent of
localized-carrier wave function. It has recently been shown
that the interaction between impurities and the formation of
multicenter impurity complexes can manifest themselves in
optical phenomena. In particular, the broadening of long-
wave tale of the acceptor-related photoluminescence line is
explained [20,21]. For deeper impurities, such as Mn, higher
concentration is needed to test the interaction between them.
The interaction of paramagnetic impurities leads to intriguing
phenomena. A possibility to change the magnitude and the
sign of the electron magnetization in Mn-doped GaAs struc-
tures by optical means alone has been recently predicted [22].

Consideration of any mechanism of magnetic ordering usu-
ally begins with the study of a pair exchange interaction. An
increase in the content of the magnetic component leads to
overlapping of the wave functions of holes of neutral magnetic
acceptors Mn0

Ga. Thus, it is necessary to consider the energy
and spin structure of two interacting magnetic acceptors or,
in other words, the Mn0

2 molecule-like complex. At the same
time, it is well known that an attempt to increase the Mn con-
tent in GaAs leads to incorporation of Mn ions into interstitial
positions [23]. In this case, Mn behaves like a double donor
that in turn leads to self-compensation. The latter decreases
the number of localized holes per paramagnetic center. Thus,
it is important to know the mechanism of interaction not only
between two neutral Mn0

Ga acceptors (Mn0
2 complex), but also

between a neutral acceptor Mn0
Ga and an ionized Mn−

Ga one
(Mn−

2 complex). Eventually, the calculation of the energy
levels and spin structure of the Mn−

2 and Mn0
2 complexes is the

first step towards understanding the indirect exchange inter-
action and ferromagnetism in Ga1−xMnxAs in the insulating
state.

In Ref. [24] an interaction of a pair of substitutional Mn
impurities in GaAs was considered within the tight-binding
model. It should be noted, however, that the effect of com-
pensation was not taken into account, i.e., the interaction
of neutral and ionized acceptors was not considered. The
ferromagnetism in GaMnAs has been modeled within the
mean-field [25,26] and Monte Carlo [27,28] simulations.
However, at that time there was no established point of view
that Mn interstitials are responsible for compensation.

Usually, both for RKKY and localized-carrier-mediated
[24] exchange interaction the following procedure is used
to find the strength of indirect exchange: two collinear con-
figurations with parallel and antiparallel d-shell spins are
considered, and the energy difference of ground states with
above spin configurations is defined as the exchange parame-
ter. In this case, the actual magnitude of the d-shell spin is not
very important. On the contrary, we will consider a completely
quantum problem, where the inner electron shell enters the
problem not as a classical object, but as a quantum one.

The problem will be solved using the language of the semi-
conductor physics. This means using methods that are typical
in the field, such as the effective mass approximation. It is
assumed that the spectral problem for Mn0 is solved within the
framework of this method. The hole ground state, correspond-
ing to the total angular momentum of J = 3/2 with a level

near the valence band of �8 symmetry, is fourfold degenerate
[29,30]. The additional sixfold degeneracy corresponds to the
effective d-shell spin S = 5/2. Thus, the level structure of
Mn0 acceptor is described by 4 × 6 = 24 basis functions,
and the degeneracy is partially lifted by isotropic exchange
interaction, ∝ J · S. The states are classified according to the
total angular momentum F = J + S.

In the case of pair complexes, Mn−
2 and Mn0

2, the num-
ber of states that should be taken into account is equal to
the product of the number of possible states of d-shell pair
(6 × 6 = 36) and the number of hole states in nonmagnetic
acceptor complexes A−

2 or A0
2. In the simpler case of the

complex A−
2 there are eight pairwise degenerate states [20,31].

This means that the spectral problem for the Mn−
2 complex

includes 8 × 36 = 288 basis states. The A0
2 complex should

be described by C2
8 = 8!

6!2! = 28 two-hole basis functions [31].
As a result, to describe the Mn0

2 complex it is necessary to use
28 × 36 = 1008 basis states.

The consideration of above Mn−
2 and Mn0

2 complexes
is difficult. Here simpler models will be considered: it is
assumed that the spins of both localized carriers and in-
ner magnetic shells have a minimal value of 1/2, and the
complexes have shallow levels near a simple band with an
isotropic effective mass. These assumptions significantly sim-
plify the problems. We will call the simplified complexes with
one and two charge carriers D−

2 and D0
2, respectively, since

they are more similar to donor-like complexes in GaAs with
levels close to the isotropic conduction band of �6 symmetry.

The paper is organized as follows. Section II contains the
results for the spectral problems corresponding to one and
two electrons bounded at two donors (nonmagnetic D−

2 and
D0

2 complexes). The intracenter exchange interaction is in-
troduced and the spectral problems for magnetic D−

2 and D0
2

complexes are solved in Sec. III. The spin structure of mag-
netic D−

2 and D0
2 complexes is considered and the specifics

of indirect exchange interaction in GaMnAs is discussed in
Sec. IV. A brief summary of the results is presented in Sec. V.
Some calculation details are presented in Appendices A–D.

II. STRUCTURE OF NONMAGNETIC
TWO-CENTER COMPLEXES

Let us remind the structure of nonmagnetic D+
2 and D0

2
complexes. Here an isotropic scalar effective mass is used.
In this approximation the spectral problems for D+

2 and D0
2

nonmagnetic complexes coincide with that for H+
2 ion and

H2 molecule, respectively, up to renormalization of dielectric
screening and effective mass. It should be noted that the H+

2
(D+

2 ) problem can be solved exactly [32–34]. However, these
numerical results do not allow further consideration of the
magnetic complex. For this reason the approximate methods,
known in quantum chemistry, are used.

The spectral problems are solved within the framework
of molecular orbitals (MOs) approach (see, for instance,
Ref. [34]), which is applied to the envelope functions of
charge carriers in a semiconductor crystal. MOs are presented
as linear combination of atomic orbitals (LCAOs). In our
case, the atomic orbitals (AOs) correspond to envelope wave
functions of single acceptor (donor). Only the ground-state
wave functions are used as AOs: hydrogen-like 1s function is
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given by

φ(r) = a3/2

√
π

e−ar, (1)

where a is a dimensionless variational parameter. Hereinafter,
for the sake of simplicity, dimensionless lengths are used: the
effective Bohr radius aB = εh̄2/me2 is the corresponding unit
of length. Above function is eigenfunction of hydrogen-like
Hamiltonian H0 = −∇2 − 2

r and corresponds to the ground-
state energy −1. The Hamiltonian and corresponding energy
eigenvalue are dimensionless as well: the effective Rydberg
E0 = me4/2ε2h̄2 is the corresponding energy unit. Here m
is the electron effective mass and ε is the static dielectric
constant of semiconductor crystal.

In quantum chemistry, the variational method is usually
used to improve the accuracy of calculations (see, for instance,
Ref. [32]). However, in our approach the variational procedure
is neglected, and the variational parameter is simply set to a =
1. Such a simplification does not affect the main qualitative
results, whereas taking into account the a dependence signifi-
cantly complicates the calculations. Moreover, the variational
procedure is not applicable to magnetic complexes. This is
due to the fact that the exchange-dependent part of the energy
is proportional to the higher powers of the variation parameter
(∝ a3). It should be noted that when considering a simplified
model, we are trying to find qualitative features, rather than
carry out a strict quantitative calculation.

A. Nonmagnetic D+
2 complex

Now let us consider the spectral problem for the single-
electron nonmagnetic D+

2 complex. Two positively charged
ions are located at points A and B, separated by a dis-
tance R, with position vectors RA(B) = (0, 0,∓R/2). Two
ion-to-electron position vectors rA(B) = r − RA(B) should be
introduced into the problem. The single-particle Hamiltonian
includes the electron kinetic term, the potential energy of
attraction by centers A and B, and interionic repulsion,

HD+
2 = −∇2 − 2

rA
− 2

rB
+ 2

R
. (2)

The permutation symmetry of the problem leads to the
following form of the normalized MO-like wave function,

ψp(r) = 1√
2(1 + pS)

[φ(rA) + pφ(rB)], (3)

which is symmetric (p = +) or antisymmetric (p = −)
relative to the permutation of ions (A ↔ B). Here S =∫

dτφ(rA)φ(rB) is the overlap integral.
Calculation of the matrix elements of the Hamiltonian (2)

between wave functions (3) gives the eigenenergies

E±(R) = −1 + 2

R
− j′(R) ± k′(R)

1 ± S(R)
, (4)

corresponding to ψ± states, respectively. Here j′(R) =
〈φA| 2

rB
|φA〉 and k′(R) = 〈φA| 2

rA
|φB〉 are Coulomb and reso-

nance integral, respectively, where the notation φi ≡ φ(ri )
(i = A, B) is used. The explicit form of overlap S, Coulomb
j′, and resonance k′ integrals is presented in Appendix A. An
additive term 2

R is introduced into Eq. (4) as a reminder that

FIG. 1. Dependence of energy levels on interionic distance R.
(a) Nonmagnetic complex D+

2 . Solid-red (dashed-green) line corre-
sponds to E+ (E−) level. (b) Nonmagnetic complex D0

2. Solid-red
(dashed-green) line corresponds to Es (Et ) level.

complexes with small R are not formed in the crystal due to
interionic repulsion.

The dependence of energy levels E± of D+
2 complex on the

interionic distance R is shown in Fig. 1(a). The ground state
corresponds to the energy E+, and the energy of excited level
is E−.

B. Nonmagnetic D0
2 complex

Now consider the spectral problem for the nonmagnetic D0
2

complex. The Hamiltonian, taking into account the attraction
of both electrons 1 and 2 to both ions A and B, as well as
interelectronic and interionic repulsion, is given by

HD0
2 = −∇2

1 − ∇2
2 −

∑
i=1,2

∑
j=A,B

2

ri j
+ 2

r12
+ 2

R
. (5)

Here the electron position vectors relative to ion A(B) are in-
troduced, ri j = ri − R j with i = 1, 2 and j = A, B; the vector
r12 = r1 − r2 corresponds to the interelectron distance.

The solution of the spectral problem is considered in the
MO-LCAO [35] scheme as well. Using the single-electron

214415-3



I. A. KOKURIN AND N. S. AVERKIEV PHYSICAL REVIEW B 109, 214415 (2024)

two-center wave functions (3) the two-particle wave functions
of orbital motion satisfying the permutation conditions can be
written in the form

�1(1, 2; 1	g) = ψ+(r1)ψ+(r2), (6a)

�2(1, 2; 3	u) = 1√
2

[ψ+(r1)ψ−(r2) − ψ−(r1)ψ+(r2)],

(6b)

�3(1, 2; 1	u) = 1√
2

[ψ+(r1)ψ−(r2) + ψ−(r1)ψ+(r2)],

(6c)

�4(1, 2; 1	g) = ψ−(r1)ψ−(r2). (6d)

Here the molecular-physics notations are used (see, for in-
stance, Ref. [34]): the Greek 	 corresponds to zero projection
of the orbital angular momentum onto the intercenter axis,
Lz = 0; the subscript denotes the parity with respect to elec-
tron permutations (g for even and u for odd); a superscript
denotes the multiplicity (singlet/triplet) corresponding to the
spin state of two electrons.

By calculating the matrix elements of the Hamiltonian
(5) between wave functions (6), and taking into account that
the functions ψ± (3) for electron 1 or 2 are the solutions
of the Schrödinger equation with the Hamiltonian (2), we
find the energy levels of D0

2 complex. It should be taken into
account that the symmetry of the functions (6) is following:
only states �1 and �4 are mixed by the term describing the
interelectron repulsion.

The spectral problem for the Hamiltonian block 2 × 2

H =
(

H11 H14

H41 H44

)
, (7)

written relative to the basis functions �1 and �4, has a stan-
dard solution,

E1,4 = H11 + H44

2
∓

√(
H44 − H11

2

)2

+ H2
14, (8)

where

H11 = 2E+ + 2

R
+ m + j + 4l + 2k

2(1 + S)2
, (9)

H44 = 2E− + 2

R
+ m + j − 4l + 2k

2(1 − S)2
, (10)

H14 = H41 = m − j

2(1 − S2)
. (11)

The energies of second and third levels are given by

E2 = 〈�2|HD0
2 |�2〉 = E+ + E− + 2

R
+ j − k

1 − S2
, (12)

E3 = 〈�3|HD0
2 |�3〉 = E+ + E− + 2

R
+ m − k

1 − S2
. (13)

All matrix elements and energies of D0
2 complex are ex-

pressed in terms of the energies E±(R) and four integrals j,
k, l , and m, which known as Coulomb, exchange, hybrid, and
single-center integral, respectively. The explicit form of these
integrals is presented in Appendix B.

The dependencies of the energy levels E1 and E2 on in-
tercenter distance R are depicted in Fig. 1(b). The E3 and E4

levels have energies approximately E0 higher. In the further
consideration of the magnetic D0

2 complex, they are not taken
into account, since the energy of the exchange interaction
between the magnetic moment of each electron and the mag-
netic moment of the inner shell of each ion is much less than
the energy distance to these levels. Moreover, the energies
of these levels are found with less accuracy within the MO
approximation.

The wave functions corresponding to E1 and E2 levels are
given by


1(1, 2; 1	g1) = cos
θ

2
�1(1, 2; 1	g) − sin

θ

2
�4(1, 2; 1	g),

(14a)


2(1, 2; 3	u) = �2(1, 2; 3	u), (14b)

where tan θ = 2H14/(H44 − H11).
The wave functions 
3 and 
4 are not written down here,

since they are not used in further consideration. However, it
is obvious that 
3 = �3 and 
4 can be written as a linear
combination of the same functions as in 
1 with coefficients
ensuring the orthogonality of 
1 and 
4. Here and below, the
levels E1 and E2 are designated as Es and Et , respectively (the
subscripts correspond to singlet and triplet).

III. STRUCTURE OF MAGNETIC TWO-CENTER
COMPLEXES

The exchange interaction between the spin of the charge
carrier and the magnetic moment of the inner shell (say, the
d shell of a transition metal ion) is usually described by the
Heisenberg-like Hamiltonian [36]

Hex = −J (|r − R|)s · S, (15)

where s is the spin operator of a bound carrier. The simplest
case of an electron with spin s = 1/2 is considered here. Thus,
corresponding spin operator is expressed in terms of Pauli
matrices σ = (σx, σy, σz ), s = 1

2σ. The explicit form of the
magnetic-shell spin operator S depends on the specific value
of S. In our model it is equal to 1/2, i.e., it is expressed
in terms of Pauli matrices as well, S = 1

2σ. The strength of
exchange interaction is described by J (r), which is generally
considered to be spherically symmetrical and its extent is of
atomic scale. Here r and R are the position vectors of the
electron and the magnetic-shell spin, respectively.

The use of the envelope function approximation (EFA)
means that the electron wave function can be presented as a
product of the Bloch function of the corresponding extremum
and the envelope function, which slowly varies at the scale
of a lattice constant. This decomposition allows one to cal-
culate the matrix element of the exchange operator between
the electron wave functions. Integration of the operator (15)
with the squared electron ground-state wave function (1), pre-
multiplied by the s-type Bloch function, taking into account
EFA decomposition and short-range form of J (r), leads to
the spin representation of exchange operator [37]

Hex = −As · S, (16)
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where A = αφ2(0) = α
π

is an exchange constant. Thus, the in-
tracenter exchange constant A is related to the band exchange
parameter α, which in the case of simple band of �6 symmetry
is given by

α =
∫

�

d3rJ (r)|S|2.

Here S is the s-like Bloch function of �6 band bottom. The in-
tegration in the above equation is carried out over the volume
� of the unit cell. The donor ground state splits into states with
different values of the total angular momentum F = s + S,

�EF = −A

2

[
F (F + 1) − 3

2

]
, (17)

and for F = 0 (singlet) and F = 1 (triplet) the energy shift is
equal to

�EF=0 = 3A

4
, �EF=1 = −A

4
. (18)

It can be seen that the intracenter exchange interaction
resembles the hyperfine interaction in the ground state of the
hydrogen atom, caused by the Fermi contact term.

A. Magnetic D+
2 complex

Let us consider the level structure of the magnetic D+
2

complex. In this case, the electron is bound by the field of
two ions, each of which has an inner shell with nonzero spin.
In this case, the inclusion of the following Heisenberg-type
operator in the Hamiltonian is required,

H
D+

2
ex = −

∑
j=A,B

J (|r − R j |)s · S j, (19)

where the exchange interaction of the electron spin s with the
spins of the inner shells of both paramagnetic ions A and B is
taken into account. The direct exchange interaction between
d shells (∝ SA · SB) is neglected here, that is due to long
interionic distance R.

Now let us write the matrix elements of the exchange op-
erator (19) using the following simple basis: |p, μ, λ, ν〉, with
p = ±1; μ, λ, ν = ±1/2 (here the designations μ = sz, λ =
SA

z , ν = SB
z are introduced). These elements of the 16 × 16

matrix are given by

〈p′, μ′, λ′, ν ′|HD+
2

ex |p, μ, λ, ν〉 = −α

4

⎡
⎣ ∑

j=x,y,z

Np′ p(0, R)(σ j )μ′μ(σ j )λ′λδν ′ν +
∑

j=x,y,z

Np′ p(R, 0)(σ j )μ′μδλ′λ(σ j )ν ′ν

⎤
⎦,

where δx′x is the Kronecker delta and Np′ p(rA, rB) = ψp′ (rA, rB)ψp(rA, rB). The latter is included into matrix element in the form

Np′ p(0, R) = p′ pNp′ p(R, 0) = (1 + p′e−R)(1 + pe−R)

2π
√

[1 + p′S(R)][1 + pS(R)]
.

Thus, the matrix of exchange Hamiltonian (19) is given by

H
D+

2
ex = −1

4

(
P

∑
j=x,y,z(σ j ⊗ τ j ⊗ χ0 + σ j ⊗ τ0 ⊗ χ j ) D

∑
j=x,y,z(σ j ⊗ τ j ⊗ χ0 − σ j ⊗ τ0 ⊗ χ j )

D
∑

j=x,y,z(σ j ⊗ τ j ⊗ χ0 − σ j ⊗ τ0 ⊗ χ j ) M
∑

j=x,y,z(σ j ⊗ τ j ⊗ χ0 + σ j ⊗ τ0 ⊗ χ j )

)
, (20)

where σi, τi, and χi (i = x, y, z) are the Pauli matrices acting
on the spins s, SA, and SB, respectively. The matrices σ0,
τ0, and χ0 are the 2 × 2 identity matrices. Three types of
exchange parameters are introduced here,

P(R) = αN++(0, R) = A

2

(
1 + e−R

)2

[1 + S(R)]
, (21a)

M(R) = αN−−(0, R) = A

2

(
1 − e−R

)2

[1 − S(R)]
, (21b)

D(R) = αN+−(0, R) = A

2

1 − e−2R√
1 − S2(R)

. (21c)

The dependence of exchange parameters on the interionic
distance R is depicted in Fig. 2. At large R all parameters
tend to the value A/2, whereas at R → 0 they are: P(0) = A,
M(0) = 3A, D(0) = √

3A.
The nonexchange part of the total Hamiltonian,

which should be summed with H
D+

2
ex , is given by

〈p′, μ′, λ′, ν ′|HD+
2 |p, μ, λ, ν〉 = Epδp′ pδμ′μδλ′λδν ′ν .

It is convenient to use the triplet/singlet basis |S, Sz〉 for
pair of d-shell spins (S = SA + SB). This allows us to trace
the alignment of d shells in a simpler way. For a triplet state
there are S = 1 with Sz = 0,±1, and for a singlet state S = 0,
Sz = 0. A unitary transformation to this basis is presented in
the Appendix C.

Some restrictions are imposed by the axial symmetry of
the problem: the z projection of the total angular momen-
tum 	z is a good quantum number (in the approximation
used, the orbital momentum is zero, so � is the sum of the
electron spin s and the total spin S = SA + SB of d shells).
Using a 	z-classified basis set makes the solution of the
spectral problem more clear. The transformation correspond-
ing to transition to this basis is presented in Appendix C as
well. The matrices of the exchange operator and the complete
Hamiltonian are sufficiently simplified in the |p, S, 	,	z〉
basis. In this basis, the Hamiltonian is divided into eight
1 × 1 blocks and four 2 × 2 blocks. However, the final ma-
trix 16 × 16 is not written out here due to its cumbersome
form.
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FIG. 2. Dependence of exchange parameters P, M, D, ξ , and ζ

on interionic distance R.

The results of the Hamiltonian diagonalization are pre-
sented in Table I. The states are divided into two- and fourfold
degenerate depending on the value of the total three-particle
spin 	, 1/2, or 3/2, respectively. It may seem that there
is a contradiction: basis functions with opposite permuta-
tion parity p are mixed in states 3−6. However, there is
no discrepancy here, since the p parity is a property of the
spinless problem, whereas in the problem with spins, the
type of the total wave function (symmetric/antisymmetric)
also depends on the permutation of the d-shell spins. So, for
example, the states |+, 0, 1/2,+1/2〉 and |−, 1, 1/2,+1/2〉
are both antisymmetric with respect to the permutation of the
ions A and B. This is a consequence of the antisymmetry
and symmetry relative to the A ↔ B permutation of singlet
|0, 0〉 = 1√

2
(↑↓ − ↓↑) and triplet |1, 0〉 = 1√

2
(↑↓ + ↓↑) and

|1,+1〉 = ↑↑ states, respectively. Here the notation ↑↓ is
used for the state |SA

z ; SB
z 〉 = | + 1/2; −1/2〉, etc.

The dependence of the energy levels of the magnetic D+
2

complex on the interionic distance R is plotted in Fig. 3 for
both signs of the intracenter exchange constant A. One can
see a significant dependence of the level structure on the sign
of A. In the case of a large interionic distance (R → ∞),
the exchange splitting is equal to its intracenter value |A|

FIG. 3. Dependence of energy levels of magnetic D+
2 complex on

interionic distance R. The curve number corresponds to the number
of the energy level Ei in Table I (i = 1 − 6). (a) A = 0.1E0 and
(b) A = −0.1E0.

that corresponds to the “dissociation” of the D+
2 complex

into the neutral D0 and ionized D+ magnetic donors. The
levels are split in a ratio of 3:1 relative to the −E0 value
[see Eq. (18)]. The degeneracies of these states are 12 =
3 × 2 × 2 and 4 = 1 × 2 × 2 for states split off by energy A

4
and − 3A

4 , respectively. In the above products, the first factor

TABLE I. Properties of states of the magnetic D+
2 complex. Energy levels, wave functions, level degeneracies as well as the d-shell spin

expectation values 〈S2〉 and 〈Sz〉 are presented. The angles η+ and ϕ+ are given by tan η+ =
√

3D
E−−E++M and tan ϕ+ =

√
3D

E−−E+−P , respectively.

No. Deg. Energy Wave function 	 	z 〈S2〉 〈Sz〉
1 4 E− − M

2 |−, 1, 3/2, ±3/2〉, |−, 1, 3/2, ±1/2〉 3
2 ± 1

2 ,± 3
2 2 ± 1

3 , ±1

2 4 E+ − P
2 |+, 1, 3/2, ±3/2〉, |+, 1, 3/2, ±1/2〉 3

2 ± 1
2 ,± 3

2 2 ± 1
3 , ±1

3 2 E++E−+M
2 −

√( E−−E++M
2

)2 + 3
4 D2 cos η+

2 |+, 0, 1/2, ±1/2〉 + sin η+
2 |−, 1, 1/2, ±1/2〉 1

2 ± 1
2 1 − cos η+ ± 1

3 (1 − cos η+)

4 2 E++E−+M
2 +

√( E−−E++M
2

)2 + 3
4 D2 sin η+

2 |+, 0, 1/2, ±1/2〉 − cos η+
2 |−, 1, 1/2, ±1/2〉 1

2 ± 1
2 1 + cos η+ ± 1

3 (1 + cos η+)

5 2 E++E−+P
2 −

√( E−−E+−P
2

)2 + 3
4 D2 cos ϕ+

2 |+, 1, 1/2, ±1/2〉 + sin ϕ+
2 |−, 0, 1/2, ±1/2〉 1

2 ± 1
2 1 + cos ϕ+ ± 1

3 (1 + cos ϕ+)

6 2 E++E−+P
2 +

√( E−−E+−P
2

)2 + 3
4 D2 sin ϕ+

2 |+, 1, 1/2, ±1/2〉 − cos ϕ+
2 |−, 0, 1/2, ±1/2〉 1

2 ± 1
2 1 − cos ϕ+ ± 1

3 (1 − cos ϕ+)
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corresponds to the spin multiplicity of a single magnetic D0

donor (triplet/singlet). The second one corresponds to two
possible configurations: the center A is neutral, the center B is
ionized, and vice versa. The third corresponds to two possible
orientations of the d-shell spin in the ionized D+ donor.

B. Magnetic D0
2 complex

Here, the exchange coupling between both electrons (i =
1, 2) and the magnetic shells of both ions ( j = A, B) of the
magnetic complex D0

2 is taken into account. The correspond-
ing operator has usual isotropic form

H
D0

2
ex = −

∑
i=1,2

∑
j=A,B

J (|ri − R j |)si · S j . (22)

The direct exchange of the form SA · SB is not taken into
account here, as in the case of the magnetic D+

2 complex.
The ground (singlet, |0, 0〉) and first excited (triplet, |1, 0〉,

|1,±1〉) electron states of the D0
2 complex are taken into

account (total electron spin s = s1 + s2). The inner magnetic
shells of spin 1/2 are also described in terms of the total spin
of two shells (S = SA + SB). Here, the main and painstak-
ing work is to write the exchange operators si · S j (i = 1, 2
and j = A, B) in double singlet/triplet basis |s, sz〉 ⊗ |S, Sz〉.
These four 16 × 16 matrices have cumbersome form and are
not presented here. The symmetry of the problem points out
that the z projection of the total spin 	z = s1

z + s2
z + SA

z + SB
z

is a good quantum number, i.e., the states of magnetic D0
2

complex can be classified with respect to 	z.
Now it is necessary to find the matrix elements of the ex-

change coupling strength J (|ri − R j |) between the envelopes

k (k = 1, 2) multiplied by s-like Bloch functions. The two-
particle wave functions 
1 and 
2 possess a definite parity
with respect to permutations of ions A ↔ B, and electrons
1 ↔ 2. Because of this symmetry, only the matrix element of
J (|r1 − RA|) must be found, others can differ only in sign.
The matrix element 〈S
1|J (|r1 − RA|)|
1S〉 is nonzero.
However, its form is not written out here, since it is multiplied
by the zero 4 × 4 block in all four matrices si · S j (this block
comes from the electron singlet state).

Two matrix elements of interest lead us to two new ex-
change parameters, which can be expressed in terms of the
exchange parameters P, M, and D,

ξ (R) = 〈S
2|J (|r1 − RA|)|
2S〉 = 1

2
[P(R) + M(R)],

(23)

ζ (R) = 〈S
2|J (|r1 − RA|)|
1S〉 = cos

(
θ

2
− π

4

)
D(R).

(24)

These parameters describe an exchange within the electron
triplet states and the mixing of triplet and singlet states, re-
spectively. The dependencies ξ (R) and ζ (R) are depicted in
Fig. 2.

Using the basis set |s, sz; S, Sz〉 and above-mentioned ma-
trices si · S j (i = 1, 2 and j = A, B) the following form of the

exchange Hamiltonian (22) is found:

H
D0

2
ex =

⎛
⎜⎜⎜⎜⎜⎝

H11 H12 0 H14

H†
12 0 H12 H24

0 H†
12 −H11 −H†

14

H†
14 H†

24 −H14 0

⎞
⎟⎟⎟⎟⎟⎠, (25)

which is presented as a composition of 4 × 4 blocks. Here 0
is the 4 × 4 zero matrix. The high symmetry of the exchange
matrix is a consequence of the time-reversal symmetry. The
nonzero blocks are expressed in terms of four 4 × 4 matrices,

H11 = −ξ

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠, H12 =−ξ

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠,

(26a)

H14 = −ζ

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
1 0 0 0

⎞
⎟⎟⎠, H24 =−ζ

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠.

(26b)

The following order of basis functions |s, sz; S, Sz〉 is used
in Eq. (25): |1,+1; 1,+1〉, |1,+1; 1, 0〉, |1,+1; 1,−1〉,
|1,+1; 0, 0〉, |1, 0; 1,+1〉, |1, 0; 1, 0〉, |1, 0; 1,−1〉,
|1, 0; 0, 0〉, |1,−1; 1,+1〉, |1,−1; 1, 0〉, |1,−1; 1,−1〉,
|1,−1; 0, 0〉, |0, 0; 1,+1〉, |0, 0; 1, 0〉, |0, 0; 1,−1〉,
|0, 0; 0, 0〉.

An exchange-independent part of the Hamiltonian is obvi-
ously given by

HD0
2 =

⎛
⎜⎜⎜⎜⎝

Et I 0 0 0

0 Et I 0 0

0 0 Et I 0

0 0 0 EsI

⎞
⎟⎟⎟⎟⎠, (27)

where I is the 4 × 4 identity matrix.

Results of the Hamiltonian HD0
2 + H

D0
2

ex diagonalization,
classification of wave functions as well as expectation val-
ues of S2 and Sz operators for d-shell spins are presented in
Table II.

The energy levels of the magnetic D0
2 complex as a function

of the interionic distance R are plotted in Fig. 4 for both
signs of the intracenter exchange constant A. In the case of a
large interionic distance (R → ∞), there are three levels with
different degeneracies, which are separated from each other
by the intracenter value |A|. This corresponds to the “dis-
sociation” of the D0

2 complex into two magnetic D0 donors.
The energy shifts, counted from the nonmagnetic value −2E0,
can be found by combination of level shifts of two magnetic
D0 centers from Eq. (18): −A

2 = 2
( − A

4

)
, A

2 = −A
4 + 3A

4 ,
3A
2 = 2

(
3A
4

)
. The level degeneracies in the R → ∞ limit can

be found combining two sets of singlets/triplets: 3 × 3 = 9,
1 × 3 × 2 = 6, and 1 × 1 = 1 correspond to the same order
as for energy levels. The factor 2 corresponds to two possible
realizations: a singlet at the A center and a triplet at the B
center, and vice versa.
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TABLE II. Properties of states of the magnetic D0
2 complex. Energy levels, wave functions, level degeneracies as well as the inner shell

spin expectation values 〈S2〉 and 〈Sz〉 are presented. The angles η0 and ϕ0 are determined by tan η0 = 2ζ

Et −Es
and tan ϕ0 = 2

√
3ζ

Et −Es+2ξ
, respectively.

Here, for the sake of brevity, the following notations are introduced: |t ; 0, 0〉 = 1√
3
(|1, +1; 1, −1〉 − |1, 0; 1, 0〉 + |1, −1; 1, +1〉), |s; 0, 0〉 =

|0, 0; 0, 0〉

No. Deg. Energy Wave function 	 	z 〈S2〉 〈Sz〉
1 5 Et − ξ |1, ±1; 1, ±1〉, 1√

2
(|1, ±1; 1, 0〉 + |1, 0; 1, ±1〉), 2 0, ±1, ±2 2 0, ± 1

2 ,±1
1√
6
(|1,+1; 1, −1〉 + 2|1, 0; 1, 0〉 + |1,−1; 1, +1〉)

2 3 Et + ξ 1√
2
(|1, ±1; 1, 0〉 − |1, 0; 1, ±1〉), 1 0, ±1 2 0, ± 1

2
1√
2
(|1, +1; 1, −1〉 − |1, −1; 1, +1〉)

3 3 Et +Es
2 −

√(
Et −Es

2

)2 + ζ 2 sin η0

2 |1, 0(±1); 0, 0〉 − cos η0

2 |0, 0; 1, 0(±1)〉 1 0, ±1 1 + cos η0 0, ± 1
2 (1 + cos η0 )

4 3 Et +Es
2 +

√(
Et −Es

2

)2 + ζ 2 cos η0

2 |1, 0(±1); 0, 0〉 + sin η0

2 |0, 0; 1, 0(±1)〉 1 0, ±1 1 − cos η0 0, ± 1
2 (1 − cos η0 )

5 1 Et +Es+2ξ

2 −
√( Et −Es+2ξ

2

)2 + 3ζ 2 sin ϕ0

2 |t ; 0, 0〉 + cos ϕ0

2 |s; 0, 0〉 0 0 1 − cos ϕ0 0

6 1 Et +Es+2ξ

2 +
√( Et −Es+2ξ

2

)2 + 3ζ 2 cos ϕ0

2 |t ; 0, 0〉 − sin ϕ0

2 |s; 0, 0〉 0 0 1 + cos ϕ0 0

FIG. 4. Dependence of energy levels of magnetic D0
2 complex on

interionic distance R. The curve number corresponds to the number
of the energy level Ei in Table II (i = 1 − 6). (a) A = 0.1E0 and
(b) A = −0.1E0.

IV. INDIRECT EXCHANGE INTERACTION

In previous section the level structure of the magnetic D+
2

and D0
2 complexes was studied. Let us now discuss the spin

structure of these complexes. This will allow us to draw con-
clusions on the strength of indirect exchange interaction in
DMSs in the insulating phase. The dependencies of the total
spin of the d shells on the interionic distance R in states of
D+

2 and D0
2 complexes (see Tables I and II) are depicted in

Figs. 5 and 6. It can be seen that the exchange mediated by
one electron, as in the D+

2 complex, corresponds to ferromag-
netic (FM) alignment. This is similar, especially at short and
intermediate interionic distances R, to the so-called double ex-
change (see, for instance, Ref. [38]). The exchange alignment
mediated by two charge carriers, as in the D0

2 complex, at short
R looks like antiferromagnetic (AFM) superexchange [38].

At short interionic distance R the d-shell alignment for
both complexes can be explained in classical manner. In this
case the d shells have FM and AFM alignment for D+

2 and
D0

2 complex, respectively, regardless of the sign of the in-
tracenter parameter A. In the case of the D+

2 complex, both
d-shell spins are aligned either parallel or antiparallel to the
electron spin, i.e., they have FM alignment relative to each
other. In ground state of D0

2 complex (spin singlet), depending
on the sign of parameter A, there are either ⇑↑↓⇓ or ⇓↑↓⇑
configurations, both corresponding to AFM d-shell alignment
(the electron and d-shell spins are denoted by thin and thick
arrows, respectively). As the interionic distance R increases,
the mixing of excited electronic states occurs, and the d-shell
spin orientation deviates from strong FM and AFM align-
ment corresponding to double exchange and superexchange,
respectively.

The spectral problem for the magnetic D0
2 complex can

be solved by means of the perturbation theory. The same
result can be obtained simply by expanding the exact result
(Table II) with respect to the small parameter |A|/(Et − Es) �
1. The last condition is satisfied when the interionic distances
are not too large. The perturbative approach allows to trace the
proximity of the E3 and E5 levels (both levels originate from
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FIG. 5. Dependence of the squared spin expectation value of a
pair of d shells in states of the D+

2 complex with energies Ei (i =
1 − 6) on interionic distance R. The curve number corresponds to
the number of the energy level in Table I. (a) A = 0.1E0 and (b) A =
−0.1E0.

electronic singlet state),

E3 = Es − ζ 2

Et − Es
, E5 = Es − 3ζ 2

Et − Es
. (28)

The energies E3 and E5 do not depend on the sign of
exchange parameter A in approximation used. This is fulfilled
for distances R up to ∼2.5aB for the case of |A| = 0.1E0 (see
Fig. 4). If perturbation theory is applicable, then our results
for the complexes D+

2 and D0
2 can be obtained by methods

usual in the theory of indirect exchange, i.e., considering
configurations of d shells parametrically (see Appendix D).
The dependence on the sign of A appears for large R and can
be traced using the following order of perturbation theory.

The opposite limit of large interionic distance (R � 1) is
also of interest. In this case, it is convenient to use single-
center states as a basis. The wave function of D+

2 complex
at R → ∞ is a combination of the wave functions of the
noninteracting neutral magnetic D0 and ionized magnetic D+
donors located at RA and RB, and vice versa. The corre-
sponding states are described by single-center triplet/singlet
eigenvectors |S, Sz〉A(B) and d-shell eigenvectors | ± 1/2〉A(B),

FIG. 6. Dependence of the squared spin expectation value of a
pair of d shells in state of the D0

2 complex with energy Ei (i = 1 −
6) on interionic distance R. The curve number corresponds to the
number of the energy level in Table II. (a) A = 0.1E0 and (b) A =
−0.1E0.

respectively. The magnetic D0
2 complex in the above limit

is a combination of two neutral magnetic D0 donors. The
results for the magnetic D+

2 and D0
2 complexes corresponding

to the limit R → ∞ are summarized in Table III and IV,
respectively.

It should be noted that the discussed problem of the
magnetic D+

2 and D0
2 complexes resembles the problem of

hydrogen molecule ion H+
2 and hydrogen molecule H2, re-

spectively, taking into account the Fermi contact part (δ-like)
of the hyperfine interaction. This is the consequence of the
EFA decomposition and short-range behavior of the intracen-
ter exchange strength J (r). However, there are significant
differences. Firstly, this is the presence of a rotational (spatial)
wave function in para- and ortho-hydrogen, which, in accor-
dance with the fact that protons are fermions (spin of 1/2),
should have opposite parity, and therefore different orbital an-
gular momentum, for para- and ortho-hydrogen, respectively.
The rotational splitting is much larger than the splitting due
to the hyperfine interaction. Secondly, there is a significant
difference in the strength of interaction in impurity complexes
and atomic (or molecular) systems. The characteristic en-
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TABLE III. Properties of states of the magnetic D+
2 complex in the R → ∞ limit. Energy levels, wave functions, level degeneracies as

well as the d-shell spin expectation values 〈S2〉 and 〈Sz〉 are presented. Eigenstates are presented as a combination of single-center eigenstates
of the A (B) center, which can be occupied by an electron (electron spin + d-shell spin, singlet/triplet) or simply ionized (d-shell spin of 1/2
only with possible ±1/2 projections). The case A > 0 is considered. In the opposite case (A < 0) the energies are the same but the eigenstates
(and consequently spin properties such 〈S2〉) for levels 3 and 4, as well as for 5 and 6 should be interchanged.

No. Deg. Energy Wave function 	 	z 〈S2〉 〈Sz〉
1 4 −E0 − A

4
1√
2
(|1, ±1〉A| ± 1/2〉B − | ± 1/2〉A|1, ±1〉B ), 3

2 ± 1
2 , ± 3

2 2 ± 1
3 , ±1

1√
6
(|1,±1〉A| ∓ 1/2〉B − | ∓ 1/2〉A|1, ±1〉B) + 1√

3
(|1, 0〉A| ± 1/2〉B − | ± 1/2〉A|1, 0〉B )

2 4 −E0 − A
4

1√
2
(|1, ±1〉A| ± 1/2〉B + | ± 1/2〉A|1, ±1〉B ), 3

2 ± 1
2 , ± 3

2 2 ± 1
3 , ±1

1√
6
(|1,±1〉A| ∓ 1/2〉B + | ∓ 1/2〉A|1, ±1〉B) + 1√

3
(|1, 0〉A| ± 1/2〉B + | ± 1/2〉A|1, 0〉B )

3 2 −E0 − A
4

1√
3
(|1,±1〉A| ∓ 1/2〉B − | ∓ 1/2〉A|1, ±1〉B) − 1√

6
(|1, 0〉A| ± 1/2〉B − | ± 1/2〉A|1, 0〉B ) 1

2 ± 1
2

1
2 ± 1

6

4 2 −E0 + 3A
4

1√
2
(|0, 0〉A| ± 1/2〉B − | ± 1/2〉A|0, 0〉B ) 1

2 ± 1
2

3
2 ± 1

2

5 2 −E0 − A
4

1√
3
(|1,±1〉A| ∓ 1/2〉B + | ∓ 1/2〉A|1, ±1〉B) − 1√

6
(|1, 0〉A| ± 1/2〉B + | ± 1/2〉A|1, 0〉B ) 1

2 ± 1
2

1
2 ± 1

6

6 2 −E0 + 3A
4

1√
2
(|0, 0〉A| ± 1/2〉B + | ± 1/2〉A|0, 0〉B ) 1

2 ± 1
2

3
2 ± 1

2

ergy scale of the exchange interaction is determined by the
intracenter exchange parameter A, which has a typical scale
of up to |A|/E0 ∼ 0.1. The relative magnitude of hyperfine
splitting in the hydrogen atom is given by [39]

�Eh f

Ry
= 8

3
α2 me

mp
gp,

where α = e2

h̄c � 1
137 is the fine structure constant, me is the

free electron mass, mp = 1836me and gp � 5.59 are proton
mass and g-factor, respectively. Thus, the relative magnitude
of hyperfine splitting is approximately equal to 4.3 × 10−7.
The hyperfine splitting of the ground state of the H2 molecule
is usually assumed to be zero, since there are two electrons
with opposite spins. However, by analogy with our perturba-
tive consideration (28), the hyperfine splitting of the ground
state of the H2 molecule is estimated to be approximately
10−13 eV. This splitting is negligible compared to the rota-
tional one, 118 cm−1 (about 1.46 × 10−2 eV). Apparently,
the weakness of the hyperfine interaction allows to retain
“para/ortho” nomenclature. The third difference is the pos-
sibility of realizing both signs of the exchange parameter A,
while the hyperfine interaction strength has a fixed sign and is
simply proportional to the product of the magnetic moments
of the proton and electron.

So far, we have solved only problems about the level and
spin structure of two-center magnetic complexes. These re-
sults do not really answer the question “what magnetic order
will be in a system?”. However, our results can be used to
determine the type of magnetic ordering and estimate the
Curie temperature. To do this, the simulation in the spirit of
the so-called disordered Heisenberg model can be used. It
is necessary to take into account two types of disorder: (i)
disorder associated with the spread in the interionic distance;
(ii) disorder corresponding to the simultaneous realization
of two mechanisms of indirect exchange with opposite (FM
and AFM) alignment. Similar calculations were recently per-
formed in the simpler case of the disordered Ising model
[40–42]. Our result can also be used in the mean-field [25,26]
or Monte Carlo [27,28] simulations. The results of above
studies [25–28] should be revisited, since the compensation
due to Mn interstitials that now is accepted to be responsible
for compensation in GaMnAs was not taken into account.

The simple estimates are possible in some limiting cases.
In the case of compensation close to zero, there is approxi-
mately one hole per one manganese atom. In this case, the
pair interaction corresponds to the AFM alignment, as in the
magnetic D0

2 complex. However, a strong AFM order should
not be expected. This is a consequence of two reasons: (i)

TABLE IV. Properties of states of the magnetic D0
2 complex in the R → ∞ limit. Energy levels, wave functions, level degeneracies as well

as the d-shell spin expectation values 〈S2〉 and 〈Sz〉 are presented. Eigenstates are presented as a combination of single-center (electron spin +
d-shell spin, singlet/triplet) eigenstates. The case A > 0 is considered. In the opposite case (A < 0), the energies can be found from Table II,
while the eigenstates for levels 3 and 4, as well as for 5 and 6 should be interchanged.

No. Deg. Energy Wave function 	 	z 〈S2〉 〈Sz〉
1 5 −2E0 − A

2 |1,±1〉A|1, ±1〉B, 1√
2
(|1,±1〉A|1, 0〉B − |1, 0〉A|1,±1〉B ), 2 0, ±1, ±2 2 0, ± 1

2 , ±1
1√
6
(|1,+1〉A|1, −1〉B + 2|1, 0〉A|1, 0〉B + |1, −1〉A|1, +1〉B)

2 3 −2E0 + A
2

1√
2
(|1, 0(±1)〉A|0, 0〉B + |0, 0〉A|1, 0(±1)〉B) 1 0, ±1 2 0, ± 1

2

3 3 −2E0 − A
2

1√
2
(|1, 0(±1)〉A|0, 0〉B − |0, 0〉A|1, 0(±1)〉B) 1 0, ±1 1 0, ± 1

2

4 3 −2E0 + A
2

1√
2
(|1,+1〉A|1, −1〉B − |1, −1〉A|1,+1〉B ), 1√

2
(|1,±1〉A|1, 0〉B − |1, 0〉A|1, ±1〉B ) 1 0, ±1 1 0, ± 1

2

5 1 −2E0 − A
2

1
2
√

3
(3|0, 0〉A|0, 0〉B − |1, 0〉A|1, 0〉B + |1, +1〉A|1, −1〉B + |1, −1〉A|1, +1〉B ) 0 0 1

2 0

6 1 −2E0 + 3A
2

1
2 (|1, 0〉A|1, 0〉B + |0, 0〉A|0, 0〉B − |1, +1〉A|1, −1〉B − |1, −1〉A|1, +1〉B ) 0 0 3

2 0
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the possibility of thermal excitation of the FM pair alignment
(the first excited state of the magnetic D0

2 complex has the
opposite spin structure of the d shells); (ii) the spread in
the interionic distance R. Perhaps a spin glass-like structure
can be realized at zero compensation. In the opposite case of
complete compensation, the disappearance of magnetic order
is also expected, which is due to the absence of charge carriers
mediating indirect exchange. The most interesting is the case
of intermediate compensation, when the numbers of ionized
(Mn−

Ga) and neutral (Mn0
Ga) centers are approximately equal

[43]. In this case, there is only one mechanism of indirect
exchange: the pair alignment of d shells is mediated by a
single charge carrier, as in the magnetic D+

2 complex, and
the FM ordering is expected. Thus, a necessary condition
for ferromagnetism in insulating GaMnAs is not only a high
content of the magnetic component, but also a compensation
degree that provides approximately equal concentration of
neutral and ionized substitutional Mn acceptors. It should be
noted that the doping by nonmagnetic donors is more suitable,
since the required ratio between the concentrations of ionized
and neutral acceptors is achieved at a higher MnGa concen-
tration [44]. The above picture of compensation-dependent
ferromagnetism is in good agreement with considerations
based on the impurity band [45,46], when the ferromagnetism
is realized at the Fermi level being close to the middle of
the impurity band. Similar conclusions regarding the effect
of compensation were made in Ref. [47] based on other
considerations.

At the same total manganese concentration, the most
pronounced ferromagnetism and a higher Curie temperature
should be expected at half compensation. In this case, the
only one mechanism of indirect exchange interaction takes
place that allows to make a simple mean-field estimation of
the Curie temperature [48],

kBTC = 1
3 S(S + 1)J (R). (29)

Here J (R) is the parameter of indirect exchange interaction
as a function of interionic distance R, kB is the Boltzmann
constant, and the d-shell spin S = 5/2 is used for Mn ac-
ceptor. An average interionic distance R between Mn ions
can be estimated from Mn concentration n or atomic con-
tent x by means of 4

3πR
3
n = 1 and n = 4x

a3
0
, where a0 is

the lattice constant. For x � 1 the low-temperature value of
the GaAs lattice constant a0 = 5.64 Å [49] can be used for
estimates.

The dependence J (R) can be found from the following
equation:

J = Egs(↑↓) − Egs(↑↑), (30)

where Egs(↑↑) and Egs(↑↓) are the ground-state energies of
a two-center complex with parallel and antiparallel spins of
d shells, respectively. For the case of exchange mediated by
single charge carrier, these energies are given by Eq. (D2) of
Appendix D. The dependence J (R), calculated using Eqs. (30)
and (D2) is depicted in Fig. 7. The curves are plotted for
different values |A|/E0 in the range from 0.01 to 0.1 with an
increment of 0.01. In the range of interionic distances R �
(2 − 3)aB, corresponding to the Mn concentration of interest,

FIG. 7. Dependence of exchange parameter J on interionic dis-
tance R for the case of exchange interaction mediated by single
charge carrier. The solid-green curves are plotted for the |A|/E0 ratio
in (0.01; 0.1) interval with 0.01 increment. The dashed-red curve
corresponds to parameters of the Mn0

Ga acceptor in GaAs: |A|/E0 =
0.026. The dot marks the average interionic distance R = 1.026aB

corresponding to the Mn composition x = 0.01. The corresponding
exchange parameter is equal to J = 6.35 × 10−3E0.

the strength of indirect exchange interaction can be repre-
sented analytically, J (R) = 1

2 |P(R)|. This result corresponds
to the first-order perturbation theory in |A|/(E− − E+).

There is different information in the literature [50–52]
about the magnitude of the exchange parameter A for the
Mn0

Ga acceptor in GaAs: the range 1.2−6 meV is covered in
above references. A value of about 2.5 meV [53], obtained
using spin-flip Raman spectroscopy, now seems correct. The
Mn0

Ga ionization energy is approximately 110 meV. The value
used is E0 = 96.9 meV, which is obtained by subtracting the
exchange-dependent part 21|A|/4 from 110 meV (see, for
instance, Ref. [54]). Thus, for the Mn acceptor in GaAs the
dimensionless parameter |A|/E0 = 0.026 is used. The cor-
responding J (R) dependence is depicted in Fig. 7 with a
dashed-red curve.

Now let us estimate the Curie temperature TC at “half-
compensation”, which is the upper limit for the fixed Mn
content x. The value x = 0.01 is used, corresponding to
concentration n = 2.21 × 1020 cm−3 and average intercenter
distance R = 1.026aB, with Bohr radius of aB = 1 nm [54]
for Mn0

Ga. The value R = 1.026aB is marked with a dot on the
corresponding curve in Fig. 7. This point corresponds to the
exchange parameter 6.35 × 10−3E0 or 0.615 meV in absolute
units. The last value, together with the d-shell spin S = 5/2,
after substitution into Eq. (29) leads to the Curie temperature
about 42 K. Here, the simultaneous use of spin-5/2 in Eq. (29)
and spin-1/2 in the definition of the exchange parameter (30)
may alert the reader. Let us clarify this issue. The definition
of the indirect exchange parameter itself is highly arbitrary.
For the case of spin-1/2 there is no other possibility other
than Eq. (30). In the case of higher spins, there are more
than two configurations. The exchange strength can be defined
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as the difference between the ground-state energies for any
fixed configuration and the lowest ground-state energy (in
our case this is the FM configuration). The Hamiltonian (D1)
corresponds to the case of an arbitrary d-shell spin S. The
definition of the exchange strength as the difference between
the ground-state energies of the spin configurations (+S; −S)
and (+S; +S) is proportional to S. At the same time, the differ-
ence Egs(S, S − 1) − Egs(S, S) is S independent, at least in the
range of R values of interest. It is suitable for any S, including
5/2, and for the case of spin-1/2 it coincides with Eq. (30).
For small R, the indirect exchange strength determined in this
way is equal to 1

2 |P(R)| regardless of S. For this reason, the
simplest definition (30) is used, while the real spin of the Mn d
shell (S = 5/2) is included in Eq. (29) to determine the Curie
temperature of GaMnAs.

Above estimate is in qualitative agreement with experi-
mental data [12], where the value TC = 25 K was measured
for a sample with x = 0.005. It should be remembered that
the mean-field approximation overestimates the value of the
critical temperature [28]. The above estimate corresponds
to the case when there are no Mn interstitials, and half-
compensation is provided by nonmagnetic donors. In the case
of half-compensation due to Mn interstitials the x value should
be replaced by an effective value x/2 [55].

Above estimation should be taken as a qualitative result.
This is a consequence of some simplifications of our model.
The following features were not taken into account in our
consideration: (i) the complex structure of the valence band
and acceptor [29,30]; (ii) the short-range part of attracting
potential [56] (central-cell correction [54]); (iii) the real value
(5/2) of the d-shell spin. A real model of the Mn−

2 complex,
reflecting the FM type of pair alignment of d shells, can be de-
veloped based on the results of Ref. [20] for the nonmagnetic
A−

2 complex and Sec. III of present paper.

V. CONCLUSIONS AND OUTLOOK

The energy and spin structure of magnetic D+
2 and D0

2
complexes is examined in detail. The indirect exchange in-
teraction in DMS in the insulating phase is studied. It is
shown that indirect exchange mediated by one and two charge
carriers looks like double- and superexchange, respectively.
The competition between the mentioned mechanisms of in-
direct exchange, and as a consequence, the type of ordering
realized in the system is determined primarily by the degree
of compensation.

Our results concerning the energy and spin structure of
magnetic D+

2 and D0
2 complexes do not provide a direct answer

to the question of what type of magnetic ordering is realized
in real compensated DMSs. However, we believe that these
results can be used in various many-body simulations based
on the disordered Heisenberg model and the Monte Carlo
method.

The simple conclusions are drawn about magnetic ordering
for the low, high, and half compensation cases, which are in
good agreement with previous theoretical and experimental
results. There is no FM ordering at low and high compen-
sation. The particular case of half-compensation (one hole is
shared by two Mn acceptors) is of interest. For a fixed total
amount of magnetic component, the most pronounced FM

ordering and the highest Curie temperature should be ex-
pected at this degree of compensation. An estimate of the
Curie temperature of about 40 K for Ga1−xMnxAs with x =
0.01 is obtained.

The results obtained point out the direction and sequence
of actions for studying more realistic complexes Mn−

2 and
Mn0

2. The complex structure of the valence band significantly
modifies and complicates the problem. To calculate the indi-
rect alignment of manganese d shells in GaMnAs, the results
for nonmagnetic A−

2 [20] and A0
2 [57] complexes should be

used as a starting point. The second step is to introduce
the intracenter exchange interaction for the hole(s) of the
complex with real d-shell spins in the same way as in the
Sec. III.
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APPENDIX A: INTEGRALS OF D+
2 PROBLEM

It is convenient to use ellipsoidal coordinates for calcula-
tion of overlap integral S, Coulomb integral j′, and resonance
integral k′ (see, for instance, Ref. [21]),

S(a, R) = e−aR

[
1 + aR + 1

3
(aR)2

]
, (A1)

j′(a, R) = 2

R

[
1 − (1 + aR)e−2aR

]
, (A2)

k′(a, R) = 2a(1 + aR)e−aR. (A3)

Here the dependence of integrals on variational parameter
a is preserved.

APPENDIX B: INTEGRALS OF D0
2 PROBLEM

All matrix elements and energies of the H2-molecule spec-
tral problem (MO-LCAO approximation) are expressed in
terms of E± energies and four integrals. Here, for the sake of
brevity, the following notation is used: a(i) = φ(riA), b(i) =
φ(riB) (i = 1, 2). A detailed calculation of the integrals used
can be found in Slater’s book [32].

The single-center integral is given by

m = [aa|aa] =
∫

dτ1dτ2a2(1)a2(2)
2

r12
= 5s

4R
. (B1)

Here the notation s = aR is used.
The two-electron Coulomb integral, which describes the

interaction of two electron densities localized at different cen-
ters (A and B), has the form

j = [aa|bb] =
∫

dτ1dτ2a2(1)b2(2)
2

r12

= 2

R
− 1

R

(
2 + 11

4
s + 3

2
s2 + 1

3
s3

)
e−2s, (B2)
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The hybrid integral corresponding to the interaction of the electron density localized at one center with the so-called mixed
density has the form

l = [aa|ab] =
∫

dτ1dτ2a2(1)a(2)b(2)
2

r12
= 1

R

[(
5

8
+ 1

4
s + 2s2

)
e−s −

(
5

8
+ 1

4
s

)
e−3s

]
. (B3)

The exchange integral is given by

k = [ab|ab] =
∫

dτ1dτ2a(1)b(1)a(2)b(2)
2

r12
= 2s[A(s) − B(s)]

5R
, (B4)

where

A(s) = 6

s

[
(γ + ln s)S2 − E1(4s)S′2 + 2E1(2s)SS′],

B(s) =
(

−25

8
+ 23

4
s + 3s2 + 1

3
s3

)
e−2s,

S′(s) = S(−s) =
(

1 − s + 1

3
s2

)
es.

Here γ = 0.57722 . . . is the Euler-Mascheroni constant, E1(x) = ∫ ∞
x dz e−z

z is the exponential integral [58].

APPENDIX C: BASIS TRANSFORMATIONS

It is convenient to work with a basis that is classified by the total spin S of the d-shell pair and the corresponding projection
Sz. The following unitary transformation is required between the old basis |SA

z , SB
z 〉 and the new basis |S, Sz〉:

⎛
⎜⎜⎜⎜⎝

|1,+1〉
|1, 0〉

|1,−1〉
|0, 0〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1√
2

1√
2

0

0 0 0 1

0 1√
2

− 1√
2

0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∣∣+ 1
2 ,+ 1

2

〉
∣∣+ 1

2 ,− 1
2

〉
∣∣− 1

2 ,+ 1
2

〉
∣∣− 1

2 ,− 1
2

〉

⎞
⎟⎟⎟⎟⎟⎠. (C1)

Due to the axial symmetry of the problem, it is useful to use a basis classified by the total spin of the three particles 	 and its
projection 	z. The transformation between the basis |S, 	,	z〉 and |sz, S,Sz〉 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|0, 1/2,+1/2〉
|0, 1/2,−1/2〉
|1, 3/2,+3/2〉
|1, 3/2,+1/2〉
|1, 3/2,−1/2〉
|1, 3/2,−3/2〉
|1, 1/2,+1/2〉
|1, 1/2,−1/2〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0
√

2
3 0 0 1√

3
0 0 0

0 0 1√
3

0 0
√

2
3 0 0

0 0 0 0 0 0 1 0

0 1√
3

0 0 −
√

2
3 0 0 0

0 0
√

2
3 0 0 − 1√

3
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|↑, 1,+1〉
|↑, 1, 0〉

|↑, 1,−1〉
|↑, 0, 0〉

|↓, 1,+1〉
|↓, 1, 0〉

|↓, 1,−1〉
|↓, 0, 0〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Here, the quantum number S = 0, 1 is additionally used to distinguish two types of states with 	 = 1/2.

APPENDIX D: MODELS WITH FIXED SPIN CONFIGURATIONS

Now let us consider the models in the usual for exchange interaction manner. In this case, the spin configurations of d shells
are assumed to be fixed: the spins are collinear, and possible configurations correspond to parallel (↑↑) or antiparallel (↑↓)
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alignment. In this case the direct (intracenter) exchange is not of Heisenberg-like form [see Eq. (15)], but rather Ising-like, when
only z components si

zS
j
z are in the dot products of Eqs. (19) and (22). In this case the spectral problems are simplified: the d-shell

spins enter the problems as parameters, and there are the 4 × 4 spectral problems instead of 16 × 16 ones.

1. Magnetic D+
2 complex

Since d shells enter the spectral problem as parameters SA
z and SB

z , the four basis functions |p, sz〉 are used (p = ±, sz = ±1/2).
The following order of basis functions |+,+1/2〉, |+,−1/2〉, |−,+1/2〉, and |−,−1/2〉 is utilized. In this case the Hamiltonian
of magnetic D+

2 complex is given by

HD+
2
(
SA

z , SB
z

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

E+ − 1
2 P

(
SA

z + SB
z

)
0 − 1

2 D
(
SA

z − SB
z

)
0

0 E+ + 1
2 P

(
SA

z + SB
z

)
0 1

2 D
(
SA

z − SB
z

)
− 1

2 D
(
SA

z − SB
z

)
0 E− − 1

2 M
(
SA

z + SB
z

)
0

0 1
2 D

(
SA

z − SB
z

)
0 E− + 1

2 M
(
SA

z + SB
z

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D1)

The spectral problem is easily solved. Only the ground-state energy is presented here for both the ↑↑ (SA
z + SB

z = 1, SA
z −

SB
z = 0) and ↑↓ (SA

z + SB
z = 0, SA

z − SB
z = 1) configurations,

Egs(↑↑) = E+(R) − 1

2
|P(R)|, Egs(↑↓) = E+(R) + E−(R)

2
− 1

2

√
[E+(R) − E−(R)]2 + D2(R). (D2)

In the case of intermediate and low interionic distances R, when the condition |A| � |E−(R) − E+(R)| is fulfilled, the last
formula is simplified,

Egs(↑↓) = E+(R) − D2(R)

4[E−(R) − E+(R)]
,

that corresponds to the second-order perturbation theory.
The ↑↑ configuration corresponds to lower energy regardless of the sign of the intracenter exchange parameter A, i.e., there

is FM alignment.

2. Magnetic D0
2 complex

For the magnetic D0
2 complex, the 4 × 4 Hamiltonian is given by

HD0
2
(
SA

z , SB
z

) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Et − ξ
(
SA

z + SB
z

)
0 0 0

0 Et 0 −ζ
(
SA

z − SB
z

)
0 0 Et + ξ

(
SA

z + SB
z

)
0

0 −ζ
(
SA

z − SB
z

)
0 Es

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D3)

This operator is written using the following order of basis vectors: |1,+1〉, |1, 0〉, |1,−1〉, and |0, 0〉. The ground-state energy
for ↑↑ and ↑↓ d-shell configurations is given by

Egs(↑↑) = Es(R), Egs(↑↓) = Es(R) − ζ 2(R)

Et (R) − Es(R)
, (D4)

respectively. The second-order perturbation theory is also used here. The ground state corresponds to the AFM alignment (the
↑↓ configuration has lower energy) regardless of the sign of the A parameter.
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