
PHYSICAL REVIEW B 109, 214406 (2024)

Intrinsic and extrinsic anomalous transport properties in noncollinear
antiferromagnetic Mn3Sn from first-principles calculations
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Mn3Sn has garnered significant attention due to its kagome lattice, 120◦ noncollinear antiferromagnetic order,
and substantial anomalous Hall effect. In this study, we comprehensively explore intrinsic and extrinsic contri-
butions to anomalous Hall, anomalous Nernst, and anomalous thermal Hall effects, employing first-principles
calculations and group theory analysis. Comparative analysis between our theoretical results and available
experimental data underscores the predominance of the intrinsic mechanism in shaping anomalous transport
properties at low temperatures. Specifically, Weyl fermions are identified as the primary contributors to intrinsic
anomalous Hall conductivity. The significance of extrinsic mechanisms becomes evident at high temperatures,
especially when the longitudinal charge conductivity falls into the dirty regime, where the side jump mechanism
plays a vital role. Extrinsic contributions to anomalous transport properties are primarily influenced by the
electronic states residing at the Fermi surfaces. Furthermore, anomalous transport properties exhibit periodic
variations when subjected to spin rotations within the kagome plane, achievable by applying an external magnetic
field. Our findings advance the understanding of anomalous transport phenomena in Mn3Sn and offer insights
into potential applications of noncollinear antiferromagnetic materials in spintronics and spin caloritronics.
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I. INTRODUCTION

The anomalous Hall effect (AHE), discovered by Hall in
1881, refers to the emergence of a transverse charge current in
response to a longitudinal electric field without the presence of
an external magnetic field [1]. It remains a fundamental aspect
of condensed matter physics, shedding light on the intricate
nature of magnetism [2]. Over time, the understanding of the
physical mechanisms underlying AHE has evolved, dividing
the effect into intrinsic and extrinsic components. The intrin-
sic mechanism, which is not influenced by electron scattering,
was initially proposed by Karplus and Luttinger [3] and is now
well explained by Berry phase theory, relying solely on the
electronic band structure of pristine crystals [4,5]. In contrast,
the extrinsic mechanisms, such as skew scattering [6,7] and
side jump [8], hinge on electron scattering caused by impu-
rities or disorder. Moreover, there are two other remarkable
anomalous transport phenomena: the anomalous Nernst effect
(ANE) [9] and the anomalous thermal Hall effect (ATHE)
[10], which involve the emergence of transverse charge and
heat currents driven by longitudinal temperature gradients,
respectively. Analogous to the anomalous Hall conductivity
(AHC) σi j , the anomalous Nernst conductivity (ANC) αi j
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and anomalous thermal Hall conductivity (ATHC) κi j can be
decomposed into three distinct parts:

σi j = σ int
i j + σ

sj
i j + σ isk

i j , (1)

αi j = αint
i j + α

sj
i j + αisk

i j , (2)

κi j = κ int
i j + κ

sj
i j + κ isk

i j . (3)

Here, the subscripts i, j ∈ x, y, z represent Cartesian coordi-
nates, and the superscripts int, sj, and isk denote the intrinsic,
side jump, and skew scattering contributions, respectively.

The AHE is commonly observed in ferromagnetic conduc-
tors, and it is assumed to be proportional to the magnetization.
In contrast, antiferromagnets (AFMs) have long been con-
sidered to lack the AHE due to their zero net magnetization
[11–18]. However, recent advancements have challenged this
notion. For example, a significant AHC was predicted in the
noncollinear antiferromagnet Mn3Ir through a combination
of symmetry analysis and first-principles calculations [19].
Subsequent experiments confirmed substantial AHC in non-
collinear AFMs Mn3X (X = Sn, Ge) even in the absence of an
external magnetic field [20–22]. Compared to ferromagnets,
AFMs exhibit an array of exotic properties, including insen-
sitivity to magnetic-field perturbations [23,24], ultrafast spin
dynamics [25], and high-frequency uniform spin precession
[26–28]. These attributes position AFMs as an excellent plat-
form for antiferromagnetic spintronics [29,30].
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FIG. 1. The crystal and magnetic structure of noncollinear anti-
ferromagnetic Mn3Sn. The Mn atoms on the upper and lower kagome
planes are marked in red and blue, respectively. Within the kagome
plane, all spins can be uniformly rotated by an angle θ . The magnetic
point groups at different θ are (a) m′m′m at θ = 0◦, (b) 2′/m′ at
θ = 15◦, (c) m′m′m at θ = 30◦, and (d) m′m′m at θ = 90◦. These
spin configurations are characterized by specific symmetry elements:
M1, denoting a mirror plane perpendicular to the kagome plane,
T M2, representing a combined symmetry with the time-reversal
symmetry T and a mirror plane M2 perpendicular to the kagome
plane; and T M3, representing a combined symmetry with T and a
mirror plane M3 parallel to the kagome plane.

Mn3X, as a representative family of noncollinear AFMs,
has garnered significant attention due to its intriguing fea-
tures, including substantial AHE [20–22,31,32], ANE [33,34],
magneto-optical effects [35,36], magnetic Weyl fermions
[37,38], the magnetic spin Hall effect [39], and spin-
orbit torque [40,41]. Moreover, Mn3X possesses a unique
breathing-type kagome lattice structure formed by Mn atoms,
as shown in Fig. 1. This lattice hosts intriguing topological
electronic bands, superconducting phases, and strong elec-
tromagnetic and transport responses [42–44], making it an
ideal platform for exploring novel states of quantum matter.
However, previous theoretical investigations on Mn3X [19,45–
48] have primarily focused on the anomalous transport proper-
ties induced by the intrinsic Berry curvature mechanism, with
limited attention paid to the extrinsic mechanisms related to
the scattering of electrons off impurities or disorder. In reality,
understanding the contribution of extrinsic mechanisms to the
AHE in kagome materials is crucial. For instance, remarkable
AHC values ranging from 104 to 105 S/cm, driven by extrinsic
mechanisms, have been discovered in other kagome materials
such as KV3Sb5 [49], CsV3Sb5 [50], and Nd3Al [51]. These
observations underscore the predominant role played by ex-
trinsic mechanisms in governing the AHE, ANE, and ATHE
in kagome antiferromagnetic materials.

In this work, we conduct a comprehensive investigation of
the intrinsic and extrinsic mechanisms of anomalous trans-
port properties, including the AHE, ANE, and ATHE, in the
noncollinear antiferromagnet Mn3Sn, using state-of-the-art

first-principles calculations. By collectively rotating all spins
within the kagome plane, we discern the tensor shapes
of AHC, ANC, and ATHC through magnetic group the-
ory. For nonzero tensor elements, we compute the intrinsic,
side jump, and skew scattering contributions individually.
Profound anisotropy in the AHE, intricately connected to
the evolving coplanar noncollinear spin configurations, is
unveiled. Through careful comparisons with available exper-
imental data, we establish the consistent prevalence of the
intrinsic mechanism in driving the AHE at low temperatures,
notably when the longitudinal conductivity exceeds 104 S/cm.
Our study highlights the influential role of Weyl fermions near
the Fermi energy in shaping the intrinsic AHC in Mn3Sn. Nev-
ertheless, we also observe a significant increase in the impact
of extrinsic mechanisms, especially the side jump component,
as the longitudinal conductivity falls below 104 S/cm. The
extrinsic AHC predominantly emanates from electronic states
positioned precisely at the Fermi surface sheets. Furthermore,
our calculations of ANC and ATHC, as well as the anomalous
Lorentz ratio, consistently align with experimental observa-
tions at low temperatures. Through these findings, we advance
the understanding of the intricate competition between intrin-
sic and extrinsic mechanisms that govern anomalous transport
phenomena in the realm of noncollinear antiferromagnetic
Mn3Sn.

II. THEORY AND COMPUTATIONAL DETAILS

The AHE, ANE, and ATHE are interconnected through
the generalized Landauer-Büttiker formalism [52–54] as ex-
pressed by the anomalous transport coefficients:

R(n)
i j =

∫ ∞

−∞
(E − μ)n

(
− ∂ f

∂E

)
σi j (E )dE , (4)

where μ is the chemical potential, f = 1/{exp[(E −
μ)/kBT ] + 1} represents the Fermi-Dirac distribution func-
tion, and σi j is the AHC at zero temperature. The temperature-
dependent AHC, ANC, and ATHC can be expressed as
follows:

σ T
i j = R(0)

xy , (5)

αT
i j = −R(1)

i j /eT, (6)

κT
i j = R(2)

i j /e2T . (7)

From Eqs. (4) to (7), it is evident that the zero-temperature
AHC σi j plays a crucial role in determining the other anoma-
lous transport properties.

Following the Kubo formalism within the linear-response
theory [55], the AHC can be partitioned into Fermi surface
(σ I

i j) and Fermi sea (σ II
i j ) components [56]:

σ I
i j = −e2h̄

2π

∫
d3k

2π3

∑
m �=n

Im
[
vi

mn(k)v j
nm(k)

]

= (Emk − Enk )�

[(E f − Emk )2 + �2][(E f − Enk )2 + �2]
(8)
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and

σ II
i j = e2h̄

π

∫
d3k

(2π )3

∑
m �=n

Im
[
vi

mn(k)v j
nm(k)

]

=
{

�

(Emk − Enk )[(E f − Emk )2 + �2]

− 1

(Emk − Enk )2
Im

[
In

E f − Emk + i�
E f − Enk + i�

]}
, (9)

where i, j ∈ x, y, z represent Cartesian coordinates, v is the
velocity operator, E f is the Fermi energy, Enk is the energy
eigenvalue with band index n at momentum k, and � is an
adjustable smearing parameter (0–0.09 eV). This constitutes
the constant smearing (CS) model, which describes the intrin-
sic AHE. In this model, a constant � parameter is assigned,
providing all electronic states with the same finite lifetime. In
the clean limit (i.e., � → 0), the summation of Eqs. (8) and (9)
converges to the well-established Berry curvature expression
[5]:

σ int
i j = e2 h̄

∫
d3k

(2π )3

occ∑
n,m �=n

2Im
[
vi

mn(k)v j
nm(k)

]
(Emk − Enk )2 . (10)

It should be noted that the complex scattering mechanisms are
not explicitly considered within the CS model.

Alternatively, the inclusion of a short-range Gaussian
disorder potential allows for the consideration of scattering-
dependent AHC, encompassing the side jump and skew
scattering mechanisms. Within the Gaussian disorder (GD)
model, the impurity potential is described as

V = U
N∑
i

δ(r − Ri ), (11)

where U signifies the scattering strength, δ is the delta func-
tion, and Ri corresponds to the ith random atomic position
among a total of N impurities. Consequently, the impurity
concentration is denoted as ni = N/V , with V being the vol-
ume of the cell. For convenience, the disorder parameter is
expressed as V = U 2ni (0–80 eV2 a3

0). It is crucial to em-
phasize that this impurity potential is spin independent as it
does not encompass spin degrees of freedom. With the incor-
poration of spin-orbit coupling, the electron’s spin becomes
intricately reliant on the modification of its orbital angular
momentum during scattering. Although the impurity potential
utilized in this context can be interpreted only as nonmagnetic
impurities in magnetic materials, the possibility of a trans-
verse flow of spin-polarized electrons induced by scattering
(i.e., extrinsic anomalous Hall conductivity) is feasible, as
demonstrated in previous works [57,58].

The self-energy 
(E , k), which accounts for the impact of
electron scattering off impurities, can be expressed as follows,
truncated to the lowest order [56]:


(E , k) = V
∫

d3k′

(2π )3
Okk′G0(E , k′)Ok′k. (12)

Here, Okk′ represents the overlap matrix for the eigenstates
at different momenta, and G0(E , k′) = [E − H (k′)]−1 stands
for the bare Green’s function with the unperturbed Hamilto-
nian H (k′).

After accounting for the scattering effects, the AHC can be
formulated using the full Green’s functions GR/A (R: retarded
and A: advanced) [56] as follows:

σ I
i j = e2h̄

4π

∫
d3k

(2π )3
Tr[�i(E f , k)GR(E f , k)v jGA(E f , k)

− (i ↔ j)] (13)

and

σ II
i j = e2h̄

2π

∫
d3k

(2π )3

∫ E f

−∞
Re{Tr[�i(E , k)GR(E , k)

× γ (E , k)GR(E , k)� j (E , k)GR(E , k)

− (i ↔ j)]}dE . (14)

Here, γ (E , k) and �(E , k) are scalar and vector vertex func-
tions, respectively, defined as

γ (E , k) = I + V
∫

d3k′

(2π )3
Okk′GR(E , k′)γ (E , k′)

× GR(E , k′)Ok′k (15)

and

�(E , k) = v(k) + V
∫

d3k′

(2π )3
Okk′GA(E , k′)�(E , k′)

× GR(E , k′)Ok′k, (16)

where I and v are identity and velocity vector operators,
respectively. The Fermi sea term, Eq. (14), is conventionally
regarded as intrinsic, devoid of any scattering-driven behavior.
In contrast, the Fermi surface term, Eq. (13), encompasses
intrinsic, side jump, and skew scattering contributions. Ex-
amining Eq. (13), if the bare Green’s function G0 replaces
the full Green’s function G and the vertex correction is not
considered (i.e., �i → vi), it reflects an intrinsic contribution
and yields intrinsic AHC σ int

i j when combined with the Fermi
sea term. When the full Green’s function G is used and the
vertex correction is not considered (i.e., �i → vi), the side
jump contribution to the AHC σ

sj
i j emerges. Finally, if the

full Green’s function G is used and the vertex correction
is included (i.e., using �i), the skew scattering contribution
to the AHC σ isk

i j is introduced. The decomposition of AHC
can be elucidated through Feynman diagrams, referring to
Czaja et al.’s work [56]. By plugging the decomposed AHC
into Eqs. (4)–(7), the corresponding components of ANC and
ATHC can be obtained accordingly.

In the GD model, the skew scattering term is also known
as “intrinsic” skew scattering σ isk

i j , originally proposed by
Sinitsyn and coworkers. [57,58]. Similar to conventional skew
scattering, intrinsic skew scattering also arises from the asym-
metric part of the collision kernel. However, it converges to a
finite value in the clean limit (V → 0). In contrast, conven-
tional skew scattering is inversely proportional to impurity
concentrations and becomes divergent in the clean limit.
Diagrammatically speaking, intrinsic skew scattering solely
results from Gaussian disorder correlations, while conven-
tional skew scattering involves vertex corrections that include
correlators of three or more disorder vertices [56].

The Gaussian disorder model utilized in this study does not
explicitly define the types (such as crystal defect or phonon)

214406-3



YANG, FENG, ZHOU, MOKROUSOV, AND YAO PHYSICAL REVIEW B 109, 214406 (2024)

and spin structures of impurities. In adopting a “mean-field”
approach, the Gaussian disorder model accommodates var-
ious scattering channels without delving into the detailed
characteristics of the internal nature of scattering sources.
Taking into account temperature effects, the microscopic mo-
tions within the crystal become more intricate, potentially
introducing variations between theoretical calculations and
experimental measurements. A comprehensive disorder po-
tential that encompasses all these details could offer a more
accurate representation of electronic conductivity and its indi-
vidual decomposed components. However, the computational
treatment of these scattering processes at a detailed micro-
scopic level remains a challenging task for first-principles
methods. Thus, the Gaussian disorder model is suitable for
Mn3Sn, identified as a moderately disordered metal, given that
its longitudinal conductivity falls within the dirty and intrinsic
regimes (σii < 106 S/cm) but not the clean regime (σii > 106

S/cm), as illustrated in Fig. 3 below.
The first-principles calculations are carried out using the

full-potential linearized augmented plane-wave (FP-LAPW)
method implemented in the FLEUR code [59]. The exchange-
correlation functional is treated within the generalized gradi-
ent approximation (GGA) using the Perdew-Burke-Ernzerhof
(PBE) parametrization [60]. The spin-orbit coupling is in-
cluded in all calculations. For Mn3Sn, a plane-wave cutoff
energy of 3.80a−1

0 is selected, and the experimental lattice
constants (a = b = 5.66 Å and c = 4.53 Å) are adopted. The
self-consistent calculations are conducted with a k-point mesh
of 16 × 16 × 18. To construct maximally localized Wannier
functions, s, p, and d orbitals of Mn atoms and s and p orbitals
of Sn atoms are projected onto a uniform k mesh of 8 × 8 × 8
using the WANNIER90 package [61]. To calculate the AHC, an
ultradense k mesh of 300 × 300 × 300 is employed. For the
calculations of the ANC and ATHC using Eq. (4), the AHC is
computed with an energy interval of 0.1 meV.

III. RESULTS AND DISCUSSION

Bulk Mn3Sn alloy crystallizes in a layered hexagonal struc-
ture with the crystallographic space group P63/mmc. The
primitive unit cell consists of two atomic layers stacked along
the c axis. Within each layer, the arrangement of three Mn
atoms forms a kagome lattice, while the Sn atom is positioned
at the center of each hexagon, as depicted in Fig. 1. The spin
magnetic moments of the three Mn atoms on the same kagome
plane adopt a 120◦ noncollinear antiferromagnetic order with
a Néel temperature TN of 430 K [20,33]. Our calculated spin
magnetic moment for each Mn atom is 3.26μB, which closely
matches the experimental value of ∼3.0μB [20]. Despite be-
ing classified as a noncollinear AFM, Mn3Sn exhibits a very
small net magnetic moment (∼0.002μB) [33]. This residual
magnetic moment allows for the manipulation of the spin
orientation within the kagome plane, for instance, through an
external magnetic field. Such spin rotations alter the magnetic
group and total energy of the system and consequently impact
the anomalous transport properties.

In this context, examining the variations in the AHC tensor
due to spin rotation is adequate since the ANC and ATHC
have the same symmetry requirements according to Eqs. (4)–
(7). The off-diagonal elements of the AHC can be represented

in vector notation as σ = [σ x, σ y, σ z] = [σyz, σzx, σxy]. No-
tably, the anomalous Hall vector σ can be analogously
regarded as a pseudovector, akin to spin. Intuitively, it is
more appropriate to consider the magnetic space group over
the magnetic point group, as the former encompasses both
magnetic and crystal structures through the integration of
symmetries, represented as Sτ , where S denotes a magnetic
point group operation and τ signifies a translation operation.
For instance, the magnetic point group operations S = T M2

and T M3 cannot be capable of maintaining both crystal and
magnetic structures when θ = 0◦, as illustrated in Fig. 1(a).
Only after considering the half-unit-cell translation τ1/2 can
the crystal and magnetic structures be preserved. Hence, the
comprehensive set of symmetry operations is expressed as
T M2τ1/2 and T M3τ1/2, categorizing them under the mag-
netic space group Cmc′m′ for the depicted magnetic structure
when θ = 0◦. Similarly, for θ = 15◦ depicted in Fig. 1(b),
the full symmetry operations are T M3τ1/2, falling within the
magnetic space group P2′

1/m′; for θ = 30◦ and 90◦, as shown
in Figs. 1(c) and 1(d), the complete symmetry operations
are M1τ1/2 and T M3τ1/2, under the magnetic space group
Cm′cm′. Nonetheless, we limit our discussion in Fig. 1 to S
operations (excluding τ ) and explore how they influence the
anomalous Hall vector since τ does not modify the anomalous
Hall vector [46], i.e., τσ = σ. Therefore, our analysis primar-
ily concentrates on magnetic point groups, an approach we
utilized in our earlier studies to investigate various two- and
three-dimensional magnetic materials [18,62–68].

Table I underscores that the magnetic point group of
Mn3Sn demonstrates a periodicity of 30◦: m′m′m →
2′/m′ → m′m′m, as the spin rotates within the kagome plane
(x-y plane). Here, it is worth discussing only two nonrepetitive
groups, namely m′m′m and 2′/m′, in relation to four distinct
spin configurations (θ = 0◦, 15◦, 30◦, and 90◦), as illustrated
in Fig. 1. First, for the m′m′m group (θ = 0◦), it consists
of a mirror symmetry M1 and two combined symmetries
T M2 and T M3, as depicted in Fig. 1(a). The mirror plane
M1 is perpendicular to the x axis and parallel to the y axis,
which leads to a sign change in σ y and σ z while leaving
σ x unchanged. Similarly, the mirror plane M2 (parallel to
x axis, perpendicular to y axis) changes the signs of σ x

and σ z but preserves σ y. As for the time-reversal symmetry
altering the signs of σ x, σ y, and σ z, the combined T M2

symmetry changes the sign of σ y but preserves σ x and σ z.
Since M3 (perpendicular to the z axis, parallel to the x-y
plane, between two kagome planes) changes the signs of
σ x and σ y, the combined symmetry T M3 preserves σ x and
σ y. Consequently, for the m′m′m group (θ = 0◦), we find
σ = [σ x, 0, 0] = [σyz, 0, 0]. Second, when the spin rotates to
30◦ within the same m′m′m group, the positions of the M1

and M2 mirror planes change accordingly [Fig. 1(c)]. Now,
both σ x and σ y become nonzero under the M1 and T M2

operations. Hence, for the m′m′m group (θ = 30◦), we ob-
tain σ = [σ x, σ y, 0] = [σyz, σzx, 0]. Third, when θ = 90◦, the
anomalous Hall vector resorts to the shape σ = [0, σ y, 0] =
[0, σzx, 0] because the M1 and M2 mirror planes are parallel
and perpendicular to the x axis, respectively, as shown in
Fig. 1(d). Finally, the 2′/m′ group (θ = 15◦) possesses only a
combined symmetry operation T M3, where the mirror plane
M3 is parallel to the x-y plane and perpendicular to the z
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TABLE I. The magnetic space group (MSG), magnetic point group (MPG), and off-diagonal elements of anomalous Hall conductivity for
Mn3Sn upon the variation of the spin rotation angle θ within the kagome plane. The presence and absence of off-diagonal elements in the
anomalous Hall conductivity are denoted by � and × symbols, respectively.

θ

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

MSG Cmc′m′ P2′
1/m′ Cm′cm′ P2′

1/m′ Cmc′m′ P2′
1/m′ Cm′cm′ P2′

1/m′ Cmc′m′ P2′
1/m′ Cm′cm′ P2′

1/m′ Cmc′m′

MPG m′m′m 2′/m′ m′m′m 2′/m′ m′m′m 2′/m′ m′m′m 2′/m′ m′m′m 2′/m′ m′m′m 2′/m′ m′m′m
σxy × × × × × × × × × × × × ×
σyz � � � � � � × � � � � � �
σzx × � � � � � � � � � � � ×

axis [Fig. 1(b)]. For this group, the nonzero elements of the
AHC are σ = [σ x, σ y, 0] = [σyz, σzx, 0]. The above results of
the symmetry analysis can also be obtained with the Neumann
principle [69], wherein all symmetry operations of the corre-
sponding magnetic point group are applied to the conductivity
tensor. Additionally, the cluster multipole theory [46] serves
as another valuable analysis tool, revealing the shape of the
conductivity tensor by assessing the cluster multipole mo-
ment, which acts as a macroscopic magnetic order.

In the magnetic group analysis detailed above, we de-
termined all possible nonzero elements of the AHC vector
corresponding to different spin rotation angles, as summarized
in Table I. Correspondingly, Fig. 2 portrays the total AHC σi j

as a function of θ , computed using two representative disorder
parameters. At θ = 0◦ or 180◦, only the yz component of AHC
exhibits a nonzero value, whereas at θ = 90◦, only the zx
component is nonzero. For other θ values, both the yz and zx
components contribute to the AHC, harmonizing seamlessly
with our magnetic group analysis. The AHC is depicted over
the range 0 � θ � π , while the results for π � θ � 2π can be
acquired by following the relation σ (θ ) = −σ (θ + π ). This
observation arises from the fact that the spin state at θ + π

constitutes the time-reversed counterpart of the state at θ , and
the AHC maintains an odd symmetry under time-reversal op-
erations [18,66]. Another intriguing observation from Fig. 2 is
that the AHC is enhanced across all spin rotation angles when
the disorder parameter is decreased. This phenomenon aligns
precisely with the disorder-induced amplification of anoma-

FIG. 2. The total AHC (σyz and σzx) as a function of θ calcu-
lated using a small-disorder (SD) parameter, V = 2 eV2a3

0, and a
large-disorder (LD) parameter, V = 42 eV2a3

0, which correspond to
the longitudinal conductivities σxx = 1.7 × 105 and 6.4 × 103 S/cm,
respectively.

lous transport phenomena previously observed in topological
semimetals MF3 (M = Mn, Pd) [70].

Based on the dependence of the total AHC σi j on the lon-
gitudinal conductivity σii, three distinct scaling relations have
been proposed for various magnetic materials [2,49,71,72]:
σi j ∝ σ 2

ii or σ 1
ii in the clean regime (σii > 106 S/cm), σi j ∝ σ 0

ii
in the intrinsic regime (104 < σii < 106 S/cm), and σi j ∝ σ 1.6

ii
in the dirty regime (σii < 104 S/cm). While earlier theoret-
ical investigations primarily focused on the intrinsic AHE
in Mn3Sn [19,45–48], the influence of scattering-dependent
extrinsic mechanisms has yet to be explored comprehen-
sively. Figure 3(a) showcases the total AHC σyz and its
decomposition (σ int

yz , σ
sj
yz, and σ isk

yz ) as a function of longi-
tudinal conductivity σxx for Mn3Sn in its magnetic ground
state (θ = 0◦). Notably, Mn3Sn predominantly lies within
the dirty and intrinsic regimes because σxx < 106 S/cm. As
σxx increases, the total AHC σyz rises and gradually ap-
proaches a constant plateau of −230 S/cm for σxx > 104

104 105
-100

0

100

200

104 105

102

103

IntrinsicDirty

-
yz

(S
/c

m
)

xx (S/cm)

tot sj
isk int

(a)

tot
Sugii et al. (Mn3.09Sn0.91)
Sugii et al. (Mn3.06Sn0.94)

Dirty Intrinsic

ij ∼
0
ii

ij
∼

1.6
ii

-
yz

(S
/c

m
)

xx (S/cm)

(b)

FIG. 3. (a) The total AHC σyz and its partitioning into the in-
trinsic (σ int

yz ), side jump (σ sj
yz), and skew scattering (σ isk

yz ) components
as a function of the longitudinal conductivity σxx for the magnetic
ground state (θ = 0◦) of Mn3Sn. (b) The scaling relation between
σyz and σxx . Experimental data from Sugii et al. [73] are provided for
comparison.
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S/cm. In the intrinsic regime, the intrinsic AHC σ int
yz (≈

−146 S/cm) plays a dominant role, aligning well with previ-
ous theoretical calculations [45–48]. Meanwhile, the extrinsic
mechanisms (σ sj

yz + σ isk
yz ) take on a secondary role, contribut-

ing 34% of the total AHC. Given that the intrinsic mechanism
is independent of scattering, it should be much less af-
fected by changes in longitudinal conductivity compared to
extrinsic mechanisms.

Our calculations indeed demonstrate that the intrinsic con-
tribution remains fairly stable within the dirty regime (σxx <

104 S/cm). Conversely, skew scattering rapidly diminishes
toward zero, while the side jump experiences a significant
increase, primarily governing the declining trend of the total
AHC. A recent experimental study reported a reduction in the
total AHC as σxx decreases below 104 S/cm [73]. However,
that work [73] mentioned that the contribution of the side
jump mechanism can be ruled out due to the weak spin-orbit
coupling strength of Mn 3d electrons, suggesting that the re-
duction in total AHC is driven by the intrinsic mechanism. In
direct comparison, Fig. 3(b) demonstrates the excellent agree-
ment between our calculations and the experimental results
[73]. In the dirty regime (σxx < 104 S/cm), a scaling relation
of σyz ∼ σ 1.6

xx is evident, highlighting the pronounced signif-
icance of the extrinsic side jump mechanism. Consequently,
our analysis tends to the conclusion that whereas the intrinsic
mechanism dominates in the intrinsic regime, the large reduc-
tion of AHC in the dirty regime is primarily attributed to the
contribution of the side jump mechanism.

The intrinsic mechanism of AHC stems from the pres-
ence of nonvanishing Berry curvature in momentum space
and can be largely enhanced by topological features in the
band structure like Weyl nodal points. Nevertheless, the link
between extrinsic mechanisms of AHC and the underlying
band structure remains less clear. Recent theoretical and
experimental investigations have illuminated the existence
of magnetic Weyl fermions near the Fermi energy E f in
Mn3Sn [33,37,48,74]. As these Weyl points can be interpreted
as effective magnetic monopoles in momentum space, the
increased Berry curvature in proximity to these points con-
tributes to a substantially amplified AHC. The band structure
calculated with spin-orbit coupling for the ground state spin
configuration (θ = 0◦) of Mn3Sn is presented in Fig. 4(a).
The time-reversal symmetry breaking triggers the emergence
of multiple pairs of Weyl points at varying energy levels. For
our analysis, we focus on those near E f because they are
pertinent to the anomalous transport properties. Owing to the
M1 and T M2 symmetries within the m′m′m group, all K
points in the first Brillouin zone are equivalent, while two
inequivalent M points are labeled M and M ′. In the vicinity
of the M point, an intersection between a parabolic band and
an antiparaboliclike band engenders Weyl points (W +

1 ,W −
2 ) at

E f + 36 meV, accompanied by their counterparts (W −
1 ,W +

2 )
at E f + 72 meV. However, no Weyl points are present near
the M ′ point. The spatial distribution of Weyl points along the
K-M-K path on the kz = 0 plane is showcased in Fig. 4(b).
Upon shifting the Fermi energy upward to 36 and 72 meV,
the intrinsic AHC around the Weyl points exhibits a sharp
increase, as depicted in Fig. 4(c). This observation affirms the
inherent enhancement of intrinsic AHC through topological

Weyl nodal structures. Furthermore, Fig. 4(d) illustrates the
extrinsic AHC at the same Fermi energies. In contrast to
the intrinsic AHC, the extrinsic AHC is primarily distributed
along the Fermi surface sheets, indicating a more substantial
contribution from the Fermi surfaces compared to the Fermi
sea.

Next, we turn to the variation in the anomalous transport
properties of Mn3Sn with temperature. To better account for
temperature effects, we have opted for a large disorder pa-
rameter (V = 80 eV2 a3

0) for the calculation of AHC, ANC,
and ATHC. Figure 5(a) illustrates the calculated AHC as a
function of temperature using Eq. (5), compared with avail-
able experimental data. Notably, three previous experimental
studies [20,33,73] showed noticeable discrepancies in the
magnitude of the AHC. This can be attributed to variations
in the chemical composition of the samples, as the Mn:Sn
atomic ratio deviates from the ideal 3:1, leading to differ-
ences in Mn content across different samples. All of these
experimental studies showed a decreasing trend in AHC as
the temperature increases, whereas theoretical calculations of
AHC exhibit insensitive variation across the entire temper-
ature range. As the temperature increases, phonon thermal
dynamics becomes more pronounced, which undoubtedly
impacts the anomalous transport properties of magnetic ma-
terials. The Gaussian disorder model [56] employed in our
work broadly encompasses all mean-field scattering channels.
However, the intricate details of electron scattering arising
from phonons are not explicitly accounted for. Consequently,
as temperature rises, our calculated anomalous transport
properties are expected to increase due to their positive
temperature-dependent nature.

The total ANC αyz and its components (αint
yz , α

sj
yz, and αisk

yz )
are computed using Eq. (6) and presented as a function of
temperature in Fig. 5(b). It can be observed that the total ANC
gradually increases with rising temperature up to 300 K. The
extrinsic side jump mechanism contributes significantly to the
ANE, even slightly surpassing the contribution of the intrinsic
mechanism. On the other hand, the extrinsic skew scattering
contribution can be omitted. The upward trend of ANC con-
trasts with experimental findings, which have demonstrated a
decrease in ANC as the temperature goes beyond 150 K [33]
or 200 K [34]. Notably, it is worth mentioning that a phase
transition from a noncollinear antiferromagnetic structure to a
helical spin structure was reported around 200 K [34]. In our
calculations, we have exclusively considered a perfect mag-
netic crystal featuring a 120◦ noncollinear antiferromagnetic
structure, thereby excluding the influence of any additional
phase transitions.

Subsequently, we delve into the ATHE of Mn3Sn, akin to
the thermal counterpart of AHE, as illustrated in Fig. 5(c).
At lower temperatures (below 150 K), the calculated ATHC
is in good agreement with experimental results [73]. As
the temperature increases, the intrinsic ATHC κ int

yz exhibits
a monotonic increase, leading to an overall rising trend in
the total ATHC κyz. However, experimental observations have
indicated a relatively minor temperature dependence in ATHC
[73], fitting the behaviors of our calculated extrinsic ATHC
(κ isk

yz + κ
sj
yz). The anomalous thermal and electrical transports

can be interconnected through the anomalous Lorenz ratio,

214406-6



INTRINSIC AND EXTRINSIC ANOMALOUS TRANSPORT … PHYSICAL REVIEW B 109, 214406 (2024)

-0.2

-0.1

0.0

0.1

0.2

ΓΓΓ

Ef + 72 meV

max
(+)

(d)

(c)

E
(e

V
)

M KK K M' K
= 0°

(a)

Ef Ef + 36 meV

Extrinsic

min
(-)

W+
1 W-

2

W-
1 W+

2

Intrinsic

Ef

K(b)

+ 72 meV
+ 36 meV

W-
1W+

2 W-
2 W+

1

K

M'

M K

Γ

kz = 0

FIG. 4. (a) The band structure of Mn3Sn in its magnetic ground state (θ = 0◦). The energy positions of Weyl points (W ±
1 and W ±

2 ) are
indicated by red dashed lines. (b) The distribution of Weyl points on the kz = 0 plane in momentum space. Red and blue circles denote Weyl
points with different chiralities. Purple lines represent M1 and T M2 symmetries. (c) and (d) Momentum-resolved intrinsic and extrinsic
AHC σyz (color maps) as well as Fermi surfaces (black lines) on the kz = 0 plane for three distinct Fermi energies (Ef in the left panels,
Ef + 36 meV in the middle panels, Ef + 72 meV in the right panels). The disorder parameter is chosen to be V = 2 eV2 a3

0, where the
longitudinal conductivity σxx = 1.7 × 105 S/cm.

defined as

Li j = κi j/(σi jT ), (17)

which has been employed to judge the intrinsic and scatter-
ing contributions to the AHE [15–17]. Plugging the intrinsic,
side jump, and skew scattering parts of the AHC and ATHC
into Eq. (17), Li j can be separately analyzed as Lint/sj/isk

i j =
κ

int/sj/isk
i j /(σ int/sj/isk

i j T ), where Lint
i j represents the intrinsic con-

tribution and Lsj
i j and Lisk

i j are the extrinsic contributions from
side jump and skew scattering, respectively. As the tem-
perature approaches zero, Li j converges to the free-electron
Lorenz number, commonly referred to as the Wiedemann-
Franz law:

Li j (T → 0) ≈ L0 = π2k2
B

3e2
= 2.44 × 10−8 V2/K2. (18)

Examining Fig. 5(d), we observe that across the entire tem-
perature range, the calculated Lint

yz closely aligns with L0.
This indicates that the transverse charge and heat currents in-
duced by intrinsic mechanism flow in a nearly dissipationless
way. However, Lsj

yz, Lisk
yz , and Ltot

yz are close to L0 only when
the temperature is less than 50 K. As the temperature rises,
the transverse heat current carried by conducting electrons
is expected to experience progressively increased dissipa-
tion due to inelastic scattering with phonons. For instance,
above 50 K, experimentally measured Lyz for Mn3.06Sn0.94

[73] deviates noticeably from L0, signaling a crossover in
the dominant role from an intrinsic mechanism to extrinsic
mechanisms. This is consistent with our calculations of ex-
trinsic contributions to the anomalous Lorenz ratio as the
temperature increases. However, for the Mn3.09Sn0.91 sam-
ple [73] and another experimental study of Mn3Sn [34], the
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FIG. 5. (a) The temperature-dependent AHC in comparison to experimental data from Nakatsuji et al. [20], and Ikhlas et al. [33], and
Sugii et al. [73]. (b) The temperature-dependent ANC in comparison to experimental data from Ikhlas et al. [33] and Li et al. [34]. (c) The
temperature-dependent ATHC in comparison to experimental data from Sugii et al. [73]. (d) The anomalous Lorenz ratio in comparison
to experimental data from Li et al. [34] and Sugii et al. [73]. The horizontal dashed line in (d) marks the free-electron Lorenz number
L0 = 2.44 × 10−8 V2/K2. The disorder parameter is selected to be V = 80 eV2 a3

0, where the longitudinal conductivity σxx = 0.44 × 104

S/cm, falling into the dirty regime.

deviation of Lyz from L0 is not substantial, indicating the
potential persistence of the intrinsic mechanism’s predomi-
nance over the extrinsic ones. Thus, in this work, we not
only demonstrate that the dissipationless intrinsic transverse
charge and heat currents adhere to the Wiedemann-Franz law
across the entire temperature range (0–300 K) in the non-
collinear AFM Mn3Sn but also show that extrinsic transverse
charge and heat currents induced by scattering or disorder
will gradually deviate from the Wiedemann-Franz law as the
temperature increases.

IV. SUMMARY

In summary, we have systematically studied the intrin-
sic and extrinsic anomalous Hall, anomalous Nernst, and
anomalous thermal Hall effects in noncollinear antiferromag-
netic Mn3Sn, utilizing advanced first-principle calculations
and magnetic group analysis. In our study, the intrinsic
contribution is associated with the Berry phase effect of
relativistic bands within a pristine crystal, free from impu-
rities. All additional contributions arising from scatterings
on impurities or disorder are classified as extrinsic. The
spin-independent impurity potential utilized in our study
can be understood as representing nonmagnetic impurities
in magnetic materials. With the incorporation of spin-orbit
coupling, the electron’s spin becomes intricately depen-
dent on the modification of its orbital angular momentum
during scattering. Consequently, the transverse flow of spin-
polarized electrons induced by scattering on nonmagnetic

impurities is indeed feasible. The definitions of intrinsic and
extrinsic contributions to the anomalous transport properties
align with established conventions in the majority of previous
research.

We first identified the nonvanishing tensor elements
of anomalous Hall conductivity for diverse coplanar non-
collinear spin configurations, according to symmetry re-
quirements under relevant magnetic point groups. Upon the
collective rotation of all spins within the kagome plane, the
anomalous Hall conductivity showcases periodic patterns,
giving rise to a pronounced magnetic anisotropy. Previous
theoretical works primarily focused on studying the intrin-
sic anomalous transport properties of Mn3Sn through Berry
curvature calculations, with relatively less attention given
to extrinsic mechanisms. Through computations of the total
anomalous Hall conductivity and its constituent components,
we have unveiled that the intrinsic mechanism uniformly
dominates within the intrinsic regime, especially when the
longitudinal conductivity σxx surpasses 104 S/cm. The intrin-
sic mechanism can be traced to substantial Berry curvatures
encircling Weyl points proximate to the Fermi energy. In the
realm of the dirty regime (σxx < 104 S/cm), extrinsic mech-
anisms, notably the side jump, emerge as potent contributors,
which brings our theoretical results closer to experimental
measurements. This extrinsic anomalous Hall conductivity
predominantly stems from electronic states positioned pre-
cisely at the Fermi surfaces. Moreover, our findings with
regard to the anomalous thermal Hall effect and anomalous
Lorenz ratio compare well with experimental outcomes at
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low temperatures, consistently indicating the dominant role
of the intrinsic mechanism. As the temperature rises, a cer-
tain degree of deviation between theoretical and experimental
results becomes apparent. These deviations may be attributed
to enhanced phonon scattering and increased complexity in
the internal structure of the crystal, factors that are not
fully accounted for in the Gaussian disorder model. Through
these comprehensive insights, our study has substantially en-
riched the understanding of anomalous transport phenomena
in noncollinear antiferromagnetic Mn3Sn. Furthermore, our
work offers valuable perspectives for potential applications
in the realms of spintronics and spin caloritronics, harness-
ing the distinctive attributes of noncollinear antiferromagnetic
materials.
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