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Chaotic magnetization dynamics driven by feedback magnetic field
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An excitation of highly nonlinear, complex magnetization dynamics in a ferromagnet, for example chaos, is a
new research target in spintronics. This technology is applied to practical applications such as random number
generators and information processing systems. One way to induce complex dynamics is applying feedback
effect to the ferromagnet. The role of the feedback electric current on the magnetization dynamics was studied in
the past. However, there is another way to apply feedback effect to the ferromagnet, namely feedback magnetic
field. In this paper, we developed both numerical and theoretical analyses on the role of the feedback magnetic
field causing complex magnetization dynamics. The numerical simulation indicates the change of the dynamical
behavior from a simple oscillation with a unique frequency to complex dynamics such as amplitude modulation
and chaos. The theoretical analyses on the equation of motion qualitatively explain several features found in the
numerical simulations, exemplified as an appearance of multipeak structure in the Fourier spectra. The difference
of the role of the feedback electric current and magnetic field is also revealed from the theoretical analyses.
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I. INTRODUCTION

Magnetization dynamics studied in magnetism and spin-
tronics have mainly been focused on simple dynamics such
as magnetization switching, ferromagnetic resonance, and mi-
crowave oscillation driven by magnetic field and/or electric
current [1–17]. Recently, however, an excitation of complex
dynamics, for example chaos, is studied from both experi-
mental and theoretical perspectives [18–27] because of the
possibilities in developing new practical applications, such
as true-random-number generators and brain-inspired com-
puting [28,29]. One way to excite complex dynamics in
physical, chemical, and biological systems is using feed-
back effects [30]. They are frequently observed in natural
and artificial systems, such as electric circuits, population
dynamics, and neural networks. From the mathematical view-
point, feedback effects significantly increase the number of
the dynamical degrees of freedom of systems, or dimen-
sions of phase space. Recall that the number of dynamical
degrees of freedom strongly relates to dynamics possibly
excited in a system. For example, chaos cannot be excited
in a system described by a differential equation, whose di-
mension is less than or equal to 2. This fact is known as
the Poincaré-Bendixson theorem [31–33] and is one reason
why it has been difficult to identify chaos in ferromagnets,
where magnetization dynamics were well described by var-
ious simple models including only two dynamical variables,
such as macrospin, vortex, spin wave, domain wall, and so
on. Thus, several approaches to increase additional dynamical
degree of freedom, such as vortex-core reversal [21,22], have
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been proposed [18–20,23–27]. Adding feedback effects to
ferromagnets is one of these approaches to overcome this
issue and expected to excite rich dynamics which could appear
in high-dimensional systems.

The previous works on the feedback effect on spintronics
devices mainly focus on using electric current as feed-
back signal [34–38]. There is, however, another way to add
the feedback effect to the magnetization dynamics, namely,
converting the feedback signal into magnetic field [39,40].
Although using magnetic field is not preferable for practi-
cal applications, there are several motivations to investigate
the role of the feedback magnetic field on the magnetiza-
tion dynamics. One is the fact that the torques due to the
magnetic field and electric current have different roles on the
dynamics. The former induces a sustainable oscillation of the
magnetization while the latter induces nonconservative torque
through spin-transfer effect [41,42]. The role of the feedback
magnetic field on the dynamics however still remains unclear.
Another motivation relates to an experimental viewpoint. The
previous works have mainly focused on applying feedback
current to spin-torque oscillators (STOs), and typical STOs
consist of magnetic tunnel junctions (MTJs). MTJs include an
insulating barrier such as MgO, and thus, there is a limitation
on the magnitude of the feedback current to avoid electrostatic
breakdown of the tunnel barrier. This was one reason why the
past works dealt only in a weak feedback limit [34,35]. If we
use, on the other hand, the feedback magnetic field, this issue
will be circumvented [39,40] because the feedback signal is
not injected into MTJs directly. However, precise studies of
theoretical analyses on the magnetization dynamics in the
presence of feedback magnetic field have not been developed
yet.

In this paper, we study the role of feedback magnetic
field on magnetic vortex dynamics using numerical simulation
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FIG. 1. Schematic illustration of a vortex STO with a feedback
circuit. DC bias generates direct current, which induces vortex-core
dynamics via spin-transfer torque effect. Output signal can be sepa-
rated from the input direct current by bias tee and is sent to a delayed
feedback circuit with amplifier and/or attenuator. Finally, the output
signal flows in a metallic line as electric current and generates feed-
back magnetic field, which affects the vortex-core dynamics.

of the Thiele equation. Here, we evaluate both temporal
dynamics of the vortex core and Fourier spectra and find
an appearance of chaos in a large feedback limit. We also
develop theoretical analyses on the feedback effect on the vor-
tex oscillation. We derive equations which self-consistently
determine the relationship between electric current, magnetic

field strength, and delay time, and their solutions show quali-
tative agreement with the results of the numerical simulations.
The difference of the role of the feedback electric current
and magnetic field is also clarified by deriving a theoretical
formula of a threshold current density.

II. SYSTEM DESCRIPTION

Figure 1 is a schematic illustration of a vortex STO with
the feedback circuit [39]. Direct current is injected into the
STO and excites an autooscillation of the vortex core. The
dynamics modulates resistance of the STO due to the magne-
toresistance effect, and therefore, the output signal oscillates,
which depends on the vortex-core position. The input direct
current and the output signal can be separated by bias tee.
The output signal is sent to a delayed-feedback circuit and
passes through a metallic line, which is placed on the STO.
The electric current flowing in the metallic line generates
magnetic fields, whose magnitude reflects the vortex-core
position with delay time τ . The magnitude of the feedback
magnetic field can also be tuned by an attenuator and/or
amplifier. The dynamics of the vortex core in the presence
of the feedback magnetic field is described by the following
Thiele equation [43–49]:

− Gez × Ẋ − |D|(1 + ξs2)Ẋ − κ (1 + ζ s2)X + aJJ pzez × X + caJJR0 pxex − cbJJRpxey + cμ∗ez × H = 0, (1)

where ei is the unit vector representing the i direction, X =
(X,Y, 0) is the position vector of the vortex core, while G =
2π pML/γ and D = −(2παML/γ )[1 − (1/2) ln(R0/R)] [45]
consist of the saturation magnetization M, the gyromagnetic
ratio γ , the Gilbert damping constant α, the thickness L,
the disk radius R, and the core radius R0. The dimensionless
parameter ξ was introduced to describe the nonlinear damping
in a highly excited state [48]. The magnetic potential energy
W is characterized by κ and ζ via

W = κ

2

(
1 + ζ

2
s2

)
|X|2, (2)

and κ = (10/9)4πM2L2/R [48]. The dimensionless parame-
ter ζ was introduced to explain the linear dependence of the
oscillation frequency on the current [48]. We also introduce
s = |X|/R = √

X 2 + Y 2/R, which corresponds to the distance
of the vortex-core position measured from the disk center.
The spin-transfer torque strength with spin polarization P is
aJ = π h̄P/(2e) [46,47], while the strength of the fieldlike
torque is given by bJ . The electric current density is denoted
by J , where positive current corresponds to that flowing from
the reference to the free layer. The unit vector pointing in
the magnetization direction in the reference layer is assumed
to lie in the xz plane as p = (px, 0, pz ). Accordingly, the
output signal depends on the y component Y of the vortex-core
position. The external magnetic field is denoted as H, while
we define μ∗ as μ∗ = πMLR. Recall that the magnetic field is
generated as the feedback effect and the output signal depends

on Y . Therefore, H can be expressed as

H(t ) = hy
Y (t − τ )

R
ey, (3)

where hy determines the magnitude of the feedback magnetic
field, while Y (t − τ )/R is the normalized y component of the
vortex core position in the past with a delay time τ . Here,
we assume that the feedback magnetic field points to the y
direction. In the following, we express the magnitude of hy in
terms of gain in the feedback circuit, which is frequently used
in experiments [39,50] (see also the Appendix). The values
of the parameters are derived from typical experiments and
summarized in the Appendix. We, however, inform here that
the delay time τ is set to be 29 ns [40], which is sufficiently
longer than the typical oscillation period of the vortex STO
(about 3 ns). This is because complex dynamics can be easily
excited when the delay time is longer than typical time scales
of systems [30], while dynamics excited by a short-time delay
effect were, for example, self-injection locking [34,35].

III. NUMERICAL SIMULATION

Figure 2 shows the Fourier spectra of Y (t )/R obtained by
solving Eq. (1). When the feedback gain is small, a single peak
around 290 MHz is observed. Multiple peak structure appears
when the feedback gain exceeds roughly over −20 dB, which
corresponds to feedback magnetic field of 2.2 Oe. As the
feedback gain further increases, it becomes difficult to identify
the main peak.
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FIG. 2. Fourier spectra of Y (t )/R as a function of feedback gain.

The change of the peak structure reflects the temporal
dynamics of the vortex core. In Fig. 3, we show the temporal
dynamics for various gains. For example, Fig. 3(a) shows the
temporal dynamics of Y (t )/R and s(t ), as well as the Fourier
spectrum, |Y ( f )|/R, at the feedback gain of g = −60 dB,
which corresponds to hy = 0.1 Oe. In this case, the feedback
magnetic field is approximately negligible. Thus, an autooscil-
lation well studied previously [48,49] is excited, where the
vortex core rotates around the disk center with practically
constant oscillating amplitude (radius). Therefore, Y (t )/R is
similar to a trigonometric function, and s(t ) is approximately
constant, as shown in Fig. 3(a). A small-amplitude oscillation
of s(t ) originates from the terms related to px in Eq. (1), as
well as the feedback magnetic field, which breaks the axial
symmetry around the z axis of Eq. (1). As can be seen,
however, the amplitude of the oscillation in s(t ) is very small.
The Fourier spectrum shows a sharp single peak, as mentioned
above.

When the feedback gain is −20 dB (hy = 2.2 Oe), the
vortex core still shows a simple autooscillation, where the
Fourier spectrum shows a single peak; see Fig. 3(b). However,
the oscillation amplitude s(t ) becomes small compared with
that in Fig. 3(a). The peak frequency of the Fourier spectrum
also becomes slightly low. The reason will be explained theo-
retically in the next section.

When the feedback gain is further increased to −10 dB
(hy = 4.6 Oe), the dynamics become complex, as shown
in Fig. 3(c). In a short time range, the temporal dynamics
of Y (t )/R looks similar to the simple dynamics shown in
Figs. 3(a) and 3(b). However, when the temporal dynamics
over a relative long time range are shown, we find an ampli-
tude modulation of the oscillation. This tendency is apparently
shown by s(t ). The Fourier spectrum shows multiple peak
structure around a main peak.

Chaotic dynamics appear clearly when the feedback gain
is sufficiently large; see Fig. 3(d), where g = +20 dB (hy =
46.4 Oe). The temporal dynamics become nonperiodic, and
the Fourier spectrum shows a flat structure over a wide range
of the frequency. In other words, the oscillation frequency of

the vortex core is not unique. These features are typical in
chaotic dynamics [32,33].

The change of the temporal dynamical behavior can be
investigated in a different way [31]. We evaluate a bifurca-
tion diagram, as shown in Fig. 4(a), which summarizes local
maxima of Y (t )/R. When the dynamics is a simple oscilla-
tion described by a trigonometric function, for example, the
values of the local maxima are always the same, and thus,
they are summarized at a single point. On the other hand,
when the dynamics becomes complex such as chaos, the local
maxima show a broadened structure. In Fig. 4(a), the local
maxima summarize at a single point when the feedback gain
is smaller than 20 dB. The local maxima show broadened and
approximately symmetric structure when the feedback gain is
about in the range of −20 � g � −5 dB, which is typical in
the amplitude-modulation dynamics. The maxima are largely
broadened and become asymmetric when the feedback gain
exceeds about −5 dB, which is a typical feature of chaotic
dynamics [31]. We also evaluate the Lyapunov exponent, as
shown in Fig. 4(b), where the numerical method to evaluate
the Lyapunov exponent in a feedback system was developed
in Ref. [37]. The Lyapunov exponent is close to zero for the
feedback gain of g � −5 dB, indicating that the dynamics
is periodic. The Lyapunov exponent becomes largely posi-
tive when the feedback gain exceeds about −5 dB, which
evidently shows the appearance of chaos. These results are
consistent with the temporal dynamics shown in Fig. 3, where
the simple oscillations in Figs. 3(a) and 3(b) and the oscilla-
tion with the amplitude modulation in Fig. 3(c) are periodic,
while the dynamics shown in Fig. 3(d) are chaos.

Summarizing them, the vortex core dynamics changes
from a simple autooscillation to complex dynamics such as
an oscillation with an amplitude modulation and chaos. These
changes of the dynamical behavior can be confirmed from
both temporal dynamics of the vortex core and its Fourier
spectra, which can be experimentally measured due to the
magnetoresistance effect.

IV. THEORETICAL ANALYSES

Here, we discuss the bifurcation of the dynamical behavior
found in the numerical simulation from a theoretical view-
point. First, we should note that it is difficult to obtain exact
solutions of Eq. (1) analytically, even when the feedback ef-
fect is absent. However, by applying some approximations,
some of the features, such as the appearance of multipeak
structure, can be qualitatively explained. For this purpose,
we express the Thiele equation in terms of s =

√
X 2 + Y 2/R

and ψ = tan−1(Y/X ), which correspond to the distance of
the vortex-core position measured from the disk center
and the core’s phase from the x axis. Neglecting small terms in
the Thiele equation but keeping terms related to the feedback
magnetic field, the approximated equations of motion for s
and ψ become

ṡ � as − bs3 + cμ∗

GR
sin ψhysτ sin ψτ

− cμ∗|D|
G2R

cos ψhysτ sin ψτ , (4)
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FIG. 3. (a) Time evolution of Y (t )/R and s(t ) in a steady state, and the Fourier transformation |Y ( f )/R| of Y (t )/R. Feedback gain is
g = −60 dB, corresponding to hy = 0.1 Oe. The feedback gain is changed as (b) g = −20 dB (hy = 2.2 Oe), (c) g = −10 dB (hy = 4.6 Oe),
and (d) g = +20 dB (hy = 46.4 Oe). Note that the range of time is 20 ns in (a) and (b) while it is 200 ns in (c) and (d).

ψ̇ � κ

G
(1 + ζ s2) + cμ∗

GRs
cos ψhysτ sin ψτ

+ cμ∗|D|
G2Rs

sin ψhysτ sin ψτ , (5)

where we introduce a = (|D|κ/G2)[(J/Jc) − 1] and b =
(|D|κ/G2)(ξ + ζ ) with Jc = |D|κ/(GaJ pz ), for simplicity.

We also introduce notations sτ = s(t − τ ) and ψτ = ψ (t −
τ ) for delayed variables. We used the fact that G2 � |D|2
(or equivalently, |D|/G � α � 1) to neglect several terms in
Eq. (1), but kept terms related to the feedback terms with the
coefficient |D|/G. The reason will be explained below. In the
following, we first review the steady state solutions of Eqs. (4)
and (5) and then discuss the effect of the feedback magnetic
field.
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A. Steady state solution in an unperturbed system

Note that Eqs. (4) and (5) without the feedback effect (i.e.,
in the limit of hy → 0) are identical to the Stuart-Landau
equation [51], which was introduced by Landau to phe-
nomenologically describe dynamics in turbulence and derived
by Stuart from hydrodynamic equations. The original Stuart-
Landau equation is known to be solved analytically [52]
by introducing a generalized phase θ = ψ + [ζκ/(Gb)] ln s.
Equations (4) and (5) in the absence of the feedback effect
have the steady state solution given by

lim
t→∞ s =

√
a

b
≡ s0, lim

t→∞ ψ̇ = κ

G

(
1 + ζ s2

0

)
, (6)

when J/Jc > 1, while limt→∞ s = 0 when J/Jc � 1. These
solutions for J/Jc > 1 correspond to the autooscillation of
the vortex core with a distance s0 from the disk center and
the frequency [κ/(2πG)](1 + ζ s2

0). On the other hand, when
J/Jc � 1, the vortex core cannot move from the disk cen-
ter. From this perspective, Jc can be regarded as a threshold
current density for exciting an autooscillation. For the latter
discussion, it is useful to notice that the threshold current den-
sity is determined by the parameter a, which is a coefficient of
a linear term in Eq. (4). The coefficient a can be rewritten as

a = aJJ pz

G
− |D|κ

G2
, (7)

where the first and second terms on the right-hand side corre-
spond to the spin-transfer and damping torques, respectively
(recall that |D| is proportional to the damping constant α).
Therefore, a is positive (negative) when the spin-transfer
torque is larger (smaller) than the damping torque. We can
confirm that this condition, a > (<)0, is equivalent to J/Jc >

(<)1. These characteristics will be used in the following sec-
tion to study the modulation of the instability threshold by the
feedback effects.

B. Threshold current and oscillation frequency
in the presence of feedback magnetic field

In the presence of the feedback effect, analytical solutions
of Eqs. (4) and (5) are hardly obtained. Recall, however, that
the numerical simulation indicated that periodic dynamics can
appear even in the presence of the feedback magnetic field
when the feedback gain is relatively small. Thus, we limit
ourselves to a case of a simple autooscillation, where s is
approximately constant and the vortex-core dynamics are still
periodic. This approximation is valid when the magnitude of
the feedback effect is relatively weak. We denote an angular
frequency of this oscillation as �, i.e., ψ̇ = �. Then, we
can assume that ψ = �t and ψτ = �(t − τ ). It should be
emphasized here that the value of � is, at this moment, un-
known. Since s is assumed to be constant, by averaging Eq. (4)
over a period 2π/�, the solution of ṡ = 0 after averaging is
determined by an equation,

as − bs3 + βs

(
cos �τ + |D|

G
sin �τ

)
= 0, (8)

where we introduce a notation β = cμ∗hy/(2GR), for sim-
plicity. The steady state solution of s in an oscillating state
can be obtained by replacing a in the unperturbed solution

s0 = √
a/b with

a′ = a + β

(
cos �τ + |D|

G
sin �τ

)
. (9)

Note that the solution
√

a′/b is a real number only when
J/Jc > 1 − [Gβ/(|D|κ )][cos �τ + (|D|/G) sin �τ ]. It means
that the feedback magnetic field modulates the threshold cur-
rent density as

J ′
c = Jc

[
1 − Gβ

|D|κ
(

cos �τ + |D|
G

sin �τ

)]
. (10)

Here, the following three points should be noticed.
First, the modulation of the threshold current density

comes from the fact that the applied magnetic field originates
from the feedback effect. This argument can be confirmed
from the fact that the last term in Eq. (8) includes s coming
from the feedback signal, and thus, it contributes to modify a
to a′. If the applied magnetic field is, for example, an external
oscillating field, which is independent of s, such magnetic
field does not modify the coefficient a and also does not
change the condition of the instability threshold. Rather, the
phenomenon excited by such magnetic field will be synchro-
nization [52].

Second, although a modulation of the threshold current
density by the feedback effect was found in Ref. [34], where
the feedback signal was injected as electric current, the way
in which the feedback effect modulates the threshold cur-
rent density is different. In the case of the feedback electric
current, a term related to the feedback effect appears in the
denominator in the definition of the threshold current; see
Eq. (6) of Ref. [34]. On the other hand, in the case of the
feedback magnetic field studied here, the terms related to the
feedback effect appear as a coefficient of proportion, as shown
in Eq. (10). The difference comes from the difference of the
roles for magnetic field and electric current on an excitation
of autooscillation. The feedback electric current appears as a
coefficient multiplied to the current density J in Eq. (7), and
thus, it can be regarded as a modulation of the spin-transfer
torque [34]. On the other hand, the feedback magnetic field,
which corresponds to term related to β in Eq. (8), does not
include J . Thus, the term related to the feedback effect of the
magnetic field is regarded as an additional to the second term
(damping torque) on the right-hand side of Eq. (7). Therefore,
the ways the feedback effects modify the threshold current
are different for the feedback electric current and magnetic
field. Note also that the sign of this modulation can be either
positive or negative, depending on the values of � and τ .

Third but most importantly, at this moment, we cannot
estimate the value of Eq. (10) quantitatively because the value
of � is unknown. This is the reason why we kept terms related
to |D|/G in Eqs. (4) and (5), although |D|/G � 1; depending
on the values of � and τ , for example, cos �τ in Eq. (8)
might become smaller than (|D|/G) sin �τ . Therefore, for
generality, terms having the factor |D|/G in Eqs. (4) and (5)
were not neglected. The value of � should be determined from
the following equation, which is obtained by averaging Eq. (5)
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FIG. 4. (a) Bifurcation diagram summarizing local maxima of
Y (t )/R and (b) Lyapunov exponent.

over a period 2π/� and using ψ̇ = �:

� = κ

G

(
1 + ζ

a + β cos �τ

b

)

− β

(
sin �τ − |D|

G
cos �τ

)
.

(11)

Note that a general solution of Eq. (11) cannot be obtained
analytically. It becomes possible only when the delay time
τ is sufficiently shorter than 1/� and thus, we can use ap-
proximations, cos �τ � 1 and sin �τ � �τ . It should also be
noted that, to determine the value of � quantitatively from
Eq. (11), the value of the current density J should be given
because it is included in a. Accordingly, in a strict sense, it is
difficult to theoretically predict the threshold current density
and the oscillation frequency in the presence of the feedback
effect. Let us explain this point in detail in the following
sections.

C. Difficulty of the prediction of threshold current density
and oscillation analytically

In the absence of the feedback effect, the threshold current
density Jc can be estimated just from the material parame-
ters and the disk size, and its estimation does not require
any information on the oscillation frequency. The autooscil-

lation is excited when the magnitude of the applied current
density exceeds Jc. The oscillation frequency is then given
by [κ/(2πG)](1 + ζ s2

0), and its value can also be estimated
from the material parameters, the disk size, and the current
magnitude.

On the other hand, in the presence of the feedback effect,
the threshold current density depends not only on the ma-
terial parameters and the disk size, in addition to the delay
time τ , but also on the frequency �/(2π ), as can be seen in
Eq. (10). Thus, to estimate the threshold current density, we
need to estimate the value of the frequency. The frequency is
determined by solving Eq. (11) with respect to �, where an
analytical expression of the frequency is hardly obtained, in
general. Note also that this frequency depends on the current
density J through the parameter a, and thus, we need to alter
some value of J for the estimation of the frequency. However,
at this moment, it is not clear whether this current density J
exceeds the value of J ′

c given by Eq. (10) because J ′
c depends

on �. Therefore, even after determining the frequency from
Eq. (11) by substituting the value of J , if J ′

c estimated by
using this frequency is higher than the current density J , an
oscillation cannot exist, and the vortex core will be relaxed to
the disk center.

As can be seen in this explanation, in the presence of the
feedback effect, it is necessary to solve Eqs. (10) [or Eq. (8)]
and (11) simultaneously and self-consistently for the estima-
tion of the threshold current and the oscillation frequency.
Therefore, the analytical approach to estimate them is very
complex. If the strength of the feedback effect is sufficiently
weak, the frequency �/(2π ) might be approximated to the
unperturbed one, [κ/(2πG)](1 + ζ s2

0), and the threshold cur-
rent density, Eq. (10), becomes a periodic function of the delay
time τ [34]. In general, however, the threshold current density
and the frequency should be determined simultaneously, as
explained above.

We also explain the reason why the value of s in Fig. 3(b)
was smaller than that in Fig. 3(a), although the feedback gain
in the former case was stronger than that in the latter case.
The numerically estimated values of the oscillation frequency,
�/(2π ), in Figs. 3(a) and 3(b) are 289 and 285 MHz, respec-
tively. Using these and τ = 29 ns, cos �τ is negative for both
cases, indicating that the feedback magnetic field increases the
magnitude of the threshold current density; see Eq. (10). This
increase of the threshold current density is larger for the case
in Fig. 3(b) than that in Fig. 3(a) because of the large feedback
gain. Accordingly, the excitation of the autooscillation is eas-
ier for the case of the small feedback gain, compared with the
case of the large one, and s in Fig. 3(a) becomes larger than
that in Fig. 3(b). In addition, since the frequency increases as
s increases, this difference of s between Figs. 3(a) and 3(b)
is consistent with the fact that the oscillation frequency in
the former is higher than that in the latter. As can be seen
in this example, an injection of large feedback effect does not
guarantee, for example, a reduction of the threshold current.
This is because various characteristics, such as the threshold
current density and the oscillation frequency, are complex
functions of the feedback strength and delay time. Neverthe-
less, as shown here, we can develop the theoretical analyses
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FIG. 5. Values of f1 and f2, given by Eqs. (12) and (13), for feedback gains of (a) g = −60 dB (hy = 0.1 Oe), (b) g = −20 dB
(hy = 2.2 Oe), (c) g = −10 dB (hy = 4.6 Oe), and (d) g = +20 dB (hy = 46.4 Oe).

which qualitatively explain the results of the numerical
simulations.

D. Theoretical viewpoint on appearance
of the multipeak structure

Finally, we also show that the above theoretical analyses
qualitatively explain the appearance of the multipeak struc-
ture found in Fig. 2. The solution of the frequency satisfying
Eq. (11) can be estimated as intersections of the following two
lines:

f1 = �

2π
, (12)

f2 = κ

2πG

(
1 + ζ

a + β cos �τ

b

)

− β

2π

(
sin �τ − |D|

G
cos �τ

)
.

(13)

Figure 5 summarizes examples of f1 and f2 for some values
of the feedback gain. For example, in Fig. 5(a), we show f1

and f2 for the feedback gain of −60 dB. These two lines
intersect at 311 MHz, which is about 8% higher than that
estimated from the numerical simulation (289 MHz, as men-
tioned above). The difference may come from terms neglected
in Eqs. (4) and (5). Note that there is only one intersection for
this case, which agrees with the fact that the Fourier spectrum
in Fig. 3(a) shows a single peak. When the feedback gain

increases, we see a discrepancy between the numerical sim-
ulation and the theoretical analyses. In Fig. 5(b) for example,
we show f1 and f2 for the feedback gain of −20 dB. While we
find multiple intersections in this figure, the Fourier spectrum
in Fig. 3(b) shows a single peak. In other words, while the
theoretical analyses imply a possibility of an appearance of
multiple peak structure, the numerical simulation does not
show such behavior. The difference again may come from
approximations to simplify Eq. (1) into the forms of Eqs. (4)
and (5). When the feedback gain further increases, the number
of the intersections increases significantly, as can be seen
in Figs. 5(c) and 5(d), where the feedback gains are −10
and +20 dB, respectively. In these cases, an assumption that
the vortex core oscillates with a unique frequency, i.e., ψ̇ is
constant, is no longer valid. In other words, the appearance
of the multi-intersections between f1 and f2 indicates that the
theoretical analysis developed above is no longer applicable,
and complex dynamics such as chaos can appear. From this
perspective, the investigation of the number of the intersec-
tions of f1 and f2 can be useful to estimate qualitatively the
feedback gain at which bifurcation from a simple oscillation
to complex dynamics occurs.

V. CONCLUSION

In summary, the vortex-core dynamics in the presence of
the feedback magnetic field were studied by numerical simu-
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lation of the Thiele equation. The bifurcation from a simple
oscillation with a unique frequency to complex dynamics,
such as amplitude modulation and chaos, was found from
the Fourier spectra, the temporal dynamics, the bifurcation
diagram, and the Lyapunov exponent. Theoretical analyses on
the Thiele equation were also developed to clarify the role of
the feedback magnetic field on the vortex-core dynamics. The
paper evidently shows the difficulty to obtain simple analyti-
cal solutions of several characteristics, such as the threshold
current density and the oscillation frequency. Nevertheless,
the theory was able to qualitatively explain several features
found in the numerical simulations, such as the change of the
oscillation amplitude with changing the feedback gain and
the appearance of the multipeak structure. The theory also
clarifies the difference of the role of the feedback electric
current and magnetic field.
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APPENDIX: VALUES OF PARAMETERS

The values of the parameters are derived from typi-
cal experiments using vortex STOs and feedback circuits
[39,40] and are set as M = 1300 emu/cm3, γ = 1.764 × 107

rad/(Oe s), α = 0.010, L = 5.0 nm, R = 212.5 nm, R0 =
10 nm, P = 0.70, px = sin 60◦ (pz = cos 60◦), ξ = 3.0, and
τ = 29 ns. The fieldlike torque is assumed to be zero. Using
these values, the threshold current density Jc in the absence of
the feedback effect is estimated as 1.9 MA/cm2. The current
density J is defined from the current I as J = I/(πR2), where
the current is 5.5 mA, corresponding to J = 3.9 MA/cm2.
The polarity p and chirality c are each assumed to be +1 for
convenience. The frequency κ/(2πG) of the ferromagnetic
resonance is estimated to be 191 MHz. Some parameters, such
as ζ and ξ , might include contributions from Oersted field
[48]. Regarding the fact that the current density is constant
in this paper, we assume that these contributions are already
included in the values shown above. In experiments, however,
it is difficult to estimate the magnitude of the applied magnetic
field directly because it strongly depends on, for example,
placement of the metallic line and so on. The experimentally
controllable parameter is feedback gain (or attenuation), and
we use the feedback gain g as a control parameter in the
numerical simulation. The feedback gain g is defined as hy =
100 × (10g/30/10) Oe, i.e., g is defined so that the feedback
gain of 30 dB corresponds to hy = 100 Oe.
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