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The magnetic interactions in the antiferromagnetic (AFM) Dirac semimetal candidate SrMnSb2 are investi-
gated using ab initio linear response theory and inelastic neutron scattering (INS). Our calculations reveal that
the first two nearest in-plane couplings (J1 and J2) are both AFM in nature, indicating a significant degree of spin
frustration, which aligns with experimental observations. The orbital resolution of exchange interactions shows
that J1 and J2 are dominated by direct and superexchange, respectively. In a broader context, a rigid-band model
suggests that electron doping fills the minority spin channel and results in a decrease in the AFM coupling
strength for both J1 and J2. To better compare with INS measurements, we calculate the spin-wave spectra
within a linear spin-wave theory, utilizing the computed exchange parameters. Although the calculated spin-wave
spectra somewhat overestimate the magnon bandwidth, they exhibit overall good agreement with measurements
from INS experiments.
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I. INTRODUCTION

Transition-metal dichalcogenides have the potential for
intertwined charge, structural, and magnetic states [1]. In par-
ticular, the AMnX2 (112), A = Ca, Sr, Ba, Eu, or Yb and X =
Sb or Bi, have generated intense contemporary interest be-
cause they exhibit perfect or slightly distorted square magnetic
Mn layers predicted to support Dirac or Weyl fermions [2–6].
The coupling of magnetic order or fluctuations to such topo-
logical quasiparticles is compelling as magnetic control may
allow for tuning of topological properties. Thus, understand-
ing the basic magnetic interactions in the 112 compounds is
important.

The Dirac semimetal candidate SrMnSb2 features a slightly
distorted tetragonal structure and exhibits C-type antiferro-
magnetic (AFM) ordering, as shown in Figs. 1(a) and 1(b).
The C-type order consists of Néel-type AFM order within
the slightly distorted square Mn sublattices and ferromagnetic
(FM) along the out-of-plane direction between them. The
magnetic interactions and excitations of this compound have
been studied using a combination of inelastic neutron scatter-
ing (INS) and density functional theory (DFT) [7]. The study
considered the nearest-neighbor (NN) exchange coupling pa-
rameter J1, obtained from total energy mapping of various
magnetic configurations. However, due to the semi-metallic
nature of SrMnSb2, it is reasonable to expect that the magnetic
coupling extends to further neighbors.

To provide a more comprehensive picture, more recent
work on various systems has expanded to the minimal-
istic Heisenberg J1-J2 model [8,9], which factors in the
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next-nearest-neighbor (NNN) coupling J2. This model offers
an elegant and straightforward framework for interpreting
various spin configurations resulting from the competi-
tion between J1 and J2, taking into account their relative
amplitudes and signs. Experimentally, valuable information
about the values of SJ and the ratio of J1/J2 can be ob-
tained through INS. However, further theoretical investigation
is desirable, as it can offer a microscopic understanding of
these interactions and guide the manipulation of Ji j , where
Ji j is the parameter corresponding to the exchange coupling
between sites i and j, to either alleviate spin frustration and
tune magnetic order, or promote spin frustration and quantum
spin fluctuations that can mediate electronic pairing.

Ab initio estimations of exchange parameters can be
performed using different methods, including total energy
mapping and linear response theory [10,11]. The total-energy-
mapping method is widely employed due to its simplicity.
For isotropic exchanges, the total energies of various collinear
spin configurations are often calculated in first-principles
methods and mapped onto a model spin Hamiltonian. Interac-
tions beyond the isotropic exchanges, such as the off-diagonal
part or the anisotropic diagonal part of the 3 × 3 exchange
tensor J , can become important for more complicated materi-
als systems that have large spin-orbit coupling (SOC) and/or
broken inversion symmetry [12]. To estimate the relativistic-
effect-originated exchanges, such as anisotropic exchange
(anisotropic diagonal part of J tensor) or the Dzyaloshinskii-
Moriya interaction (antisymmetric off-diagonal part of J
tensor), SOC needs to be included in ab initio calculations,
and noncollinear spin configurations need to be considered.
However, the mapping method has limitations. For exam-
ple, extracted interaction parameters can be nonunique due
to the dependence on assumed model Hamiltonians. More-
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FIG. 1. Crystal structure and corresponding Brillouin zone of
SrMnSb2. (a) Schematic representation of the crystal structure of
SrMnSb2. The primitive unit cell is doubled along the b direction
to better illustrate the Mn grid. Sr, Mn, and Sb atoms are represented
by green, purple, and blue spheres, respectively. The lattice vectors a,
b, and c are highlighted in red. For convenience in discussing the or-
bital contributions to exchange coupling, we align the longest lattice
vector a along the ẑ direction, and the nearly square Mn sublattice
is on the bc-basal plane, or equivalently, the xy plane. (b) C-type
AFM ordering of spin moments of Mn atoms in the cell shown in
(a). (c) Top view of dxy orbitals for the Mn net shown in (b). (d) The
first Brillouin zone of SrMnSb2 with high-symmetry k points marked
by red dots and k paths marked by green arrows. X = [ 1

2 , 0, 0],
Y = [0, 1

2 , 0], and Z = [0, 0, 1
2 ] in orthorhombic reciprocal lattice

units (r.l.u.).

over, its applicability is limited in itinerant systems when
the variability of on-site spin moments across different con-
figurations, particularly in metallic compounds, becomes
significant.

On the other hand, linear response theory evaluates the
energy variations resulting from infinitesimal spin rotations
away from the ground state. It is more computationally de-
manding but, in principle, more suitable for the calculation
of low-temperature spin-wave (SW) excitations, which can be
regarded as a small perturbation to the ground state. The lin-
ear response method is also easily extensible to beyond-DFT
methods that may be challenging to access the total energy,
such as many-body-perturbation-theory-based GW methods
[13], to better describe electronic structures and magnetic
interactions in various materials [11,14,15]. Finally, the lin-
ear response method allows for easy resolution of pairwise
interactions into orbitals and band-filling effects, revealing the
microscopic origin of these exchange couplings and providing
guidance for band-structure engineering using doping and
pressure.

Here, we apply linear response theory to investigate the
magnetic interactions and excitations in SrMnSb2. We calcu-
late and resolve isotropic exchange couplings, gaining insight
into the microscopic origin of the magnetism. Using the
obtained exchange parameters, we calculate the SW spec-
tra via linear spin-wave theory (LSWT) and compare them
with INS measurements. This comparison confirms the sub-
stantial magnetic frustration existing in the Mn layers. The
linear-response results allow a discussion of how to tune the
magnetic frustration by carrier doping.

II. COMPUTATIONAL AND EXPERIMENTAL METHODS

We first construct the real-space scalar-relativistic tight-
binding (TB) Hamiltonian H (R) using the maximally lo-
calized Wannier functions (MLWFs) method [16–18]. The
reciprocal-space Hamiltonian H (k) is obtained through
Fourier transform. To better address the potential influences
from the slightly distorted tetragonal structure, we symmetrize
the TB Hamiltonian to ensure that the orthorhombic crystal
symmetry is rigorously satisfied. Afterward, the correspond-
ing Green’s function G(k, ω) is constructed for use in the
linear response approach, as implemented in our recently
developed TB Green’s function code [19], to calculate the
exchange couplings. Finally, with the exchange parameters in
hand, we proceed to construct SW spectra using a LSWT.

A. Crystal structure

SrMnSb2 crystallizes in the orthorhombic SrZnSb2-type
(Pnma, space group no.62) structure with lattice parameters
a = 23.19 Å, b = 4.42 Å, and c = 4.46 Å [20]. The primitive
cell contains four formula units (f.u.) and all atoms occupy
different sets of 4c (.m.) sites. The crystal structure is shown
in Fig. 1(a). For convenience in discussing the Mn-3d orbital
contributions to the magnetic properties, we align the longest
lattice vector a along the ẑ direction, so the magnetic Mn lay-
ers are in the xy (bc) basal plane. We also double the unit cell
along the b direction to better illustrate the Mn grid. The slight
distortion of the bc-basal plane results in the NNN exchange
coupling J2 becoming anisotropic with respect to the x̂ (b) and
ŷ (c) directions, denoted as J2b and J2c, respectively.

There are two Sb sublattices, denoted in Fig. 1(a) as Sb1

and Sb2, respectively. Two Sb2 layers sandwich a Mn layer,
forming MnSb4 tetrahedra. The Sr atoms are relatively weakly
bonded to the Sb1 atoms and staggered above and below the
Sb1 layer, forming rhombus nets [21]. The C-type magnetic
ordering lowers the crystal symmetry and separates the oth-
erwise four equivalent Mn atoms into two sublattices, each
possessing the same on-site magnetic moment but opposite
orientation, as shown in Fig. 1(b).

Figure 1(c) illustrates Mn-dxy orbitals pointing along the
nearest neighbor direction, while Fig. 1(d) shows the first Bril-
louin zone (BZ) with special k points denoted. Due to the large
separation between Mn layers, the super-superexchange be-
tween Mn layers is much weaker than the intralayer coupling,
similar to the magnetic topological insulator MnBi2Te4 [22].
Such quasi-2D magnetic structures generally require beyond-
mean-field approaches to estimate critical temperatures [23].
Experimental lattice constants and atomic position parameters
[20] are used for all calculations in this work.

B. DFT details and TB Hamiltonian symmetrization

DFT calculations are performed using the generalized-
gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof exchange-correlation parametrization [24] and the
projector augmented wave approach [25,26] as implemented
in the Vienna ab initio simulation package (VASP). To fa-
cilitate our subsequent analyses, we construct the MLWFs
through a postprocessing procedure [16–18], as implemented
in WANNIER90 [27], using the output of the self-consistent
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scalar-relativistic DFT calculation. In total, the TB basis com-
prises 44 MLWFs, encompassing 3d orbitals for four Mn
atoms and 5p orbitals for eight Sb atoms in the unit cell. To
minimize the spread functional for entangled energy bands,
we adopt a two-step procedure [17]. For each spin channel,
a real-space Hamiltonian Hσ (R) with dimensions 44 × 44 is
constructed to accurately represent the band structures in a
specified “frozen” energy window near EF. The energy bands
are recalculated within TB to ensure that DFT bands can
be accurately reproduced before further magnetic property
calculations.

The process of wannierization for DFT bands may not
always preserve the symmetry of wave functions and orbital
characteristics. As we are also interested in understanding the
potential impacts of the slightly distorted square Mn grid on
exchange couplings, we symmetrize the Hamiltonian accord-
ingly using

H sym
i j,σ (R) = 1

|GH |
∑
R∈GH

〈0|R̂ĤR̂†|R〉i j,σ , (1)

where 0 denotes the central unit cell, R denotes primitive
translation vectors, i and j denote two sites within the primi-
tive cell, σ is the spin channel, and R represents symmetry
operations within the subgroup GH of the Hamiltonian. A
detailed implementation of Hamiltonian symmetrization can
be found in Appendix A.

Before delving into magnetic properties calculations,
we ensure alignment between the band structures gener-
ated by DFT and those produced by the symmetrized TB
Hamiltonian:

Hσ
i j (k) =

∑
R

Hσ
i j (R)e−ik·R, (2)

where k denotes wave vectors.

C. Exchange couplings, spin wave, and critical temperature

The static linear response method with the long-wave ap-
proximation [10], based on Green’s function technique, has
long been developed to calculate exchange couplings as de-
fined in a Heisenberg-type Hamiltonian:

H = −
∑
i �= j

Je
i j êi · ê j . (3)

Here, Je
i j is the isotropic exchange interaction parameter be-

tween sites i and j in the crystal, and êi is the unit vector
pointing along the direction of the local spin moment at site i
in the reference spin configuration. The early implementations
utilized local-basis DFT methods, such as the linear muffin-tin
orbital method [28], employing the atomic sphere approxima-
tion (ASA) and based on Green’s function technique. These
methods provided highly efficient and useful descriptions of
magnetic interactions in various systems, particularly those
with close-packed structures. For example, they have been
successfully applied to systems such as K2Fe4+xSe5 [29],
T2AlB2 (T = Fe, Mn, Cr, Co, and Ni) and their alloys [30],
and R(Fe1−xCox )11TiZ (R = Y and Ce; Z = H, C, and N)
[31]. Additionally, more accurate full-potential methods have
also been implemented to evaluate Ji j from the inverse static
transverse susceptibilities, using the rigid-spin approximation

that projects susceptibility onto the spin density of the mag-
netic sites [11,15,32]. Lastly, modern plane-wave-based DFT
methods have often been interfaced with the MLWFs method
to generate realistic TB Hamiltonians that accurately describe
the band structures within an energy window typically near
the Fermi level (EF) of a material. This approach also offers
an attractive means to evaluate and analyze band structures
and various other properties [33–35], with both efficiency and
accuracy.

We carry out the linear response calculations using our
recently developed TB code, which has been employed to
efficiently analyze band structures [36,37], Fermi surface [38],
and magnetocrystalline anisotropy [19]. Starting from the TB
Hamiltonian H (k), we construct intersite Green’s function
Gσ

i j (k) on a 16 × 16 × 4 k mesh to compute the exchange
parameters Je

i j (q). Their orbital-resolved components Je
i j,m are

defined by

Je
i j,m(q) = − 1

4π
�

∫ EF

−∞
dω

∫
FBZ

dk[�i(k)G↓
i j (k, ω)

×� j (k + q)G↑
ji(k + q, ω)]mm, (4)

where the exchange-splitting matrix �i(k) = H↑
ii (k) −

H↓
ii (k). The real-space exchange constants Je

i j (R) are then
obtained through a subsequent Fourier transform.

It is important to note that the neutron scattering com-
munity often adopts a different convention, wherein the
Heisenberg Hamiltonian is frequently defined in terms of the
spin vector S as follows:

H =
∑
i< j

JN
i j Si · S j . (5)

For clarity and to facilitate comparison between calculations
and experiments, by comparing Eqs. (3) and (5), we have

JN
i j = − 8

mim j
Je

i j . (6)

Here, mi = 2Si is the magnetic moment (with sign) on site
i. A positive (negative) JN

i j indicates AFM (FM) coupling.
In contrast to JN

i j , Je
i j is defined with respect to the given

spin configuration, and a positive (negative) Je
i j indicates that

the given ordering of the corresponding pair is stable (frus-
trated). The critical temperatures, Curie temperature for FM
materials or Néel temperature for AFM materials, can be
estimated within the mean-field approximation as TC = 2

3 Je
0 ,

where Je
0 = ∑

i Je
0i. However, the mean-field approximation

tends to overstate the critical temperature, especially in quasi-
2D magnetic structures with very weak interlayer coupling.
All Ji j discussed hereafter, unless specified otherwise, refer
to JN

i j .
With the ab initio exchange parameters obtained, the SW

spectra can be calculated by solving the equation of motion
method or through the bosonization of the spin Hamiltonian
with Holstein-Primakoff [39] or other transformations that
typically retain the two-boson terms in LSWT [40]. In the lat-
ter approach, higher-order four-boson terms can be included
[23] to account for magnon-magnon interactions at finite
temperatures.
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D. INS experiment and analysis

The INS experiment was conducted on the wide angular-
range chopper spectrometer (ARCS) [41] at the Spallation
Neutron Source at Oak Ridge National Laboratory. For this
experiment, 19 pieces of single crystals with a total mass of
386 mg were coaligned. Using an optical microscope with
polarized light, twin domains due to the slightly distorted
orthorhombic unit cell, each rotated by 90◦ with respect to
the other, were observed on single-crystal pieces. Therefore
single crystals were treated as pseudotetragonal while using
our x-ray Laue camera to achieve coalignment. The hori-
zontal scattering plane was defined as (H, K, L), where the
momentum transfer q = Ha∗ + Kb∗ + Lc∗ is in orthorhom-
bic reciprocal lattice units (r.l.u.). The rocking scans of the
coaligned assembly yielded full widths at half maximum
of 3◦. The measurements were performed with the incident
neutron energy of Ei = 50 or 125 meV at a temperature of
T = 20 K.

To analyze the INS data, we performed least-squares fits
and simulations utilizing the software package PYLISW [42].

III. RESULTS AND DISCUSSIONS

We begin by calculating the total energies of SrMnSb2 with
various magnetic orderings, including FM as well as C-, G-
, A-, and Stripe-type AFM configurations. Our calculations
confirm that among all the configurations, the C-type AFM
ordering exhibits the lowest energy.

The MLWFs included in the TB Hamiltonian are deter-
mined by investigating the band-structure characters near the
EF in DFT. According to DFT calculations, the Mn-3d states
dominate in the vicinity of EF and in the energy range of
-4.0-2.5 eV in the majority spin channel and 0–1.5 eV in
the minority spin channel, exhibiting a spin splitting of about
3.8 eV. The more dispersive Sb-5p states also contribute to
the band structure in the relevant energy window. On the other
hand, the unoccupied Sr-4d states are located approximately
3 eV above EF and can be neglected. Consequently, the TB
basis consisting of Mn-3d and Sb-5p Wannier orbitals pro-
vides a reasonable description of the electronic structure in
the vicinity of EF.

As noted above, the wannierization procedure, in gen-
eral, may not preserve the system’s symmetry. The basis
Wannier functions might center at positions that deviate
from the atomic centers, and their orbital characteristics may
not be preserved. We observe that the nonsymmetrized TB
Hamiltonian, based on MLWFs, slightly breaks symmetry of
SrMnSb2. Therefore, we symmetrize the TB Hamiltonian us-
ing Eq. (1) before conducting magnetic property calculations.

A. Electronic band structure and magnetization for SrMnSb2

Figure 2 compares the electronic band structures along
the k-path �–Y –S–Z–�–X , calculated using the symmetrized
TB Hamiltonian (in blue) and DFT (in red). The excellent
agreement in this energy window allows for a reasonable
description of magnetic properties using the TB Hamiltonian.

With five electrons in the 3d shell, Mn atoms have a
nearly fully occupied majority spin channel and a slightly
occupied minority spin channel, resulting in a large mag-

FIG. 2. Band structure of SrMnSb2 calculated using tight-
binding (solid blue lines) and density functional theory (red dots).
They agree perfectly below 1 eV within this energy window. The
horizontal dashed line denotes the Fermi level.

netic moment. The calculated Mn on-site magnetic moment
of 3.81 μB/Mn in DFT agrees well with the previous
experimental value of 3.78 μB/Mn [7,43], and the DFT val-
ues of 3.75 μB/Mn to 3.78 μB/Mn [7,44]. Furthermore, the
symmetrized TB Hamiltonian gives 3.76 μB/Mn, agreeing
well with the DFT and experimental results.

B. Magnetic interactions: Orbital contributions
and band-filling effects

Figure 3 presents the real-space magnetic exchange pa-
rameters Ji j as a function of Mn-Mn distance Ri j obtained
from the linear-response method. It is dominated by NN ex-

FIG. 3. Real-space magnetic exchange parameters Ji j , defined as
JN

i j in Eqs. (5) and (6), in SrMnSb2 as a function of neighbor distance
Ri j . The spin configuration of the C-type magnetic ground state, NN
exchange coupling J1, NNN exchange couplings J2b and J2c, and
interlayer coupling Ja are denoted in the inset.
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TABLE I. Pairwise exchange parameters Ji j (meV) in SrMnSb2 for the Heisenberg Hamiltonian H = ∑
i< j Ji j Ŝi · Ŝ j as defined in Eq. (5).

The NN and NNN exchange parameters J1, J2b, and J2c, and their corresponding distance Ri j and Mn-3d orbital resolutions are listed. As
shown in Fig. 1(a), we align the Mn bc-basal plane in the xy Cartesian plane for the convenience of orbital-contribution discussion. Calculated
SJ values are compared with corresponding INS values.

Ji j No. Ri j xy yz z2 xz x2 − y2 Total SJ SJ (INS)

J1 4 3.14 8.36 3.68 3.18 3.85 1.60 20.67 38.86 27.51(6)
J2b 2 4.42 0.77 1.47 0.84 4.19 0.21 7.48 14.06 11.19(5)
J2c 2 4.46 0.83 3.51 0.77 1.49 0.17 6.77 12.73 7.78(9)

change coupling J1 and NNN exchange coupling J2, showing
a rapid decay as Ri j increases and becoming negligible after
Ri j = 8 Å. The asymptotic behavior of fast decay suggests
SrMnSb2 a localized-moment system [32]. Both J1 and J2

exhibit positive values, indicating AFM interactions for both
NN and NNN. The amplitude of J2 is about 1/3 of J1 and splits
into two inequivalent couplings, J2b and J2c, with Ri j = 4.42
and 4.46 Å, respectively, due to the slight structural distortion.
Considering that the C-type configuration displays Néel-type
in-plane AFM ordering, with AFM NN and FM NNN order-
ing within the bc basal plane, the sizable AFM J2 suggests
magnetic frustration. Table I summarizes the values of J1,
J2b, and J2c, along with their Mn-3d orbital contributions, and
corresponding values extracted from INS. The dominant con-
tribution to J1 originates from the dxy orbital, which directly
connects two NN Mn sites, as shown in Fig. 1(c). Other d
orbitals make smaller AFM contributions to J1. Additionally,
the dyz and dxz orbitals exhibit slightly different contributions,
reflecting the small distortion in the Mn basal plane.

J2b and J2c are oriented along the b (x̂) and c (ŷ) directions,
respectively. Consequently, their primary contributions arise
from dxz and dyz orbitals, respectively. An intriguing obser-
vation is that the dx2−y2 orbital, which aligns directly with
the coupling directions of J2b and J2c, contributes the least.
This suggests that the direct exchange is relatively small due
to the greater distance associated with J2 and stands in stark
contrast to the large contribution of dxy to J1. Taken together,
it becomes evident that the indirect superexchange through
the Sb layers adjacent to the Mn layer plays a significant role
in determining the magnitude of J2. Conversely, J2b exhibits
a slightly larger value than J2c, possibly attributable to the
former’s shorter bond length compared to the latter, resulting
from the subtle structural distortion.

The interlayer exchange couplings are notably weaker ow-
ing to the substantial distance (Ri j > 11 Å) between Mn layers
along the a (ẑ) direction. The calculated nearest interlayer
coupling Ja is FM, consistent with the experimental C-type
spin ordering, and has a value of −0.029 meV, which is com-
parable with INS measurements as we discuss later.

As shown in Table I, in comparison to INS measurements,
calculations somewhat overestimate the SJ values. Nonethe-
less, it is essential to highlight that the calculated trend in SJ
values aligns with the experimental trend. This underscores
the consistency between the theoretical predictions and ex-
perimental observations. The exchange interactions are also
calculated by mapping multiple magnetic configurations to
a minimalistic J1-J2-Ja Heisenberg model (see details in Ap-

pendix B). We found Jeff
1 = 22.47 meV, Jeff

2 = 5.25 meV, and
Jeff

a = −0.61 meV. Both Jeff
1 and Jeff

2 show good agreement
with INS results and our linear response calculations. The
values of Jeff

1 and Jeff
a are consistent with those reported in a

prior DFT study [7], whereas Jeff
a is approximately one order

of magnitude larger than both the INS results and our linear
response calculations. Overall, as we demonstrate later, the
values of J1, J2, and J2/J1 calculated using the linear response
theory exhibit better agreement with experimental data when
compared to the mapping method. To explore the effects of
electron or hole doping on exchange couplings and magnetic
ordering, we calculate Ji j as functions of band filling within
a rigid-band approximation. Figure 4(a) illustrates the depen-
dence of the exchange parameters J1 and J2 on the number of
doping electrons. (The corresponding orbital resolution can be
found in the Appendix C.) With hole doping, both J1 and J2 in-
crease slightly before decreasing. The energy range spanning
from −0.5 eV to EF is primarily governed by Sb-5p states in
the density of states (DOS), with Mn-3d states contributing
minimally, as depicted in Fig. 4(b). Consequently, the values
of J1 and J2 exhibit only marginal alterations in the range of
0.1–0.45 hole/f.u. doping. The ratio of J1 and J2 is shown in
Fig. 4(c), where the red dashed lines indicate the points where
the square lattice reaches maximum frustration, residing on
the boundary between Néel- and stripe-type AFM configura-
tions within the basal plane. The J1/J2 ratio does not change
significantly with up to 0.6 hole/f.u doping. Furthermore, the
resulting Je

0 increases slightly with weak hole doping, indicat-
ing a small increase in TN. These computational results align
well with a previous experimental study on hole doping [45],
which found that the magnetic structure remains unchanged,
maintaining the same in-plane Néel-type magnetic ordering
with pronounced frustration, albeit with a slight increase in
TN.

Electron doping, on the other hand, has a much stronger
effect on J1 and J2; doping within 0.1 electron/f.u. rapidly re-
duces their AFM coupling strength, with J2 even transitioning
to a weakly FM interaction. The resulting increase in the J1/J2

ratio indicates weaker spin frustration.
To understand the simultaneous decrease of J1 and J2b, we

further resolve these parameters into orbitals and band-filling
contributions. Figure 5 shows the resulting resolved J1(ω)
and J2b(ω) along with the partial DOS projected on Mn-3d
orbitals. Here, the band-filling-resolved exchange couplings,
Ji j (ω), are defined as Ji j = ∫ EF

−∞ dωJi j (ω), analogous to the
density of states D(E ) and the total number of electrons
N = ∫ EF

−∞ dωD(ω).

214414-5



ZHENHUA NING et al. PHYSICAL REVIEW B 109, 214414 (2024)

FIG. 4. Band-filling dependence of exchange parameters J1 and
J2, and density of states (DOS) in SrMnSb2 calculated in TB. The
Fermi level is shifted to zero. (a) J1 and J2 as functions of band-filling
(Number of doping electrons per f.u.). (b) The total DOS, Sb-p, and
Mn-d partial DOS (Number of states per f.u. per eV). (c) The ratio
of J1/J2 as a function of doping, where the horizontal red dashed line
at J1/J2 = 2 corresponds to maximum frustration.

FIG. 5. (a) The partial DOS projected onto 3d orbitals of a single
Mn site and orbital- and band-filling-resolved exchange couplings:
(a) J1 and (b) J2b. The band-filling-resolved exchange couplings, such
as J1(ω), are defined as J1 = ∫ EF

−∞ dωJ1(ω). J2c(ω) behaves similarly
to J2b(ω) and is therefore not shown.
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As depicted in Fig. 5(a), the energy window of
−0.4 eV to 0.4 eV exhibits negligible DOS in the majority-
spin channel, with EF positioned at the shoulder of Mn-dxz|yz

states in the minority spin channel. As shown in Figs. 5(b)
and 5(c), in the energy range of −0.2 eV to 0.2 eV near EF, all
orbital-resolved J1(ω) and J2b(ω) values are mostly negative,
indicating contributions to FM interactions. Conversely, for
occupied states ranging from 0.6 eV to 0.8 eV below EF, we
have J1(ω) > 0 and J2b(ω) > 0, suggesting that the occupied
states in this range contribute to AFM interactions for both J1

and J2b.
Therefore, in the rigid-band model, a slight hole doping

(shifting EF down to approximately 0.4 eV below EF) would
decrease the FM contribution, making J1 and J2 more AFM-
like. In contrast, both J1 and J2b become less AFM (or more
FM) with further hole doping, which removes the AFM con-
tribution from states in the energy window of 0.5–0.8 eV
below EF, or with electron doping that adds FM contribu-
tion from states in the energy window of 0–0.2 eV above
EF. Notably, the band-filling dependence of both J1 and J2b

primarily correlates with the filling of dxz and dyz states near
EF. Moreover, unsurprisingly, despite a substantial increase in
the partial DOS above EF for the out-of-plane Mn-dz2 orbitals,
its contribution to in-plane couplings is minimal.

C. Spin-wave spectra in J1-J2b-J2c-Ja model

Starting from the C-type ground state, we can derive the
magnon dispersions of the J1-J2b-J2c-Ja model for SrMnSb2

using the LSWT. The energies of the two magnon bands at
k = Ha∗ + Kb∗ + Lc∗ can be written as

ω(k) = M0

√
(αk − d0 ± |ζk|)2 − |βk|2, (7)

where M0 is the amplitude of the on-site Mn moment calcu-
lated in DFT, and

αk = J2b cos(2πK ) + J2c cos(2πL),

βk = 1
2 J1[1 + ei2π (K+L) + ei2πK + ei2πL],

ζk = 1
2 Ja(1 + ei2πH ),

d0 = J2b + J2c + Ja − 2J1. (8)

Figure 6 shows the magnon band structure along the
Z–�–T path calculated using Eq. (7) with intralayer coupling
parameters listed in Table I and interlayer coupling Ja. It
is worth noting that �-Z [(0, 0, ξ )] corresponds to the J2c

direction, while �-T [(0,−ξ, ξ )] is slightly deviated from
the J1 direction. The inclusion of interlayer coupling Ja splits
the magnon bands at �, as the acoustic and optical modes
corresponding to the in- and out-of-phase spin precession with
respect to the two Mn layers in the unit cell become en-
ergetically distinguishable. Although the calculation slightly
overestimates the magnon bandwidth, the dispersions are in
overall good agreement with INS measurements described
below.

D. INS measurements and simulations

Figure 7 shows the INS data [(a)–(c)] and simulations
[(d)–(f)] of the SW spectra along three high-symmetry direc-
tions (0, 1, L)(� − Z ), (0, 1/2 − K, 1/2 + K )(� − T ), and

FIG. 6. Magnon band structure in SrMnSb2 calculated using the
J1-J2b-J2c-Ja model with parameters obtained from DFT. Magne-
tocrystalline anisotropy is not included. High-symmetry k points Y
and T are illustrated in Fig. 1(d).

(H, 1, 0)(� − X ). The simulations are done through experi-
mentally determined parameters as presented in Table I (or
model 2 in Table II). Constant energy cuts of the data were
taken and peaks in the cuts were fits to Gaussian functions in
order to determine the peak center for a given E . The extracted
peak centers of the energy line cuts are presented in Fig. 8. The
data treatment and modeling and the cuts and fits are given in
Sec. II of Ref. [46].

To understand the INS data, we calculate the SW spectra
using LSWT with two models: one with (model 1) and the
other without (model 2) enforcing J2b = J2c. The fitted single-

FIG. 7. INS data [(a)–(c)] and simulations using experimental
parameters [(d)–(f)] of the SW spectra along three high-symmetry
directions [0, 1, L] (�–Z), [0, 1/2 − K, 1/2 + K], and [H, 1, 0]
(� − X ).
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TABLE II. Parameters and single-ion anisotropy (SD) and mag-
netic interactions (meV) from two models.

Model SD SJ1 SJ2b SJ2c SJa rχ 2

1 −0.26(6) 27.51(6) 9.36(2) 9.36(2) −0.092(6) 15.04
2 −0.2559(9) 27.96(1) 11.19(5) 7.78(9) −0.091(3) 4.79

ion anisotropy SD, in-plane magnetic interactions J1, J2b, J2c,
and inter-layer interaction Ja are summarized in Table II.

In model 2, the difference between J2b and J2c in-
duces asymmetry between the magnon bands along the path
(0, 1/2 − K, 1/2 + K ), as shown in Fig. 8(b), resulting in
higher energy for positive K values than negative K values.
Additionally, the observed structural twins introduce a mixing
of J2b and J2c. Due to the small difference between J2b and
J2c and the relatively coarse energy resolution used for our
measurements, the splitting is not observed in the INS data.
Nonetheless, model 2 provides a slightly better fit to the dis-
persion with a smaller reduced χ2 (rχ2) compared to model
1, as shown in Fig. 8 and Table II.

Overall, when compared to INS measurements, the SW
dispersion derived from first-principles calculations, although
somewhat overestimating the bandwidth, agrees reasonably
well with INS measurements. Correspondingly, the intralayer
interactions (J1, J2b, and J2c) as well as the interlayer in-
teraction (Ja) are comparable to values extracted from INS.
The concordance between the theoretical predictions and
the experimentally derived SJ-based calculations affirms the
accuracy of our first-principles methodology in effectively
predicting magnetic interactions within the materials.

The overestimation of SJ values in our calculations could
potentially be addressed. For instance, the MLWFs we used
here typically have tails extending into other sites, which
may blur the definition of calculated exchange couplings
between two sites. It would be worthwhile to investigate
whether a representation of the on-site moment in a basis
that better localizes the magnetic moment within the atomic

FIG. 8. Magnon dispersion along three high-symmetry direc-
tions determined from fits to the INS data. Lines show fits to the
dispersion using the two different model Hamiltonians discussed in
the text. Model 1 with J2b = J2c is shown as red solid line while
model 2 with J2b �= J2c is shown as orange solid line.

sphere could improve the description. Another consideration
is the inclusion of electron-correlation effects beyond DFT.
Typically, one may consider additional electron repulsion for
the localized Mn-3d orbitals beyond DFT using methods
such as DFT + U . This approach often promotes electron
localization, thereby increasing the magnetic moment while
decreasing the exchange coupling. Our preliminary results
from applying an additional Hubbard-like U potential in
DFT to Mn-3d orbitals show enhanced electron localization
and reduced intersite exchange couplings, leading to a bet-
ter agreement with experiments in terms of overall magnon
bandwidth. However, ideally, the choice of the U values
should be justified, for example, by comparing calculated and
experimentally measured band structures. GW -based methods
can be even more useful, as they are not only parameter-free
but also contain nonlocal off-site exchange-correlations that
do not exist in DFT + U but can be crucial for properly
describing the superexchanges. A systematic study of electron
correlation effects is beyond the scope of the present work.

IV. CONCLUSIONS

This study on SrMnSb2 presents a comprehensive under-
standing of its electronic and magnetic properties, achieved
through a synergy of theoretical methodologies and experi-
mental data. The exploration of exchange coupling parameters
in SrMnSb2 is carried out using linear response theory within
a realistic TB model. Our calculated intralayer interactions
(J1, J2b, and J2c) and interlayer interaction (Ja) are in good
agreement with INS results. Moreover, the study reveals a
sizable AFM NNN exchange coupling J2, introducing signifi-
cant spin frustration within the basal plane. Orbital-resolved
contributions to exchange couplings help reveal the micro-
scopic origin of the exchange interactions. Notably, we find
that the NN exchange coupling J1 in SrMnSb2 predominantly
arises from the contributions of Mn dxy orbitals, aligning with
the nearest Mn-Mn bond, while J2b and J2c receive primary
contributions from dxz and dyz orbitals, respectively. This re-
flects the dominance of direct-exchange and superexchange
nature for J1 and J2, respectively. The band-filling dependence
of exchange coupling based on the rigid-band model reveals
that electron doping is expected to weaken both J1 and J2

while relieving spin frustration through increasing the J1/J2

ratio. Moreover, the magnetic structure of SrMnSb2 is an-
ticipated to remain unaltered under carrier doping, which is
in agreement with previous hole-doping investigations [45].
Introducing additional electron correlation within the Mn-
3d orbitals can promote electron localization and reduce the
magnetic coupling, further improving the agreement with ex-
periments. In summary, this investigation not only advances
our comprehension of SrMnSb2 but also underscores the ef-
ficacy of combining ab initio and experimental methods in
elucidating intricate materials and their magnetic interactions.
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APPENDIX A: HAMILTONIAN SYMMETRIZATION

Wannier functions (WFs) are localized atomic-like orbitals
defined at each atom site. For a set of isolated bands that are
separated from all other lower and higher bands throughout
the BZ by band gaps, its electronic states can be well de-
scribed by a set of WFs |wμ

R〉, where R is the location of the
unit cell considered, and μ is the index of WFs in the cell.
For a multiple-site system, μ is a combination of quantum
numbers ni, li, mi, σi, and site position vectors τ i. For systems
with only one site in the primitive cell, we have τ i = (0, 0, 0).

When a WF is rotated by one point symmetry operation
R̂ of the system, it can only transform into WFs belong to
equivalent sites with the same quantum numbers ni and li, that
is, the symmetry can only mix states with different magnetic
quantum numbers and spins

R̂
∣∣wβimiσi

R+τ i

〉 =
∑
m′

iσ
′
i

Rli
m′

iσ
′
i miσi

∣∣wβim′
iσ

′
i

R′+τ ′
i

〉
, (A1)

where R̂(R + τ i ) = R′ + τ ′
i and βi the combination of ni and

li. According to the orthogonalization of WFs, the transforma-
tion matrix RR′R with elements given by

〈
w

βim′
iσ

′
i

R′+τ ′
i

∣∣R̂|wβimiσi

R+τi

〉 = Rli
m′

iσ
′
i ,miσi

δR′+τ ′
i,R̂(R+τ i )δβi,β

′
i
. (A2)

It is obvious that the transformation matrix R should be l and
n diagonal.

The transformation matrix R can be obtained by the behav-
ior of WANNIER90’s basis orbitals under symmetry operations.
WANNIER90 uses real spherical harmonics Yl,m which is re-
lated to complex spherical harmonics Y m

l by

Yl,m =

⎧⎪⎪⎨
⎪⎪⎩

√
2 (−1)m�{

Y |m|
l (θ, φ)

}
m > 0

√
2 (−1)m�{

Y −|m|
l (θ, φ)

}
m < 0

�{Ylm(θ, φ)} m = 0

,

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2

[
Y −|m|

l + (−1)mY |m|
l

]
m > 0

i√
2

[
Y −|m|

l − (−1)mY |m|
l

]
m < 0

Y 0
l m = 0

. (A3)

This equation defines the unitary transformation matrix
UC→R between Yl,m and Y m

l . The angular momentum oper-
ator L̂ in the basis of real spherical harmonics can then be
written as

L̂R = UC→RL̂CU†
C→R = UC→RL̂CUR→C. (A4)

In the presentation of complex spherical harmonics Y m
� , the

nonvanished matrix elements of L̂C are

〈l, m|L̂z|l, m〉 = h̄m,

〈l, m − 1|L̂−|l, m〉 = h̄
√

l (l + 1) − m(m − 1), (A5)

〈l, m + 1|L̂+|l, m〉 = h̄
√

l (l + 1) − m(m + 1).

The rotation on orbital function is defined by

R̂C = e−in̂·L̂Cφ, (A6)

where n̂ is the axis of the rotation symmetry and φ the rotation
angle. Then the transformation matrix R for the orbital part
can be obtained by

R̂R = UC→RR̂CUR→C = UC→Re−in̂·L̂CφUR→C. (A7)

The rotation on spinor can be written as

R̂σ̂ = e−in̂·Ŝφ. (A8)

The spin angular momentum operator Ŝ is defined as

Ŝ = h̄

2
(σx, σy, σz ), (A9)

where σx, σy, and σz are Pauli matrices given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(A10)

Thus, in the representation of real spherical harmonics and
spinor, the rotation is given by R̂ = R̂RR̂σ̂ .

The Hamiltonian Ĥ of a system is invariant under its all
symmetry operations

Ĥ = R̂ĤR̂†. (A11)

The elements of real-space Hamiltonian HR are defined by
HR

i j = 〈wβimiσi
τ i |Ĥ |wβ j m jσ j

R+τ j
〉 that under symmetry operations

transforms as

HR
i j = 〈

wβimiσi
τ i

∣∣Ĥ ∣∣wβ j m jσ j

R+τ j

〉
= 〈

wβimiσi
τ i

∣∣R̂ĤR̂†
∣∣wβ j m jσ j

R+τ j

〉

=
∑

μ′
iμ

′
j ,R

′R′′

〈
wβimiσi

τ i

∣∣R̂∣∣wβ ′
i m

′
iσ

′
i

R′+τ ′
i

〉〈
w

β ′
i m

′
iσ

′
i

R′+τ ′
i

∣∣Ĥ ∣∣wβ ′
j m

′
jσ

′
j

R′′+τ ′
j

〉

× 〈
w

β ′
j m

′
jσ

′
j

R′′+τ ′
j

∣∣R̂†
∣∣wβ j m jσ j

R+τ j

〉
. (A12)

Write in matrix form

〈0|R̂ĤR̂†|R〉 =
∑
R′R′′

R0R′HR′′−R′RR′′R. (A13)

If a Hamiltonian does not satisfy the system’s symmetry,
its symmetrized Hamiltonian can be obtained as the average
over all symmetry operations given by

H sym(R) = 1

|GH |
∑
R∈GH

〈0|R̂ĤR̂†|R〉, (A14)

where |GH | is the number of symmetry operators in the group
GH .
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APPENDIX B: CALCULATE Ji j BY MAPPING
TOTAL ENERGY CALCULATIONS

For SrMnSb2 in a J1-J2-Ja model, to extract the three
exchange parameters by energy-mapping method, we can cal-
culate the total energies of four AFM magnetic configurations:
C-, A-, G-, and Stripe(S)-type. A supercell with basis vectors
a, b + c and b − c is constructed and used to simulate these
four magnetic configurations. According to the Heisenberg
model as stated in Eq. (5), we obtain

4EA/S2 = 2J1 + 2J2 − Jc/2,

4EG/S2 = −2J1 + 2J2 − Jc/2,

4ES/S2 = −2J2 − Jc/2,

4EC/S2 = −2J1 + 2J2 + Jc/2, (B1)

where the energies EA, EG, ESA, and EC are the calculated total
energy per magnetic atom for the four configurations. Here we
do not distinguish J2b and J2c, instead, an average of them as J2

is calculated. Then the exchange coupling constants are given
by

Jc = 4(EC − EG)/S2,

J1 = (EA − EG)/S2,

J2 = (EA − ES)/S2 − J1/2. (B2)

APPENDIX C: ORBITAL RESOLVED
EXCHANGE COUPLINGS

Orbital-resolved exchange couplings J1 and J2 of SrMnSb2

as a function of Fermi energy are calculated through J1,2 =∫ EF

−∞ dωJ1,2(ω), as illustrated in Fig. 9. The figure shows
contributions from each d-orbital. The dominant contribution
to J1 originates from Mn-dxy orbitals, while the dominant
contribution to J2 is from Mn-dxz orbitals.

FIG. 9. Orbital-resolved exchange couplings of SrMnSb2 as a
function of Fermi energy are plotted with color weights, with black
identifying the Mn-dxy state, blue the Mn-d3z2−1 states, red the Mn-
dyz states, green the Mn-dxz state, and purple the Mn-dx2−y2 . The
horizontal zero is the Fermi level.
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