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Supercurrent-induced spin switching via indirect exchange interaction
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Localized spins of single atoms adsorbed on surfaces have been proposed as building blocks for spintronics
and quantum computation devices. However, identifying a way to achieve current-induced switching of spins
with very low dissipation is an outstanding challenge with regard to practical applications. Here, we show that
the indirect exchange interaction between spin impurities can be controlled by a dissipationless supercurrent.
All that is required is a conventional superconductor and two spin impurities placed on its surface. No triplet
Cooper pairs or exotic material choices are needed. This finding provides a new and accessible way to achieve
the long-standing goal of supercurrent-induced spin switching.
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I. INTRODUCTION

Electrical manipulation of spin or magnetization is crucial
in the development of spintronics devices and technologies
for data storage and computation [1–3]. Current-induced mag-
netization switching is presently used in magnetic random-
access memory through spin-transfer torque [4,5]. However,
the inclusion of electric current inevitably involves Joule
heating and therefore high-energy dissipation. An important
objective is therefore to identify a way to electrically switch
the directions of spins with very low dissipation. In spintron-
ics, major efforts have been devoted to optimizing the choice
of materials and hybrid structures [6–10] in order to reduce
the power consumption for switching, making it comparable
to that in present semiconductor field-effect transistors [11].

At low temperatures, an obvious candidate for achieving
low-dissipation electric control over magnetism is supercon-
ducting materials due to their ability to host dissipationless
supercurrents. Combining superconductivity and spintronics
[12] offers possibilities to achieve supercurrent-induced mag-
netization dynamics, by which Joule heating and dissipation
can be minimized. To achieve this, several theory papers have
proposed to utilize spin-polarized triplet supercurrents [13],
which have been experimentenlly verified in superconductor
(SC)/ferromagnet (FM) Josephson junctions [14–17]. It has
also been theoretically shown that triplet supercurrents can
induce spin-transfer torque switching [18–20] and magnetiza-
tion dynamics [21–27]. However, there exists no experimental
observation of supercurrent-induced torque or magnetization
dynamics. Part of the challenge lies within the complexity of
the appropriate fabrication of the SC/FM multilayered struc-
tures, in which the SC/FM interface plays an essential role to
create the triplet Cooper pairs for spin-polarized supercurrent.

In this work, we theoretically demonstrate a new and con-
ceptually simple way in which the goal of spin switching via
singlet supercurrents can be achieved. We consider a con-
ventional SC and two spin impurities placed on its surface
(see Fig. 1). Without the requirement of triplet Cooper pair
or exotic material choices, this is a drastically simpler setup
than previous studies, theoretical and experimental, that have

considered magnetization dynamics in the superconduct-
ing state. By investigating the indirect exchange interaction
between the two spin impurities, also known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [28–30], we find
that the spin orientation can be controlled by applying a
supercurrent flowing through the SC. In the presence of the
supercurrent, the quasiparticle bands become asymmetric in
momentum space due to the broken parity symmetry, which
also modulates the RKKY interaction. Further, the resulting
sign change in the RKKY interaction causes the preferred spin
orientation to be switched between parallel and antiparallel
alignments, both by varying the magnitude of the supercurrent
as well as its direction, providing two experimental routes to
observe this effect.

II. THEORY

We consider a conventional Bardeen-Cooper-Schrieffer
(BCS) [31] SC with two impurity spins on its surface. For the
superconducting part of the Hamilton operator, the presence
of a supercurrent can be modeled by allowing the order pa-
rameter to have a phase gradient. Thus, we may write in real
space

HSC = �0

2

∑
iαβ

eiQ·ri (iσ y)αβc†
iαc†

iβ + H.c. (1)

Here, �0 is the magnitude of the superconducting order
parameter, Q quantifies the magnitude and direction of the
supercurrent, whereas c†

iσ are electron creation operators at
site i for spin σ . For Q = 0, HSC reduces to the standard BCS
Hamiltonian.

The full Hamilton operator for the superconducting part,
which includes a hopping term, takes the form

H0 = 1

2

∑
kσ

φ
†
kσ

(
εk σ�0

σ�0 −ε−k−Q

)
φkσ , (2)

after performing a Fourier transformation c†
iσ = 1√

N

∑
k

c†
kσ

eik·ri where N is the total number of the lattice points.
Above, εk = −2t[cos(kxa) + cos(kza)] − μ is the dispersion
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relation, in which t is the hopping parameter, a is the lat-
tice constant, and μ is the chemical potential. Here a 2D
model in the xz plane is chosen for concreteness and φ

†
kσ

=
(c†

kσ
c−k−Q,−σ ) is the fermion basis. The two pairs of en-

ergy eigenvalues and eigenstates of the matrix in Eq. (2) are
obtained as E+

k with (uk, σvk)T and E−
k with (−σvk, uk)T , in

which

E±
k = 1

2

(
εk − ε−k−Q ±

√
(εk + ε−k−Q)2 + 4�2

0

)
(3)

and

uk(vk) =
√√√√√1

2

(
1 + (−)

εk + ε−k−Q√
(εk + ε−k−Q)2 + 4�2

0

)
. (4)

Based on the eigenpairs, the Hamiltonian is diagonalized
as

H0 = 1

2

∑
kσ

(E+
k − E−

−k−Q)γ †
kσ

γkσ , (5)

where the operators satisfy

φkσ =
(

ckσ

c†
−k−Q,−σ

)
=

(
uk −σvk

σvk uk

)(
γkσ

γ
†
−k−Q,−σ

)
. (6)

To model the impurity spins interacting with the SC,
we consider a Hamilton operator which is treated as a
perturbation:

�H = J
∑

j

S j · s j, (7)

in which J is the strength of the interaction between the
impurity classical spin S j and the conduction electron spin
s j = ∑

αβ c†
jασαβc jβ where σ denotes the Pauli matrix vec-

tor. We set S ≡ |S j | = 1, meaning that the magnitude of the
impurity spin is absorbed into the coupling constant J .

After Fourier transforming and expressing the c operators
in terms of γ operators described by Eq. (6), we obtain

�H =
∑

kk′αβ

Tkk′αβ[u∗
kuk′γ

†
kα

γk′β − βu∗
kvk′γ

†
kα

γ
†
−k′−Q,−β

− αv∗
kuk′γ−k−Q,−αγk′β + αβv∗

kvk′γ−k−Q,−αγ
†
−k′−Q,−β

],

(8)

in which Tkk′αβ = ∑
j

J
N ei(k−k′ )·r j S j · σαβ is defined.

We now perform a Schrieffer-Wolff transformation to
obtain the RKKY interaction between the impurity spins,
mediated by the SC. This is in essence a second-order per-
turbation theory for �H achieved by applying a canonical
transformation Heff = eηSHe−ηS for H = H0 + �H . Subse-
quently, one identifies ηS so that it satisfies �H + [ηS, H0] =
0 which projects out the first-order effect of the perturbation,
which does not generate any interaction between the impurity
spins. This gives rise to the effective Hamiltonian

Heff = H0 + 1
2 [ηS,�H], (9)

in which one can express ηS with the same operators as in
Eq. (8): ηS = ∑

kk′αβ[Akk′αβγ
†
kα

γk′β + Bkk′αβγ
†
kα

γ
†
−k′−Q,−β

+

Ckk′αβγ−k−Q,−αγk′β + Dkk′αβγ−k−Q,−αγ
†
−k′−Q,−β

]. The coeffi-
cients are consequently identified as

Akk′αβ = − 2u∗
kuk′Tkk′αβ

E+
k′β − E−

−k′−Q,−β
− E+

kα
+ E−

−k−Q,−α

,

Bkk′αβ = − 2βu∗
kvk′Tkk′αβ

E+
kα

− E−
−k−Q,−α

+ E+
−k′−Q,−β

− E−
k′β

,

Ckk′αβ = 2αv∗
kuk′Tkk′αβ

E+
k′β − E−

−k′−Q,−β
+ E+

−k−Q,−α
− E−

kα

,

Dkk′αβ = 2αβv∗
kvk′Tkk′αβ

E+
−k′−Q,−β

− E−
k′β − E+

−k−Q,−α
+ E−

kα

. (10)

Given ηS, the expectation value of the effective Hamiltonian
given by Eq. (9) may now be evaluated to obtain the RKKY
interaction.

III. RESULTS AND DISCUSSION

Defining Sαβ
j ≡ S j · σαβ and using 
αβSαβ

j Sβα
i = 2Si · S j

and 
αβαβSαβ
j S−α,−β

i = −2Si · S j , we obtain the expectation
value

〈Heff〉 = E0 + 
i jERKKYSi · S j, (11)

in which E0 is a constant and ERKKY describes the RKKY
interaction. The sum

∑
i j in Eq. (11) is over the two impurity

spins. Applying uk = u−k−Q, vk = v−k−Q and E±
k = −E∓

−k−Q,
the RKKY interaction can after lengthy calculations be ex-
pressed via the quantities

F1(k, k′) = (|ukuk′ |2 + u∗
kuk′v∗

kvk′ )
n(E+

k ) − n(E+
k′ )

E+
k′ − E+

k

,

F2(k, k′) = (−|ukvk′ |2 + u∗
kuk′v∗

kvk′ )
n(E+

k ) + n(E+
−k′−Q

) − 1

E+
k + E+

−k′−Q

,

F3(k, k′) = (u∗
kuk′v∗

kvk′ − |uk′vk|2)
n(E+

k′ ) + n(E+
−k−Q) − 1

E+
k′ + E+

−k−Q

,

F4(k, k′) = (u∗
kuk′v∗

kvk′ + |vkvk′ |2)
n(E+

−k−Q) − n(E+
−k′−Q

)

E+
−k′−Q

− E+
−k−Q

,

(12)

in the following form

ERKKY = −
(

J

N

)2


kk′ei(k−k′ )·Ri j [F1(k, k′) + F2(k, k′)

+ F3(k, k′) + F4(k, k′)], (13)

where Ri j = r j − ri and n(E ) = (1 + eβE )−1 denotes the
Fermi-Dirac distribution at energy E with β = 1/kBT . The
above expression can be further simplified since ERKKY is real,
and thus the exponential prefactor can be replaced with its
corresponding cosine component. Subsequently, one observes
that the contribution from F2 is the same as F3, which can be
seen by renaming indices k ↔ k′ and using that u, v are real.

For Q = 0, we regain the results studied previously in the
literature for RKKY interaction in SCs [32–35] in the form
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FIG. 1. Two impurity spins (purple small arrows) are coupled
via the RKKY interaction (wavy black line) mediated by conduc-
tion band quasiparticles in the superconducting state. The picture
shows a scenario where a parallel spin orientation is energetically
preferred. When a supercurrent (large orange arrow) is applied, giv-
ing the Cooper pairs a finite momentum Q, the quasiparticle bands
become asymmetric in momentum k (upper part of the plot), due
to the broken parity symmetry. This causes a change in the RKKY
interaction which can now favor the opposite spin orientation, in this
case antiparallel (small orange arrow). In this way, the supercurrent
induces spin switching.

of an additional antiferromagnetic, exponentially decaying
term that appears in ERKKY along with the usual rapidly os-
cillating interaction. Equation (13) can then be numerically
evaluated to determine the effect of a supercurrent on the
spin-spin interaction. To estimate a reasonable magnitude for
the momentum Q = |Q| of the Cooper pairs, we note that
the critical supercurrent that a SC can sustain is provided by
Qξ 
 1 [36] where ξ = h̄vF /(π�0) is the coherence length.
An analytical estimate for Q can be given for a simple one-
dimensional (1D) model. The Fermi velocity in our lattice
model is defined via vF = 1

h̄ (dεk/dk)|k=kF where kF is ob-
tained as the momentum where εk = 0. To maximize the value
of Q (in order to have a supercurrent which can strongly
influence the RKKY interaction), one ideally needs a SC
with as small ξ as possible. High-Tc superconductors can

have ξ 
 3a, allowing Q 
 0.3/a. Subsequently, μ and �0

should be chosen to get ξ 
 3a. Choosing μ = −1.8t , one
finds from −2t cos(ka) − μ = 0 that kF 
 0.5/a, which gives
vF 
 at/h̄. Then, for �0/t = 0.1, we can achieve ξ 
 3a
which gives the upper limit Q 
 0.3/a. Similar parameters
were used in Ref. [37]. To use a more realistic value for
�, the system size L would have to increase dramatically
to ensure L > ξ since ξ ∝ �−1, making the computational
demands unfeasible. This is a known computational challenge
with the lattice Bogolioubov–de Gennes framework, which
nevertheless is known to produce predictions that compare
well qualitatively, and in some cases even quantitatively, with
experiments [38].

The RKKY interaction results are shown in Fig. 2 for Q =
0.1/a. We show results both for zero supercurrent (Q = 0),
and supercurrent flowing parallell (‖) and perpendicular (⊥)
to the separation vector Ri j of the two spin impurities. Here
we fix Q along x and consider Ri j along x (z) to cover the
‖ (⊥) configuration. The figure demonstrates that the RKKY
interaction changes its sign within several separation-distance
regimes by tuning the magnitude and direction of the su-
percurrent. Since ERKKY < 0 causes a parallel (P) alignment
of the two spin impurities while ERKKY > 0 supports an an-
tiparallel (AP) orientation, the sign change thus induces spin
switching between the P and AP states. In addition, the RKKY
curves are almost the same for the Q = 0 and ⊥ cases. This
can be explained by the energy dispersion symmetry breaking
induced by the supercurrent, which is the strongest for the
quasiparticles mediating the RKKY interaction when Q ‖ Ri j

and negligible for the perpendicular case when Q is small.
In Fig. 2, the black arrows denote spin switching achieved
by changing the direction of supercurrent flow (between Q ‖
Ri j and Q ⊥ Ri j). The black arrows also indicate switch-
ing caused by turning the supercurrent on and off (between
Q ‖ Ri j and Q = 0) since the Q = 0 and ⊥ cases essentially
coincide due to the small value of Q. It is clear from the arrows
in the figure that the presence of supercurrent gives rise to
ample opportunities for spin switching at several separation
distances. Note that for each arrow, the switch occurs in a fi-
nite interval centered around the position of the arrow and not
just exactly at the location of the arrow, making the switching
effect more accessible.

0 5 10 15

0

5

10

10-3

0 5 10 15

-2

0

2

10-4

FIG. 2. Normalized RKKY interaction between two impurity spins on top of a current-carrying superconductor with Qa = 0.1. The inset
shows a zoom-in of the main plot and the horizontal black line is a guide to the eye for where the RKKY interaction changes from P to AP. The
direction of the supercurrent is along the impurity separation distance for ‖ and perpendicular to it for ⊥. ERKKY > 0 favors an AP alignment of
the spins, whereas ERKKY < 0 favors a P alignment. The arrows show the preferred spin alignment is altered by either turning the supercurrent
on and off or by changing its direction between ‖ and ⊥. Since the supercurrent magnitude is small for Qa = 0.1, the Q = 0 and ⊥ cases
essentially coincide. We consider μ/t = −1.8, �0/t = 0.1, kBT/t = 0.01, Q = 0.1/a, and N = 104 sites.
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FIG. 3. Same as in Fig. 2, but for Qa = 0.2. Since the supercurrent is now larger than in Fig. 2, additional spin switching is enabled.
Namely, the preferred spin alignment is switched by either turning the supercurrent on and off in the ‖ direction (blue arrows), on and off in
the ⊥ direction (red arrows), or changing the direction of the supercurrent between ‖ and ⊥ (black arrows). We consider μ/t = −1.8, �0/t =
0.1, kBT/t = 0.01, Q = 0.2/a, and N = 104 sites.

We also show results in Fig. 3 for a slightly larger value
of the supercurrent, Q = 0.2/a, demonstrating the robustness
of the effect and that there exists an abundance of possible
switching effects by either turning of the supercurrent or by
changing its direction. As Q increases, compared with Q =
0.1/a in Fig. 2, the difference between the Q = 0 and ⊥ cases
becomes distinguishable and the additional spin switching
between them becomes possible, as the red arrows show.

Finally, we plot the RKKY interaction energy at a fixed
lattice site as a function of the supercurrent magnitude Q
in Fig. 4 for two site choices. The supercurrent flow starts
modifying ERKKY at much smaller values of Q when it flows

0 0.05 0.1 0.15 0.2 0.25 0.3
2

2.5

3

3.5

4 10-4

0 0.05 0.1 0.15 0.2 0.25 0.3
-15

-10

-5

0

5 10-5

FIG. 4. Normalized RKKY interaction as a function of super-
current magnitude. We consider two separation distances in the top
and bottom panels and consider both a supercurrent flow along (‖)
the separation distance vector and perpendicular (⊥) to it. We set
μ/t = −1.8, �0/t = 0.1, kBT/t = 0.01, and N = 104 sites.

along Ri j compared to when it flows perpendicular to it. The
physical mechanism behind this is the directional dependence
of the asymmetry in the quasiparticle bands Ek created by Q.
As mentioned before, the asymmetry is strongest for parti-
cles moving between the impurity spins when Q ‖ Ri j , which
are precisely the ones contributing the most to the RKKY
interaction. The lower panel of Fig. 4 shows that at a fixed
separation distance Ri j = |Ri j |, modulating the supercurrent
magnitude Q can cause the preferred spin orientation to switch
between P (ERKKY < 0) and AP (ERKKY > 0), which is con-
sistent with the switching results observed in Figs. 2 and 3.
The supercurrent-induced switching predicted here is most
clear in the regime T � Tc. Thermal broadening reduces the
difference between Q ‖ Ri j and Q ⊥ Ri j due to a strong sup-
pression of the gap as T 
 Tc, but becoming noticeable also
from T/Tc 
 0.5 due to an increase in thermal excitations of
quasiparticles.

An approximative analytical expression for the RKKY in-
teraction with supercurrent can be derived under simplifying
assumptions. For impurity separation distances R � ξ , one
finds in 1D:

ERKKY = E0(R) + 4π3J2 cos2(kF R)
∫ ∞

0
d

× �22Q̃2

(2 + �2)3
e− 2R

h̄vF , (14)

where E0(R) is the RKKY interaction for two impurity spins
in a superconductor without supercurrent and Q̃ = h̄vF Q/2
(see Appendix for details). As is physically reasonable, the
lowest-order supercurrent-induced correction is quadratic in
Q since the interaction should not distinguish between left-
and right-going supercurrents. We also note that upon increas-
ing T , � is suppressed and the RKKY interaction reverts back
to its normal-state behavior where it is damped like R−2 in 2D.

We also give an estimate for the effect of the supercurrent
Oersted field acting on the impurity spins via a Zeeman ef-
fect, and show that it is negligible compared to the RKKY
interaction. Considering a thin superconducting film of thick-
ness d with a critical current density Jc = 107 A/cm2, the
field at the surface can be approximated as B = μ0Jcd/2 at
the critical supercurrent strength. For d = 15 nm, this gives
B 
 10−3 T, corresponding to a very small Zeeman coupling
EZ 
 10−5 meV at about half of the critical current density.
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This can be compared to tERKKY/J2 in our plots, which is typ-
ically of order 10−4 at a separation distance of several lattice
sites. Using a weak-impurity spin coupling J = 0.05t < �0,
as appropriate for the perturbative approach employed here,
we get for t = 500 meV that ERKKY 
 10−4 meV which is
� EZ . Although this is a rough estimate, we note that larger
couplings J , outside the regime of our approach, between the
impurity and conduction electron spins are accessible exper-
imentally [39]. This will make the RKKY interaction even
larger, in particular compared to the Oersted-field effect. A
thinner SC film decreases the Oersted field further. The effect
of supercurrent flow in the strong-coupling regime could be
an interesting topic for future studies where in-gap Yu-Shiba-
Rusinov (YSR) states [40–42] are expected to have a more
prominent role. Quantitatively, the weak- and strong-coupling
regimes are distinguished by the direct interaction strength J
being substantially smaller or greater than the superconduct-
ing gap �0, respectively. The main conclusion of this work,
being the tunability of the RKKY interaction and thus the
possibility to switch the ground-state spin configuration, is
expected to hold also in this case. We also note that our work
is distinct from previous literature considering a microwave-
induced spin-spin interaction in the presence of YSR states
[43] and magnetic instabilities induced in correlated normal
metals induced by a supercurrent [37].

We also comment on the effect of nonmagnetic impurity
scattering which will influence two aspects of the system. One
is that it could influence the magnitude of the superconduct-
ing gap and critical temperature, if solved self-consistently.
However, since we consider BCS s-wave superconductors, we
expect that impurities have very little influence on the super-
conducting transition even for impurity magnitudes ranging
up toward t [44]. Secondly, the presence of impurities is
known to cause the RKKY interaction to decay more rapidly
with distance if one averages over different impurity config-
urations [45]. For a fixed impurity configuration, however, it
only introduces a phase shift in the distance dependence of
the RKKY-interaction function. A similar effect could also
be present in the superconducting state considered here. It
is possible to add the nonmagnetic impurity scattering in the
Bogoliubov–de Gennes formalism by considering a finite-size
system where impurities are modeled as an on-site potential
on randomly chosen sites. We leave this investigation for
future work.

IV. CONCLUDING REMARKS

Our proposed system setup should be experimentally feasi-
ble. In Ref. [46], the RKKY interaction between Cr impurity
spins coupled to a SC was studied using scanning-tunneling
spectroscopy. All that is required in addition to observe
the supercurrent-induced spin switching is the application of
a current bias to the SC. We hope that the present work
will stimulate the anticipated experimental realization of
supercurrent-induced spin switching.
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APPENDIX A: MATSUBARA GREEN FUNCTIONS

Here we present the derivation details of the analytical
expression of the RKKY interaction in a 1D s-wave supercon-
ductor (SC) with supercurrent Q based on Matsubara Green
functions for interested readers, in which Q has to be treated
perturbatively in order to permit an analytical solution. The
case with a larger Q which enables spin switching is shown
numerically in the main text.

The s-wave SC with supercurrent Q can be described by
the Hamiltonian

Ĥ =
(

ξ+ �

� −ξ−

)
, (A1)

in which ξ± = ξk±Q/2. Note this Hamiltonian is equivalent to
that described by Eq. (2) in the main text by a mere relabeling
of momentum index. The momentum-dependent Matsubara
Green function can be obtained as

ĜM = (i − Ĥ )−1

= − 1

2 + i(ξ+ − ξ−) + ξ+ξ− + �2

×
(

i + ξ− �

� −ξ+ + i

)
, (A2)

in which  is the fermionic Matsubara frequency. There-
fore, we have the (11)/(12) matrix element as the
normal/anomalous Green function:

GM (i, k, Q) = − i + ξ−
2 + i(ξ+ − ξ−) + ξ+ξ− + �2

, (A3)

F M (i, k, Q) = − �

2 + i(ξ+ − ξ−) + ξ+ξ− + �2
. (A4)

Substitute the approximation that ξ± = ξk ± h̄vF Q/2 [47], the
normal and anomalous Green functions can be simplified as

GM (i, k, Q) = − i + ξk − h̄vF Q/2

( + ih̄vF Q/2)2 + ξ 2
k + �2

, (A5)

F M (i, k, Q) = − �

( + ih̄vF Q/2)2 + ξ 2
k + �2

, (A6)

in which vF is the Fermi velocity.
Consider 1D SC, use the standard approximation of lin-

earizing the dispersion close to the Fermi level

ξk = (
p2 − p2

F

)
/2m ≈ h̄vF (k × sign(Re{k}) − kF ), (A7)
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where kF is the Fermi wave vector, and we have the Fourier-transformed normal Matsubara Green function

GM (i,±R, Q) =
∫ +∞

−∞

dk

2π
G(i, k, Q)e±ikR

= −
∫ ∞

−∞

dk

(2π )

i + h̄vF [k × sign(Re{k}) − kF − Q/2]

( + ih̄vF Q/2)2 + �2 + [h̄vF (k × sign(Re{k}) − kF )]2
e±ikR

= − 1

2π h̄2v2
F

∫ +∞

−∞
dk

i + h̄vF [k × sign(Re{k}) − kF − Q/2](
k × sign(Re{k}) − kF + i

√
(+ih̄vF Q/2)2+�2

h̄vF

)(
k × sign(Re{k}) − kF − i

√
(+ih̄vF Q/2)2+�2

h̄vF

)e±ikR.

(A8)

This integrand has simple poles at

k = ±kF ±′ i
√

( + ih̄vF Q/2)2 + �2/(h̄vF ), (A9)

where h̄vF Q/2 < � is considered to make further analytical progress (also ensuring that the supercurrent remains below its
critical value). A similar procedure can be applied to obtain the Fourier-transformed anomalous Matsubara Green function.

To compute GM (i, R, Q) and F M (i, R, Q), we consider the upper half-plane which includes two poles at ±kF +
i
√

(+ih̄vF Q/2)2+�2

h̄vF
and use the residue theorem as GM (i, R, Q) = 2π i[Res{pole1} + Res{pole2}]:

GM (i, R, Q) = − i

h̄vF

[
 + ih̄vF Q/2√

( + ih̄vF Q/2)2 + �2
cos (kF R) + i sin (kF R)

]
e−

√
(+ih̄vF Q/2)2+�2

h̄vF
R
, (A10)

F M (i, R, Q) = − 1

h̄vF

�√
( + ih̄vF Q/2)2 + �2

cos (kF R)e−
√

(+ih̄vF Q/2)2+�2

h̄vF
R
. (A11)

To compute GM (i,−R, Q) and F M (i,−R, Q), we consider the lower half-plane which includes two poles at ±kF −
i
√

(+ih̄vF Q/2)2+�2

h̄vF
and use GM (i,−R, Q) = −2π i[Res{pole1} + Res{pole2}]. It is found that GM (i, R, Q) = GM (i,−R, Q)

and F M (i, R, Q) = F M (i,−R, Q).

APPENDIX B: DERIVATION OF THE RKKY EXPRESSION

As derived in Ref. [48] [see Eq. (C8)], the RKKY interac-
tion in terms of the retarded Green function is given by

ERKKY = 2π3J2Im
∫ +∞

−∞
dω tanh

(
ω

2T

)

× [
GR

ω(R)GR
ω(−R) + F R

ω (R)F̃ R
ω (−R)

]
. (B1)

In what follows, we omit the constant prefactor 2π3J2,
where J is the exchange-coupling strength, for brevity of
notation. GR

ω(R) and F R
ω (R) are the normal and anomalous

retarded Green functions in the real space, respectively. In
the momentum space, we have F̃ R

ω (−R) = 1
2π

∫
dkF̃ R

ω (k)e−ikR

and F̃ R
ω (k) = [F R

−ω(−k)]∗. Here, ω is real energy. Note that
tanh(ω/2T ) = 1 − 2nF (ω) where nF is Fermi-Dirac distribu-
tion. The contribution from the resulting 1-term in the integral
vanishes if the poles of the retarded Green function lie in the
complex lower half-plane. (The vanishing integral is obtained
by closing the contour in the upper half-plane). That the poles
of the retarded Green function conventionally lie in the lower
complex half-plane is seen as follows. First, write GR

ω(R) as∫
dkeikRGR

ω(k). Then, we have to determine where the poles
of GR

ω(k) lie in the complex ω plane. In general, the retarded
Green function can have a self-energy 
, and the imaginary
part of this must be negative in order to interpret −Im 
 as the

inverse lifetime of the quasiparticle. F R
ω (k) shares the same

denominator and therefore same poles as GR
ω(k). Using this,

we obtain the expression

ERKKY = −2Im
∫ +∞

−∞
dω nF (ω)

× [
GR

ω(R)GR
ω(−R) + F R

ω (R)F̃ R
ω (−R)

]
. (B2)

At zero temperature, this reduces to

ERKKY = −2Im
∫ 0

−∞
dω

[
GR

ω(R)GR
ω(−R) + F R

ω (R)F̃ R
ω (−R)

]
.

(B3)

Next, we convert this expression to be in terms of Matsub-
ara Green functions. It is known that

GR
ω = GM (ω + iδ), F R

ω = F M (ω + iδ), (B4)

where δ is a positive infinitesimal. This general relation is
easily verified for a normal metal where

GR
ω = 1

ω − ξk + iδ
,

GM (i) = 1

i − ξk
. (B5)
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FIG. 5. Integral contour to calculate I1−3.

Here for a 1D SC with supercurrent Q, we need to be careful
with F̃ R:

F R
ω (k, Q) = �

(ω + iδ − h̄vF Q/2)2 − ξ 2
k − �2

, (B6)

F̃ R
ω (k, Q) = [

F R
−ω(−k, Q)

]∗

= �

(ω + iδ + h̄vF Q/2)2 − ξ 2
k − �2

= F R
ω (k,−Q), (B7)

F̃ R
ω (−R, Q) = 1

2π

∫
dkF̃ R

ω (k, Q)e−ikR

= 1

2π

∫
dkF R

ω (k,−Q)e−ikR

= F R
ω (−R,−Q), (B8)

in which ξk = ξ−k is applied. We then rewrite

ERKKY = −2Im
∫ 0

−∞
dω

[
GR

ω(R, Q)GR
ω(−R, Q)

+ F R
ω (R, Q)F R

ω (−R,−Q)
]
. (B9)

Introducing the new variable  via ω = i − iδ or  =
−iω + δ, we get

ERKKY = −2Im
∫ δ

i∞+δ

id [GM (i, R, Q)GM (i,−R, Q)

+ F M (i, R, Q)F M (i,−R,−Q)]. (B10)

Since Im(iz) = Re(z), we obtain

ERKKY = −2Re
∫ δ

i∞+δ

d [GM (i, R, Q)GM (i,−R, Q)

+ F M (i, R, Q)F M (i,−R,−Q)]. (B11)

The next step is to perform a Wick rotation, in which a quarter
circle is drawn in the first quadrant of the complex plane. As
long as there are no poles in the first quadrant, which lies in the
upper complex  plane, we will have via the residue theorem
that ∫ δ

i∞+δ

+
∫ ∞

δ

= 0, (B12)

since the arc contribution vanishes due to the Green functions
vanishing sufficiently rapidly. Apply δ → 0, we finally arrive
at

ERKKY = 2Re
∫ ∞

0
d [GM (i, R, Q)GM (i,−R, Q)

+ F M (i, R, Q)F M (i,−R,−Q)]. (B13)

APPENDIX C: ANALYTICAL INTEGRATION OF THE RKKY INTERACTION

Based on the previous expressions for Matsubara Green functions in Eqs. (A10)–(A11), we have

GM (i, R, Q)GM (i,−R, Q) = −1

h̄2v2
F

[
( + iQ̃)2

( + iQ̃)2 + �2
cos2(kF R) +  + iQ̃√

( + iQ̃)2 + �2
i sin(2kF R) − sin2(kF R)

]

× e− 2
√

(+iQ̃)2+�2

h̄vF
R (C1)

F M (i, R, Q)F M (i,−R,−Q) = 1

h̄2v2
F

�2√
[( + iQ̃)2 + �2][( − iQ̃)2 + �2]

cos2(kF R)e−
√

(+iQ̃)2+�2

h̄vF
R−

√
(−iQ̃)2+�2

h̄vF
R
, (C2)

in which Q̃ = h̄vF Q/2. Consider a superconducting correlation length R0 = h̄vF /� much larger than the separation distance of
the spins, meaning R � R0 or R/R0 → 0 (i.e., R�/h̄vF → 0 in the exponents), the required integrals to calculate the RKKY
interaction by Eq. (B13) are listed as follows:

I1 = Re
∫ ∞

0
d

( + iQ̃)2

( + iQ̃)2 + �2
e− 2

√
(+iQ̃)2+�2

h̄vF
R ≈ Re

∫ ∞

0
d

( + iQ̃)2

( + iQ̃)2 + �2
e− 2(+iQ̃)

h̄vF
R
, (C3)

I2 = Re
∫ ∞

0
d

 + iQ̃√
( + iQ̃)2 + �2

ie− 2
√

(+iQ̃)2+�2

h̄vF
R ≈ Re

∫ ∞

0
d

 + iQ̃√
( + iQ̃)2 + �2

ie− 2(+iQ̃)
h̄vF

R
, (C4)

I3 = Re
∫ ∞

0
de− 2

√
(+iQ̃)2+�2

h̄vF
R ≈ Re

∫ ∞

0
de− 2(+iQ̃)

h̄vF
R
, (C5)
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I4 = Re
∫ ∞

0
d

�2√
[( + iQ̃)2 + �2][( − iQ̃)2 + �2]

e−
√

(+iQ̃)2+�2

h̄vF
R−

√
(−iQ̃)2+�2

h̄vF
R

≈ Re
∫ ∞

0
d

�2√
[( + iQ̃)2 + �2][( − iQ̃)2 + �2]

e− 2
h̄vF

R
, (C6)

in which the first three integrals come from Eq. (C1) and the last one comes from Eq. (C2).
For I1−3, by changing variable  →  + iQ̃, the three integrals become

I1 = Re
∫ ∞+iQ̃

iQ̃
d

2

2 + �2
e− 2

h̄vF
R
, (C7)

I2 = Re
∫ ∞+iQ̃

iQ̃
d

i√
2 + �2

e− 2
h̄vF

R
, (C8)

I3 = Re
∫ ∞+iQ̃

iQ̃
de− 2

h̄vF
R
. (C9)

Consider the closed loop in the complex  plane as shown in Fig. 5 to calculate the three integrals, we can have

In = In,C1 + In,0 + In,C2 , (C10)

in which n = 1, 2, 3 and In,0 is the corresponding integral without supercurrent.
The line C1 can be described as  = ib with d = idb and integrate b from Q̃ to 0. The three integrals can be calculated as

follows:

I1,C1 = Re
∫

C1

d
2

2 + �2
e− 2

h̄vF
R = Re

∫ 0

Q̃
idb

(ib)2

(ib)2 + �2
e− 2ib

h̄vF
R =

∫ 0

Q̃
db

−b2

−b2 + �2
sin

(
2bR

h̄vF

)
≈ 0, (C11)

I2,C1 = Re
∫

C1

d
i√

2 + �2
e− 2

h̄vF
R = Re

∫ 0

Q̃
idb

i(ib)√
(ib)2 + �2

e− 2ib
h̄vF

R =
∫ 0

Q̃
db

−b√−b2 + �2
sin

(
2bR

h̄vF

)
≈ 0, (C12)

I3,C1 = Re
∫

C1

de− 2
h̄vF

R = Re
∫ 0

Q̃
idbe− 2ib

h̄vF
R =

∫ 0

Q̃
db sin

(
2bR

h̄vF

)
≈ 0. (C13)

Here everything becomes zero because of the appearance of sin( bR
h̄vF

) in the integrands since b ∈ [0, Q̃] and we take �R
h̄vF

→ 0 and

therefore Q̃R
h̄vF

→ 0 due to Q̃ < �.

The line C2 can be described as  = a + ib with d = idb, a → +∞ and integrate b from 0 to Q̃. The three integrals can be
calculated as follows:

I1,C2 = Re
∫

C2

d
2

2 + �2
e− 2

h̄vF
R = Re lim

a→+∞

∫ Q̃

0
idb

(a + ib)2

(a + ib)2 + �2
e− 2(a+ib)

h̄vF
R = 0, (C14)

I2,C2 = Re
∫

C2

d
i√

2 + �2
e− 2

h̄vF
R = Re lim

a→+∞

∫ Q̃

0
idb

i(a + ib)√
(a + ib)2 + �2

e− 2(a+ib)
h̄vF

R = 0, (C15)

I3,C2 = Re
∫

C2

de− 2
h̄vF

R = Re lim
a→+∞

∫ Q̃

0
idbe− 2(a+ib)

h̄vF
R = 0. (C16)

Here everything becomes zero since e− 2aR
h̄vF in the integrands becomes zero for a → +∞.

Therefore, the supercurrent Q doesn’t introduce additional terms for I1,2,3. The integrals are given by

I1 = I1,0 = Re
∫ ∞

0
d

2

2 + �2
e− 2

h̄vF
R = h̄vF

2R
− π�

2
cos

(
2R

R0

)
− � sin

(
2R

R0

)
Ci

(
2R

R0

)
+ � cos

(
2R

R0

)
Si

(
2R

R0

)

≈ h̄vF

2R
− π�

2
, (C17)

I2 = I2,0 = Re
∫ ∞

0
d

i√
2 + �2

e− 2
h̄vF

R = 0, (C18)

I3 = I3,0 = Re
∫ ∞

0
de− 2

h̄vF
R = h̄vF

2R
, (C19)
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in which Ci(x) = ∫ x
0

1−cos t
t dt is the cosine integral and Si(x) = ∫ x

0
sin t

t dt is the sine integral. The final step in Eq. (C17) is
obtained by applying sin x → 0, cos x → 1, Ci(x) sin x → 0, and Si(x) → 0 for x → 0 with x = R/R0 and R0 = h̄vF /�.

Now we turn to I4. To calculate I4, we make the further approximations for small Q̃:

[( + iQ̃)2 + �2]−
1
2 ∼ [2 + �2 + 2iQ̃]−

1
2 = 1√

2 + �2

(
1 + 2iQ̃

2 + �2

)− 1
2

∼ 1√
2 + �2

(
1 − iQ̃

2 + �2

)
, (C20)

[( − iQ̃)2 + �2]−
1
2 ∼ [2 + �2 − 2iQ̃]−

1
2 = 1√

2 + �2

(
1 − 2iQ̃

2 + �2

)− 1
2

∼ 1√
2 + �2

(
1 + iQ̃

2 + �2

)
. (C21)

Insert the above approximations, we have

I4 = Re
∫ ∞

0
d

�2

2 + �2

[
1 + 2Q̃2

(2 + �2)2

]
e− 2R

h̄vF

= I4,0 + Re
∫ ∞

0
d

�22Q̃2

(2 + �2)3
e− 2R

h̄vF

= I4,0 + Q̃2

4
√

π�
MeijerG

({
−1

2

}
; {};

{
0,

1

2
,

3

2

}
; {}; R2�2

h̄2v2
F

)
, (C22)

I4,0 = Re
∫ ∞

0
d

�2

2 + �2
e− 2R

h̄vF = �Ci

(
2R

R0

)
sin

(
2R

R0

)
+ �

2
cos

(
2R

R0

)[
π − 2Ci

(
2R

R0

)]

≈ π�

2
, (C23)

in which I4,0 is the result without supercurrent and the Meijer G-function is introduced using the syntax of Ref. [49]. Based on
the above results, the difference between with and without supercurrent only comes from the Meijer G-function-related terms
proportional to Q2. We finally arrive at

ERKKY,0 = 2π3J2 πR� + (πR� − h̄vF ) cos(2kF R)

R
, (C24)

ERKKY = ERKKY,0 + π
5
2 J2 Q̃2

�
MeijerG

({
−1

2

}
; {};

{
0,

1

2
,

3

2

}
; {}; R2�2

h̄2v2
F

)
cos2(kF R), (C25)

where the previous omitted constant proportional to J2 is now included.
To ensure Q̃ < �, it is found that the supercurrent Q < 5.25×10−4

a for typical parameter values � = 1 meV, a = 0.1 nm, and
kF = 0.5/a, which is much smaller than Q ∼ 0.1

a for which we observe switching behavior using a numerical approach valid for
arbitrary Q in the main text. Therefore, the analytical expression above for the RKKY interaction including supercurrent has a
regime of validity which falls outside the range of Q values where switching is likely to be observable.
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