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Linear magnetoelectricity in the Zintl phase pnictides (Ba, Ca, Sr)Mn2(P, As, Sb)2

from first-principles calculations
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We report a comprehensive set of density functional theory calculations on the family of layered antifer-
romagnetic manganese pnictides (Ba, Ca, Sr)Mn2(P, As, Sb)2. We characterize all components to the linear
magnetoelectric (ME) tensor α, which are parsed into their contributions from spin and orbital moments for both
lattice-mediated and their clamped-ion electronic analogs. Our main results show that the orbital magnetization
components cannot be neglected in these systems. The ME response is dominated by electronic effects with
total α values exceeding those of the prototypical Cr2O3 (i.e., α � 6.79 ps/m in BaMn2As2). We also identify a
strong correlation with the computed ME susceptibility on pnictogen substitution in the trigonal subfamily albeit
with weaker amplitudes (α ≈ 0.2–1.7 ps/m). Additionally, we provide the dependence of these predictions on
the Hubbard +U correction, at the level of the local density approximation, which shows large variations on
the calculated ME coefficients in the tetragonal compounds highlighting the role of strong correlation in these
compounds.
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I. INTRODUCTION

Structures where both spatial inversion (I) and time-
reversal (T ) symmetry are broken are known as magnetoelec-
tric (ME) materials. In the atomic picture, the action of an
electric field E and/or magnetic field H reorients the nuclear
coordinates to a new equilibrium. The fundamental spin-orbit
interaction mediates a change of the electron cloud charge
center, orientations of the spin magnetization, and correspond-
ing orbital currents relative to that of the ground state in the
crystal. Therefore, the ME effect has contributions from the
lattice motion but also a purely electronic signature which
includes components from both spin and orbital momentum.
Hence under E , changes are expected in the net magnetization
M and the application of an external H drives shifts to the
electric polarization P. Due to this complicated microscopic
origin of the effect, it is difficult to make a priori estima-
tions of the strength of the ME response based on atomic
composition and symmetry alone. To this end, first-principles
techniques are indispensable in exploring the different phys-
ical pathways involved in inducing changes in M and P by
external means.

To first order, the ME effect can be expressed in the {E,H}
frame in the following form:

αi j = μ0

(
∂Mi

∂E j

)∣∣∣∣
H

=
(

∂Pj

∂Hi

)∣∣∣∣
E
. (1)

The above given in SI units represents the components of a
(3×3) pseudotensor α with Cartesian indices i, j. A special
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case is where the magnetic order breaks the inversion sym-
metry. Thus inversion is coupled to time reversal, providing
I · T as a symmetry. This parity-odd property [1] gives rise to
a linear term in the ME susceptibility despite formal inversion
symmetry of the lattice.

Dzyaloshinskii first established interest by predicting the
linear ME effect in the antiferromagnetic (AFM) insulator
Cr2O3 (CRO) [2,3]. A few years later, a series of experiments
[4–7] observed the ME response and since then CRO has
become a canonical material to study this phenomena. A
plethora of interesting studies exploiting magnetoelectricity
in this compound have been carried out, from large optical
excitations [8,9], E control of AFM spin currents [10], domain
patterns [11], and surface skyrmions [12], to strong spin-
phonon coupling [13], and possible induction of magnetic
monopoles near a free surface [14].

Using density-functional theory (DFT), the decomposi-
tion of lattice and electronic contributions to α in CRO
has been investigated [15–22]. However, despite more than
a decade of effort, precision calculations of CRO’s α can
vary significantly depending on the choice of method, ex-
change correlation functional, lattice constants, DFT code,
and convergence tolerances [22]. Still, these investigations
have uncovered valuable information that the lattice-mediated
(LM) and electronic or clamped-ion (CI) spin components
dominate the transverse ME response. From these studies, the
involvement of the Cr+3 orbital moment, which is expected
to be strongly quenched in bulk, has been revealed to be
negligible (significant) in the tranverse (longitudinal) direc-
tions with respect to the AFM ordering direction. Although
CRO continues to be a well-studied benchmark [22], limited
information has been gathered from atomistic methods about
other MEs with a few exceptions [18,23–31].
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Large ME effects are advantageous from a technological
perspective [32,33] and the search for new MEs is on-going.
Parenthetically, this includes materials that display nonlinear
or multiferroic ME coupling, which are not the subject of this
work, see Refs. [34,35] for reviews. We should note that most
experimentally observed amplitudes of αi j in different com-
pounds throughout the past two decades are of comparable
order to those of CRO [36–43]. However this isn’t always the
case. In the ferrimagnetic phase of Fe2Mo3O8, one component
of α was measured [30] to reach 480 ps/m nearly two orders
of magnitude larger although this is only observed above a
critical field of 32 T where the material exhibits a phase
transition. Combining models [44] and DFT calculations [30]
have revealed strong exchange-striction, considerable elec-
tronic contributions to P, and a large orbital magnetization
possibly underpinning the colossal response. Still, it remains
to be seen if other materials can exhibit similar giant linear
ME susceptibilities—preferably without the need of inducing
a phase transition by means of large external fields.

The new paradigm of materials-by-design provides a path
forward in this regard. However, in order to engineer strongly
ME materials, one needs to understand the complex admixing
of various physical factors including the spin-orbit interaction,
magnetic network geometry and their ligand environments,
exchange couplings and anisotropy, orbital hybridization, and
the role of electron-electron correlations among others. To
what extent do they influence α? We aim to explore aspects
of this question in this paper by looking at a specific class of
compounds.

Central to simplifying this decompositional analysis, are
materials families with closely related structure and electron
behavior. One such family, the AFM lithium orthophosphates,
with chemical composition LiXPO4, X = (Co, Mn, Ni, Fe),
serve as useful datasets to ascertain how changing the transi-
tion metal ion can drastically alter the magnetic anisotropy
[42,43], break the collinear or commensurate spin order
[36,45], lead to ferrotoroidicity [46,47] or give rise to a pro-
nounced orbital moment response [18,48] thus changing α.

The Zintl phase layered AFM pnictides with formula
AMn2Pn2 with A = (Ba, Ca, Sr) and pnictogens Pn =
(P, As, Sb) comprises another set of such materials that may
serve to decouple possible trends in ME properties. They
have been identified as possible candidates for hosting linear
ME coupling [1,49] and a wealth of properties have been
unravelled experimentally [49–58]. The substitution of the
cation from Ba to Ca (or Sr) drives a change in unit cell
symmetry while the pnictogens alter the ligand environments
of the magnetic site; both of which should influence the ME
response with relatively small changes to the lattice constants.
Thus, they are good candidates for a theoretical study of α.

In this work, we present a comprehensive set of DFT
calculations on these layered AFM pnictides. After a short
review of the published information of their low temperature
ground state in Sec. II, we detail our DFT approach in Sec. III.
We provide basic computed properties of the ground states in
Sec. IV A. In Secs. IV B and IV C, we parse out the different
contributions to α due to spin and orbital magnetization for
both the LM and CI analogs and propose some correlations.
We find that, in general, the linear ME effect in this family is
driven largely by electronic contributions. This is contrasting

to the claims that the LM terms are thought to be the primary
influence in the ME susceptibility. In BaMn2As2, we calculate
a substantial response with αxx = −αyy � 6.79 ps/m, exceed-
ing the amplitude from prototypical CRO by a factor of three.
In all of our studied cases, we show that the contributions from
the orbital moments cannot be neglected when calculating
the purely electronic (clamped-ion) response. This aspect is
often overlooked in various studies on this phenomena. In
the trigonal materials, we find that the pnictogen substitution
(from lighter to heavier elements) increases the components
of α alluding to the spin-orbit interaction being much more
influential in this subfamily.

Additionally, we employ our described methodology on the
well-studied CRO in the Appendix of this paper. Our estimates
of α show good agreement with previously published values
validating/benchmarking our approach. All of our results are
provided as a function of the Hubbard +U correction in the
local density approximation (LDA) to DFT. Effectively, this
allows us to perform a technical probe on whether the different
components of α depend sensitively on the degree of electron
localization or if the size of the gap at this level of theory is
important for the amplitudes of the ME response. We believe
our results are useful for future experimental studies of the
ME effect in this materials family and to motivate full char-
acterizations of α in forthcoming theoretical calculations of
candidate ME compounds.

II. MAGNETIC STATES AND SYMMETRY

We begin by discussing the ground state structure, sym-
metry, and magnetic states of the AFM pnictide compounds
(Ba, Ca, Sr)Mn2Pn2 where Pn = (P, As, Sb). Depending on
the cation Ba or (Ca, Sr), the compounds crystallize at low
temperature in either I4/mmm or P3̄m1 symmetry respec-
tively [59]. The electropositive ions (Ba, Ca, Sr) each donate
2 electrons to the electronegative [Mn2(P, As, Sb)2]−2 anionic
heteroatomic cluster. This ionic bonding is a characteristic
signature of the Zintl phase [50,60] and results in a 3d5

(Mn+2) state [61].
Local moment AFM behavior has been observed in all of

the structures with the spin at each Mn+2 site in a range of 3-4
μB/Mn which is much lower than the expected 5 μB/Mn for
the high spin (S = 5/2) state [56,58]. Resistivity experiments
have demonstrated that all of the compounds exhibit a narrow
semiconducting gap where activation energies take a range of
0.02–0.4 eV [56,58]. The onset of AFM order at Néel tem-
peratures (TN) of the I4/mmm (tetragonal) compounds have
been shown to depend linearly on the Pn atom substitution
and the corresponding lattice constants [58] whereas a similar
correlation for the trigonal (P3̄m1) family is unclear. We refer
to Table I for a list of the structural parameters used in this
work and reported TN.

The Mn-Mn network (see Fig. 1) differ in the two space
groups. For the Ba-based tetragonal compounds, the magnetic
sublattice is square planar with layers separated by the cations.
The MnPn4 tetrahedra form at edge sharing positions with a
nearest-neighbor distance of approximately 3 Å. In the trig-
onal structures, the Mn-centered tetrahedra become inverted
leading to a double corrugated honeycomb layer network.
However, both the tetragonal and trigonal subfamilies are
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TABLE I. Measured structural parameters used in this work.
Lattice constants are given in Å. Wyckoff positions of cations (Ba,
Ca, Sr) are situated at (0,0,0) whereas the {Mn, Pn} atoms are located
at {(0, 1/2, z0), (0, 0, z0)} and {(1/3, 2/3, z0), (1/3, 2/3, z0)} for the
tetragonal and trigonal settings respectively. The Néel temperatures
TN are given in K. We also provide the symmetrized α̂ tensor with
independent and dependent (negative) coefficients marked by (•)
and (◦), respectively. Properties are compiled from a number of
references [50,54,56–58].

Wyckoff (z0)

I4/mmm a = b c α̂ Mn Pn TN

BaMn2P2 4.037 13.052 1/4 0.3548 795

BaMn2As2 4.154 13.449 1/4 0.3613 618

BaMn2Sb2 4.397 14.330 1/4 0.3659 450
P3̄m1 Mn Pn
CaMn2P2 4.096 6.848 0.6246 0.2612 70
CaMn2As2 4.230 7.033 0.6237 0.2557 62

CaMn2Sb2 4.525 7.443 0.6221 0.2490 85

SrMn2P2 4.156 7.096 0.6005 0.2496 53
SrMn2As2 4.296 7.30 0.6231 0.2667 120
SrMn2Sb2 4.580 7.73 0.6194 0.2625 110

nearly isostructural themselves with pnictogen substitutions
changing lattice constants by only a small amount (see Ta-
ble I).

For the tetragonal compounds, the minimum energy con-
figuration is a layered AFM G-type checkerboard pattern with
spins arranged normal to the square magnetic plane along
the tetragonal (c) axis of the primitive cell, see Fig. 1(a).
Therefore the magnetic order has both inter- and intralayer
AFM couplings. By symmetry of the magnetic space group
(I4′/m′m′m, No. 139.536), the linear ME tensor must take the

form [1]

α(I4′/m′m′m) =

⎛
⎜⎝

αxx 0 0

0 −αxx 0

0 0 0

⎞
⎟⎠ (2)

with only one independent coefficient. Here, it is evident that
the ME property is two-dimensional (2D)—admitting only a
transverse response in the basal plane of the crystal.

In the closely related trigonal (P3̄m1) materials, the spins
Néel order along the a axis. The spin order on the triangu-
lar lattice is intralayer aligned (ferromagnetic coupling) with
nearest-neighbor layers anti-aligned giving AFM coupling.
See Figs. 1(b) and 1(c) for a visual representation. Apply-
ing the group operations of the magnetic space group [63]
(C2′/m, No. 12.60) yields the following four independent
(nonzero/allowed) coefficients of the linear ME tensor,

α(C2′/m) =

⎛
⎜⎝

0 αyx αzx

αxy 0 0

αxz 0 0

⎞
⎟⎠. (3)

It should be noted that the relative signs of the antisym-
metric off-diagonal α are not defined within the symmetry
consideration and instead depend on the detailed microscopic
information which we will uncover later in this paper. From
looking at Eq. (3) with respect to the spin axis direction
a||x, we have two coefficients (αyx, αzx) that correspond to
a transverse response whereas the other two components (αxy,
αxz) are longitudinal. We list the forms of Eqs. (2) and (3) in
Table I for reference.

With Mn+2 formally being 3d5 occupancy, Hund’s rule
tells us that we should expect negligible or quenched orbital
magnetization. However, due to the ligand MnPn4 envi-
ronments, hybridization between the Mn d-band with the
pnictogen p valence occurs in BaMn2(As, Sb)2 as verified
in a angle-resolved photoemission spectroscopy (ARPES)

FIG. 1. Collinear antiferromagnetic spin states in the tetragonal I4/mmm (a) and trigonal P3̄m1 [(b) and (c)] structures forming square
planar and double corrugated honeycomb Mn-Mn networks respectively. The cations (Ba, Ca, Sr) are in green with the pnictogens (P, As, Sb)
in cyan. The primitive cells for the tetragonal and trigonal systems are marked by a dashed black line each containing two and one formula
units, respectively. Additional visualization of the honeycomb lattice is provided in (c). Figure made with VESTA [62].
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experiment [55] and from DFT [64]. It has been proposed
that p-d hybridization can lead to ME effects [49,65]. To what
extent that this plays a role in the ME response for the layered
pnictides is one aspect of this current investigation.

This materials family also includes the pnictide Bi with
interesting magnetoresistance properties [66]. However, since
Bi is a much heavier atom with a stronger spin-orbit interac-
tion than the other pnictogens, we had difficulty producing a
gapped state with our DFT prescription. Therefore we have
decided to neglect the Bi-based compounds in our analysis.
We should also note that some experimental evidence suggests
that some of the pnictides, such as CaMn2P2 [67], CaMn2As2

[68], or CaMn2Sb2 [51] may have broken collinear or incom-
mensurate order. However, we make the assumption that all
materials investigated in this work have collinear AFM ground
states as that this should provide a reasonable approximation
to the computed values of α. In the next sections, we detail
our DFT methodology to fully characterize the linear ME
response.

III. METHODS

A. Density functional theory specifics

We implement our density functional theory (DFT) calcu-
lations within the local density approximation (LDA) using
the open-source electronic structure package GPAW [69] and
the Atomic Simulation Environment (ASE) [70]. All calcu-
lations (at T = 0 K) utilize a plane-wave basis set with an
energy cutoff of 800 eV and a �-centered k-space grid of
10×10×10 points. We consider one and two formula unit
cells for the P3̄m1 and I4/mmm structures, respectively. The
single-particle wave functions are approximated within the
projector-augmented wave (PAW) method [71] solving ex-
plicitly for the 10 valence e− of cations Ba (5s25p66s2), Sr
(4s24p65s2), and Ca (3s23p64s2), and the 5 valence e− for P
(3s23p3) and As (4s24p3). Ten additional semi-core e− are
included in the case of Sb (4d105s25p3). The Mn atom is
treated with 15 valence electrons (3s23p63d54s2). Cutoff radii
(rcut ) of the PAW spheres for the different species are set
according to GPAW defaults [72]. We used a Fermi-Dirac
distribution with a smearing of 1 meV for the electronic occu-
pation numbers. To better describe the electronic structure, the
rotationally invariant Hubbard +U correction [73] is applied
to the 3d states of the Mn atom and several of the results below
will be shown as a function of U ranging between 0 and 3 eV.

B. Lattice-mediated spin

We first perform a spin-polarized relaxation of the internal
coordinates with lattice constants fixed to those measured
from experiment (see Table I). This allows us to obtain a
force-free reference configuration of the AFM ground state
converged to a maximum force tolerance on the atoms of
0.001 eV/Å. Expanding the energy of the crystal in the
harmonic approximation, one can show that the atomic dis-
placements corresponding to those from an external E that is
static and homogeneous are [15,20,74]

uβ (E ) = �−1
0

∑
jκ

(Kβκ )−1Ze
jκE j, (4)

where K is the force constant matrix, �0 the cell volume,
and Ze

jκ = �0 ∂Pj/∂uκ are the Born effective charges (BECs).
Greek symbols run over atomic coordinates (β = 1, . . . , 3Na)
and Latin indices define Cartesian reference frame j = x, y, z.
With linear response methods [75], we compute the BECs
and also the �-point phonon spectra to obtain the force con-
stant matrix. The pseudoinverse of K is computed by the
Moore-Penrose technique [76] which effectively traces out
the acoustic phonon eigenmodes that make it singular [74].
We should mention that we find negligible influence of com-
puting converged BECs within collinear spin-polarized or
noncollinear (with SOC) approaches using an atomic position
shift of 0.01 Å. Therefore, we present results using the spin-
polarized mode.

Structures were displaced under E in all three Cartesian
unit directions x, y, z (where i.e., x||a, y||b, and z||c in the
special case of the I4/mmm symmetry). The amplitude of the
field |E| was considered to be less than 0.01 V/nm to ensure
predictions are in the linear limit. Spin orbit coupling (SOC)
was included and the self-consistent field (SCF) loop was
terminated after a maximum absolute change in the integrated
electronic density is less than 10−9 electrons/valence e−. The
quantity MS, denoted as the spin magnetization, is computed
from an integral of the spin density over the unit cell and
divided by its volume. The resulting linear change in the total
spin magnetization of the cell with respect to E was fitted
giving α in appropriate SI units (ps/m). Our convergence
criteria yielded a resolution of the ME tensor components (and
symmetry) to within ±10−3 ps/m.

In Sec. IV, we will denote the lattice-mediated (LM) spin
contribution by

αLM,S
i j ≡ μ0

(
∂MS

i

∂E j

)∣∣∣∣
B=0

.

We find that under the time reversal operation, mS
a → −mS

a .
As this indicates a different AFM domain orientation, the
signs of all components of αLM,S also change sign as discussed
in Ref. [22] in the case of CRO. Therefore we only present α

for a single AFM domain. In all of the simulations, we arrange
this state consistently such that all systems have the same spin
orientation on their symmetric Wyckoff positions. Finally, it
is common to also see values presented in the literature in
Gaussian units, to which the conversion is 1 ps/m equal to
∼3 × 10−4 g.u. See Ref. [77] for a review of different units
used in ME measurements.

C. Lattice-mediated orbital magnetization

Next, we turn to the LM orbital moment contribution to
the ME tensor. By analyzing the Berry phases, the orbital
magnetization can be evaluated at the level of the entire
unit cell using the modern theory of orbital magnetization
[78,79]. An alternative approach, which is employed here,
is to evaluate quantities locally involving the dimensionless
angular momentum operator L̂ = r̂ × p̂/h̄. We should note
that operators of the form r̂ are ill-defined in the periodic
unit cell but not when restricted to the PAW spheres. Since
the all-electron partial waves are exact numerical quantities
within the PAW spheres, then physical observables that are
quite localized (i.e., mS

a and its orbital counterpart) can be
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extracted accurately. The PAW approach to compute orbital
moments has been shown to agree quite well with predictions
from the modern theory for a variety of materials [69].

To compute the orbital magnetic moments, we use the
following expression [69]:

mL
a = μB

Nk

∑
kn

fkn
〈
ψa

kn

∣∣L̂∣∣ψa
kn

〉
, (5)

with μB the Bohr magneton, Nk the number of k points, and
fkn the band occupancy. The all-electron wave functions |ψa

n 〉
are defined within the atom-centered PAW sphere (index a) in
the usual way [69].

Using the LM approach outlined in the previous section,
the orbital magnetization per unit cell (ML = �−1

0

∑
a mL

a ) is
computed from Eq. (5) as a function of the frozen displace-
ments due to E . Similarly to the previous section, we indicate
the LM orbital component as

αLM,L
i j ≡ μ0

(
∂ML

i

∂E j

)∣∣∣∣
B=0

(6)

which may also be separated into local d- or p-orbital contri-
butions.

D. Clamped-ion spin-driven polarization

To compute the clamped-ion (CI) component of the ME
tensor, we utilize an additional term in the Hamiltonian that

couples directly to the spin operator S, H = −B · S. Natu-
rally, this requires the SOC to be included in the SCF cycle
of the DFT calculation. The ionic positions are fixed and the
SCF cycle is converged to within a maximum absolute change
in the electronic density (10−9 electrons/valence e−) under a
finite B. We calculate the total polarization P of the compu-
tational cell utilizing the Berry phase approach [80,81]. The
external magnetic field in all three Cartesian unit directions
(x, y, z) is swept from ±1 T in finite steps and P is recorded
at each field magnitude. We verify that in all cases presented
the systems remain gapped which is a requirement in the
Berry phase method to compute the electronic polarization.
Our notation for this term is

αCI,S
i j ≡ μ0

(
∂Pj

∂Bi

)∣∣∣∣
E=0

, (7)

with the derivative computed from finite differences.

E. Clamped-ion orbital magnetization

Analogous to the CI spin component, there is expected
to be a ME response due to the relative motion of orbital
currents under E [17]. To compute this, we implement an
approximation. We perform a first-order variation of Eq. (5)
with respect to a perturbation potential of the form V = er · E
with e > 0 to obtain the contribution to α due to clamped-ion
orbital moments,

αCI,L
i j ≡ μ0

�0

∑
a

(
∂mL

a,i

∂E j

)∣∣∣∣
B=0

= 2iμ0μ
2
B

Nk�0

∑
a

∑
n 
=m

∑
k

( fkn − fkm)

〈
ψa

kn

∣∣L̂ j

∣∣ψa
km

〉〈ψkm| p̂i|ψkn〉
(εkn − εkm)2

, (8)

where Lr and ps are the usual angular and linear momentum
operators in the Cartesian representation i, j = x, y, z. In this
form, Eq. (8) is given in inverse velocity with 〈L̂〉 dimen-
sionless. The prefactor contains i/Nk the imaginary number
divided by number of k points used. The summation n 
= m is
over all occupied and unoccupied bands with their associated
energy eigenvalues εkm and all-electron spinor wave functions
ψkm. The term αCI,L

i j is computed from the zero-field ground
states and largely corresponds to the “cross-gap” contribution
derived in Ref. [82].

We should comment on how this term compares to results
derived from the modern theory of orbital magnetization pre-
sented in Ref. [17]. In that work, the ME response is separated
into local and itinerant circulation parts in addition to an
isotropic Chern-Simons term. We expect that Eq. (8) should
give similar results to the sum of the local and itinerant cir-
culations but we do not include the Chern-Simons part which
is expected to be small. Also, since Eq. (8) only integrates
the orbital angular momentum over the PAW spheres, we
do not consider interstitial regions which may contribute to
the orbital CI ME response (as well as the orbital LM part
discussed earlier).

F. Error metrics

We can discuss some quantifications of error/precision that
may arise in our calculations. First, is the expectation of sym-
metry in the raw data. In the case of the Ba-based compounds,
we expect that αxx = −αyy with all other components zero
which is evident in our results within ±10−6 ps/m precision.
For the trigonal systems, the precision is relaxed slightly,
but we still obtain the expected symmetry of Eq. (3) within
±10−3 ps/m.

The second is comparison to another method. Using the
converse Zeeman field effect the total spin component of the
ME response, αS = αLM,S + αCI,S, can be inferred by relaxing
the ionic positions in an external field B with self-consistent
SOC calculations. This has been demonstrated in other publi-
cations for CRO [16,17,22]. We performed converse Zeeman
field calculations for a few select +U values (both for the data
presented in the Appendix and in the main text) showing good
agreement in our computed αS thus validating our method for
the spin components. We are not aware of any cross-validation
efforts for orbital ME response—but in principle the method
in Sec. III D could be extended, within the PAW approach, for
a Zeeman field term that contains both the spin and angular
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FIG. 2. Representative electronic band structure across the Brillouin zone in (a) BaMn2As2 with bare LDA and (b) CaMn2P2 with U =
2.4 eV. The magnetic anisotropy 
E for I4/mmm and P3̄m1 compounds are shown in the panels of (c) and (d) accordingly given in meV per
Mn site as a function of U . The bottom panels display the ground state |mL

a | on a single Mn site for tetragonal (e) and trigonal materials (f),
respectively. In (c) and (e), colors of red, black, and blue are used to denote P, As, Sb substitutions to the Ba-based compounds respectively.
For materials containing Ca, the same color scheme is used in (d) and (f) while pink, gray, and purple correspond to the Sr-substituted analogs
which are cast in different symbols as a guide for the eye.

momentum operators. We point out that Eq. (8) describes the
converse interaction of the orbital moments with an applied
magnetic field (i.e., equivalent to changes to the orbital contri-
bution to P under B). Recently, Eremin proposed a mechanism
to underpin the large response observed in DyCrO4 highlight-
ing that changes to the total P under B could be orbitally
driven [83] as opposed to spin-driven.

IV. RESULTS

A. Basic properties: band structure, anisotropy,
and orbital moments

In the following section, we use red, black, and blue for
data points regarding pnictogen content P, As, and Sb, re-
spectively. Each data point represents an independent DFT
relaxation and corresponding workflow set out in Sec. III.
With the exception of BaMn2(As, Sb)2, the bare LDA cal-
culations predict metallic states for all AFM configurations
studied. The method of the Hubbard correction opens a gap in
all of the trigonal materials and in the case of BaMn2P2.

Representative spin-polarized electronic band diagrams
of the AFM ground states of BaMn2As2 (bare LDA) and
CaMn2P2 (U = 2.4 eV) are displayed in Figs. 2(a) and 2(b)
respectively. In the I4/mmm compounds, the gap (Eg) is di-
rect located at Z ( 1

2 , 1
2 , 1

2 ). For the band structure shown in
Fig. 2(a), the band gap is 40 meV. The topology is slightly
different in the trigonal structures with an indirect 68 meV gap
opening in the case of (b). The conduction band minimum is
located at M ( 1

2 , 0, 0) whereas the valence band maximum ap-
pears at �. Comparable diagrams are obtained by pnictide (or
Ca → Sr) substitution. Both (a) and (b) highlight the narrow
gap and semiconducting nature of these compounds.

Throughout Sec. IV, we will present our results as a func-
tion of the Hubbard +U . But before doing so, we should
comment on which of our calculations corresponds best to
the true ground state. For this, we turn to the computed
Eg as a guide. For the Ba-based materials, we find Eg =

(0.03, 0.04, 0.15) eV with U = (0.7, 0.0, 0.8) eV for Pn = (P,
As, Sb), respectively. These values of the band gap are in rea-
sonable agreement with experimental evidence [50,54,57,58].
The zero-field spin magnetic moments on each Mn site for the
best estimate ground states - mS = (3.27, 3.24, 3.82) μB/Mn -
also agree with the observed departure from the expectation in
S = 5/2 magnetism (see Refs. [56,64]). We note however, that
the local moments are somewhat ambiguous in experiments
as well as theory and the comparison should thus merely be
regarded as a rough sanity check. The same analysis can be
made for the trigonal materials. We list our best estimates of
their spin moments and gaps in Table II along with the +U
used.

In Figs. 2(c) and 2(d) (top panels), we provide es-
timates of the anisotropy energy 
E by comparing the
differences of the total energy E from DFT calculation
with AFM spin orientation aligned along different direc-
tion. We use 
E = E (±ma||c) − E (±ma||a) and 
E =
E (±ma||a) − E (±ma||c) for both the tetragonal and trigonal
systems correspondingly as a function of the onsite Hubbard
correction. All states are assumed to have an AFM config-
uration (hence ± in our notation). One can appreciate from
this data that the easy-axis is always out-of-plane for the
Ba-based compounds whereas the minimum energy is always
for spin along the a axis in the trigonal structures. The trend
of 
E with increasing +U is to gradually reduce in all of
the compounds (with the exception of BaMn2Sb2). When Sr
is substituted into the calcium site, the anisotropy energy is
slightly reduced in all cases with a similar trend (see pink,
gray, and purple data points for respective P, As, and Sb
pnictogens).

Also provided in Figs. 2(e) and 2(f) (bottom panels) is our
estimates of |mL

a | at a single Mn site for all compounds using
Eq. (5). The direction of the net orbital Mn (site) moments in
the calculations are found to be parallel to that of the Mn spin.
The value is quite low, i.e., in BaMn2Sb2, of |mL

a | = 0.056
μB/Mn demonstrating the quasiquenched orbital nature due
to the half-filled d orbitals of manganese. By separating out
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TABLE II. Ground state spin and orbital moment components along the easy axis for both Mn and Pn Wyckoff locations listed in Table I
(in μB per site). In units of meV, we provide the magnetic anisotropy energy 
E (per Mn atom), the band gap Eg (with SOC), the chosen
Hubbard +U correction from our best estimate calculation, and measured activation energies (
) obtained from experiment [50,54,56–58].

Mn Pn

mS mL mS mL 
E Eg(
) +U

BaMn2P2 3.274 0.010 0 0 0.18 31(24) 70
BaMn2As2 3.235 0.027 0 0 0.15 40(27) 0
BaMn2Sb2 3.815 0.056 0 0 0.27 150(160) 80
CaMn2P2 4.129 0.009 −0.006 0.001 0.15 68 (88) 240
CaMn2As2 4.077 0.024 −0.005 0.002 0.30 87(62) 160
CaMn2Sb2 4.171 0.048 −0.002 0.004 0.62 93(70) 160
SrMn2P2 4.187 0.009 −0.002 0.001 0.12 118(124) 260
SrMn2As2 4.099 0.023 −0.001 0.002 0.28 95(85) 160
SrMn2Sb2 4.483 0.024 0.008 0.002 0.39 318(350) 380

the p and d bands in Eq. (5), we find that in this case, ap-
proximately 0.067 μB/Mn comes from the d band whereas
a negative contribution of around −0.011 μB/Mn is due to
p character (around 17%). Formally, lone Mn+2 should not
have occupancy of the 4p state, but it is obtained due to
band overlap with the neighboring pnictogen ligands. This
contribution is much larger in the P and As systems (best
estimates), as one finds about 43% and 25% of the orbital
magnetization respectively coming from the 4p electrons.

In the case of the trigonal structures, the net site orbital
moment is also very small. For example, in CaMn2As2 at U =
1.6 eV, we find 0.032 μB/Mn from d orbitals and −0.008 μB

from the p orbitals. Upon pnictogen substitution, the relative
p contribution is approximately the same which is in contrast
to the Ba-based materials. Similar trends are obtained for the
strontium substitution (see pink, gray, and purple data points).
The influence of the Hubbard +U causes |mL

a | to decrease in
all structures.

Before the computed ME properties of the family are dis-
cussed, some quantities are useful for analyzing the data. We
sum the LM and CI parts individually as

αLM = αLM,S + αLM,L,

αCI = αCI,S + αCI,L, (9)

and the spin (S) and orbital components (L) with

αS = αLM,S + αCI,S,

αL = αLM,L + αCI,L. (10)

This allows us to identify a magnetoelectric participation ratio
(MEPR) of the various processes proportioning a given com-
ponent to that of the total amplitude which is the sum of all
contributions

α = αLM,S + αLM,L + αCI,S + αCI,L. (11)

B. Magnetoelectricity in the tetragonal compounds

According to I4′/m′m′m symmetry, it is expected that only
one independent coefficient of α is nonzero. Within precision,
we find all calculated contributions as well as the sum of
the parts obey αxx = −αyy 
= 0 (along with expected zero

components). We verify numerically that under time reversal,
the spin magnetization flips 180◦ (to a different AFM domain
orientation) subsequently changing the sign of α (and all its
separate contributions). A representative set of data is shown
in Fig. 3 that demonstrates the total cell spin magnetization
MS along the x (dark red) and y (black) directions. The clear
trend of αxx = −αyy is seen in the data as well as the linear
fits shown with solid lines for data below a field magnitude
of |E| < 0.01 V/Å. Above this critical value, the third-order
ME coupling cannot be neglected. In the rest of this paper, we
only concern ourselves with the linear regime and we leave
higher-order terms for future work.

In Fig. 4, we use Eq. (9) and (10) to decompose αxx as
a function of the Hubbard correction. We plot separately the
LM, CI, spin, and orbital contributions in (a), (b), (c), and (d)
respectively. One can appreciate that the various components
of α are highly dependent on the Hubbard U . For example, the
clamped-ion spin response of BaMn2P2 decreases by nearly
67% if +U is changed from 0.7 to 0.8 eV.

FIG. 3. Example output from a LM calculation for BaMn2As2

using bare LDA. The red and black data represent total cell spin
magnetization MS for the x and y components while the solid lines
denote the fits of αLM,S

xx and αLM,S
yy respectively where the data comply

with the linear response approximation. Similar trends are obtained
for upon pnictogen substitution.
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FIG. 4. Calculated transverse ME response in the I4/mmm struc-
tures for P, As, Sb (red, black, blue), respectively. The decomposed
contributions in (a), (b), (c), and (d) correspond to LM, CI, S, and L
modes accordingly. Units of αxx = −αyy are given in ps/m.

In all of the I4/mmm compounds, we find that the largest
(positive sign) involvement in the ME response is due to the
αCI,S term—see panels (b) and (c). However, we see a large
contribution also from αCI,L albeit negative sign in the case of
BaMn2P2.

These best estimates of αxx are chosen at a given +U by
examining the band gaps of the ground state as discussed
in the previous section. In this fashion, these values may be
closest to the ones observed experimentally at T = 0 K in
a single crystal in the absence of any domain state inhomo-
geneities. We list these values in Table III. Hence using the
computed band gap as a guide, we expect BaMn2As2 to have
the largest ME response (αxx ≈ 6.79 ps/m) in this family.
In (a), (c), and (d) of Fig. 4, one may be tempted to assign
a correlation to the pnictogen substitution [using our best
estimate values of Pn = (P, As, Sb) at U = (0.7, 0.0, 0.8) eV,
respectively]. Notice that the absolute value of each of the
contributions tends to decrease as the pnictogen site atomic
number increases. However, it is our finding that the total
value of αxx = −αyy does not display this correlation—as the

TABLE III. Best estimates of the total αi j in ps/m. The calcula-
tions are based on the ground states in Table II.

I4/mmm αxx αyy P3̄m1 αyx αzx αxy αxz

BaMn2P2 6.41 −6.41 CaMn2P2 0.21 −0.03 0.14 −0.35
BaMn2As2 6.79 −6.79 CaMn2As2 0.55 0.10 0.39 −0.84
BaMn2Sb2 3.43 −3.43 CaMn2Sb2 1.49 0.83 1.01 −1.71

SrMn2P2 0.19 0.05 0.13 −0.25
SrMn2As2 0.58 0.16 0.42 −0.76
SrMn2Sb2 1.19 1.00 0.621 −0.686

net CI contribution seems to not follow this trend. This case
highlights the importance of tracking all of the contributions
in a study of the ME response.

Focusing on our best-estimate values for the three ma-
terials, we can estimate the MEPR of each contribution.
Approximately (190%, 79%, and 37%) of the total response
in each of the pnictogens (P, As, Sb) respectively is due to the
αCI,S. The influence of ME response from αL is considerable
in BaMn2P2 as seen in Fig. 4(d) albeit with opposite sign
from that of αS in (c). From this, we find that αL contributes
around −143% to the total value. Finally, we should comment
that αCI,L amplitude in this material family is much stronger
the total α in other MEs probed by first principles [17,26,31]
highlighting the fact that this term should not be neglected in
a general analysis.

C. Magnetoelectricity in the trigonal materials

For the P3̄m1 materials, the values of αyx, αzx, αxy, and
αxz are parsed into their LM (triangles), and CI contributions
(circles) using Eq. (9) and are presented in panels (a), (b), (c),
and (d), respectively of Fig. 5. Evident in the data is a much
weaker dependence on the Hubbard +U than revealed in the
Ba-based compounds. It is seen that the greatest values come
from the electronic CI part (circles). A closer inspection shows
that the CI character is mixed in the αyx and αzx (transverse)
components shown in (a) and (b). As an example, CaMn2Sb2

FIG. 5. Lattice-mediated (LM) in triangles and clamped-ion (CI)
contribution in circles for the four (a)–(d) nonzero components of α

in CaMn2Pn with Pn = P (red), As (black), and Sb (blue). Units of
αi j given in ps/m. Units of αi j are given in ps/m.
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FIG. 6. Spin (S) in triangles and orbital (L) moment contribu-
tions in triangles for the four (a)–(d) components of α in CaMn2Pn
with Pn = P (red), As (black), and Sb (blue). Units of αi j are given
in ps/m.

with U = 1.6 eV (corresponding to our best estimate calcu-
lation) exhibits αCI,S

zx = 1.36 ps/m, whereas αCI,L
zx = −0.54

ps/m which is a similar behavior as observed in the transverse
response of the tetragonal materials in the previous section. A
similar opposite sign pattern in this component is seen upon
pnictogen substitution. In the case of the other components αxy

and αxz in (c) and (d) which are longitudinal, we find αCI,L is
the primary contribution with a secondary contribution due to
the orbital αLM,L. In all of the systems, the involvement of the
LM spin contribution is much weaker—less than ±0.01 ps/m
for all components. If we use Eq. (10) to instead decompose
α, another picture forms in Fig. 6. Here, we see the princi-
ple contribution resulting from the orbital component with
again αyx and αzx in (a) and (b) showing a mixed character
between the spin and orbital transverse response. In (c) and
(d) for the (αxy, αxz) longitudinal components respectively, the
orbital moment contribution has the largest participation in all
systems with an MEPR close to 100%.

Clearly in both representations of the data in Figs. 5 and
6, both (αxy, αxz) and (αyx, αzx) seem to behave differently,
and the origin lies in the magnetic symmetry of the system.
With the AFM sublattice aligned along a||x, the (αyx, αzx) co-
efficients describe a quasitransverse process in the y-z plane,
whereas the (αxy, αxz) depict a quasilongitudinal motion of
the magnetization. Note that the definitions of transverse or
longitudinal are with respect to spin easy axis. Changes of
the net spin along longitudinal directions (i.e., 
MS

x in this
case), tend to be quite stiff in AFMs. Therefore, we are not
surprised to see an essentially null spin value and a dom-
inating orbital character as best depicted in Figs. 6(c) and
6(d). Similar studies on CRO in Ref. [17] demonstrated this
phenomena as well, with the changes in the magnetic spin
along the longitudinal directions quite small under a field—
leading to a small value of the computed αS

zz. However, that
work (as well as our benchmarking calculations presented in
Appendix) showed that the ME response due to the orbital
moments in this direction could be an order of magnitude or
more larger.

Using the analysis as in the previous section regarding the
optimum value of Hubbard +U that corresponds to the ground
state seen in experiment, we list the total α amplitudes for the
(Ca, Sr)Mn2Pn2 in Table III. In general, we find that αxz < 0
whereas the other components of α are positive (with the
exception of αzx in CaMn2P2. From Table III, one can appre-
ciate that ME response is much weaker than predicted in the
Ba-based systems. Still, it is interesting to see the following
trend. Upon pnictide substitution, the values of αi j rise as the
atomic number increases. This is contrasting to the tetragonal
materials discussed in the previous section where the pnictide
content depresses the total α as the atomic number increases.
This alludes to the idea that the spin-orbit coupling from the
ligands is much more influential in driving α. Still more future
investigations are warranted as to the primary driving factor in
the ME susceptibility in this class of materials. As opposed
to the tetragonal materials, the coefficients are seen to not
depend strongly on the +U correction with the exceptions of
αCI,S

zx and αLM,S
xy which can demonstrate some sign differences

depending on the Pn element albeit being small in magnitude
compared to the total value.

The substitution of Ca with Sr changes some of the re-
sponse properties accordingly, but we find that the effects are
minor (see Table III). We find remarkably indistinguishable
data to that presented in Figs. 5 and 6. Curiously, SrMn2Sb2

has been found to be much more insulating than its calcium
cation counterpart [56]. Therefore our best estimate of α uses
a much larger Hubbard correction (U = 3.8 eV) to open the
gap. In this calculation, the MEPR for the largest coefficient
(αzx ) yields approximately 144% and −44% due to the spin
and orbital modes respectively. Note that a MEPR greater than
100% indicates that the other component (in this case due to
orbital moments) has a negative contribution.

D. Hybridization effects

The 4p levels in lone Mn+2 are unoccupied, but due to
electronic band overlap from the pnictogen ligands, these
states become partially occupied in the Zintl compounds. As
mentioned in Sec. IV A, this hybridization effect in the ground
state Ba-based structures contributes significantly to mL

a (op-
posite in sign from the d-band contribution). We can make a
direct decomposition of Eq. (6) separated by band occupation
exploiting the fact that all contributions to α are linear. As
an example, consider the following LM part due to Mn for
BaMn2P2 (best estimate),

αLM,L =

⎛
⎜⎜⎝

−0.65 0 0

0 0.65 0

0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
3d

+

⎛
⎜⎜⎝

0.17 0 0

0 −0.17 0

0 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
4p

,

in units of ps/m. Similarly, the same can be done for αCI,L

using Eq. (8) where

αCI,L =

⎛
⎜⎝

−8.47 0 0

0 8.47 0

0 0 0

⎞
⎟⎠

︸ ︷︷ ︸
3d

+

⎛
⎜⎝

−1.92 0 0

0 1.92 0

0 0 0

⎞
⎟⎠

︸ ︷︷ ︸
4p

.
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Here one can see that the 4p component cannot be neglected—
and provides a significant amount of ME response as
compared to the term from 3d electrons. Surprisingly, αCI,L

from both 3d and 4p bands have the same sign despite mL
a

(due to the occupied p states) having opposite sign to that of
d character. The remainder of αCI,L from the phosphorous 3p
band contributing a magnitude of about +0.16 ps/m (opposite
sign). For the P3̄m1 compounds, the p band provides much
less contribution to αL (around ±0.01 ps/m and approxi-
mately invariant of pnictogen species).

V. DISCUSSION

We conclude the report of our work with some comments
on linear magnetoelectricity in this family and the outlook for
characterizing the ME response in general. We have provided
a detailed account of how to compute the spin and orbital
contributions to the linear ME tensor for both lattice-mediated
and electronic (clamped-ion) parts within the DFT scheme
of LDA+U. The methodology not only captures participation
ratios of the various physical processes involved but also their
relative signs on equal footing. We demonstrated good agree-
ment with a similar full characterization of the archetypal
benchmark material CRO as shown in the Appendix validating
our method. Then, we applied this effort to the family of
layered AFM pnictides (Ba, Ca, Sr)Mn2(P, As, Sb)2.

We provide basic properties information (ground state band
pictures, orbital magnetization, and magnetic anisotropies) on
the family of materials showing good agreement with avail-
able experimental data. The tetragonal materials demonstrate
the largest α amplitudes computed. Their predicted ME re-
sponse is entirely 2D perpendicular to the collinear spin order
with αxx = −αyy within ±10−6 ps/m precision. The greatest
value (αxx � 6.79 ps/m) found in BaMn2As2 exceeds that
of prototypical linear ME CRO by about a factor of three.
One finds that the clamped-ion spin component is the primary
factor in the spin ME susceptibility. This is not uncommon as
this has been predicted in other compounds such as LiNiPO4

[16] or in the narrow gap FeS [26]. Importantly, our calcu-
lations reveal that there is an appreciable influence from the
orbital magnetization along with p-d hybridization effects in
this subfamily—showing that it can give rise to non-negligible
terms in both the clamped-ion and lattice-mediated orbital ME
response. A clear trend is seen upon pnictogen substitution
driving the amplitudes of various contributions lower as the
atomic number of the ligand atoms are increased (according
to our best estimate calculations). While the lattice-mediated
and orbital contributions seem to follow this trend, the total
response does not—influenced heavily by the clamped-ion
terms.

While our results on the P3̄m1 subfamily seem to give
much weaker linear ME amplitudes, we showed that as the
pnictogen atomic number increases, so does the amplitude of
α. This alludes that spin-orbit coupling from ligands are much
more important than in the tetragonal materials at influencing
α. The largest α component predicted in CaMn2Sb2 is then
αxz = −1.71 ps/m, which is comparable to the transverse re-
sponse found in CRO (see Appendix and references therein).

In general, the procedure to compute α is rather delicate. It
depends on a number of high-precision DFT calculations and

is sensitive to the reciprocal space sampling, chosen structural
parameters, exchange correlation functional, and force con-
vergence criterion. We choose to probe the technical aspect
of the Hubbard+U correction in this work, providing all of
our results as a function of +U . This allowed us to investigate
how sensitive the individual parts of α are on this approxi-
mation. While our computed α for the trigonal compounds
do not seem to justify a careful scan of the +U dependence,
the tetragonal system certainly motivated this, demonstrating
large changes despite small (relative) changes in +U mainly
driven by electronic effects.

It is quite apparent from our data that these electronic
effects cannot be neglected and can provide substantial con-
tributions to the ME response from both the spin and orbital
modes. The probes of ME susceptibility using first-principles
methods so far have largely neglected the influence of the
orbital moments. In the case of the prototypical CRO, this is
justified by the expected quenched moments providing a very
small value to the response. However, we show an example of
a materials family where this cannot not be neglected. Thus
we emphasize that in addition to the spin (lattice-mediated)
values provided by first-principles, the orbital ME response
should also be characterized fully. The notion of sign of the
various contributions are also important—requiring a careful
decomposition. Still, we are optimistic that full ab initio char-
acterizations of the fundamental magnetoelectric interaction
are useful for the ever-evolving list of applications of this class
of materials [32,33].
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APPENDIX A: BENCHMARK CASE OF Cr2O3

As discussed in Sec. I, Cr2O3 (CRO) is a linear ME mate-
rial. It is well-studied and the richness of literature motivates
us to use it as a benchmark to test and validate our method.
CRO forms as a corundum-type structure with two formula
units per rhombohedral unit cell. The Cr3+ configuration
implies 3 μB atomic spin moments, which arrange anti-
ferromagnetically below the Neel temperature TN = 307 K.
The magnetic space group R3̄′c′ (No. 161.106) contains the
symmetry I · T (although time reversal and inversion are
separately broken) and the combination of threefold rota-
tional symmetry and a mirror plane containing the threefold
axis (chosen along z) constrains the linear ME response to
α(R3̄′c) = diag(αxx, αxx, αzz ).. The sign of the ME response
is determined by the AFM domain configuration [22], since
time-reversal flips the spins by 180◦ which changes the sign
of all coefficients of αi j .

Using the methods discussed in Sec. III, we study CRO
at T = 0 K with DFT using the LDA exchange correlation
functional along with the rotationally invariant Hubbard +U
correction. We include 6 valence e− for Cr (4s13d5) and O
(2s22p4) using PAW cutoff radii of 1.217 and 0.688 Å, re-
spectively). Reciprocal space was sampled with a 6 × 6 × 6
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FIG. 7. FLRI (green) and RLRI (purple) calculations of the
transverse αxx in ps/m for the separated LM, S, CI, and L contri-
butions in (a), (b), (c), and (d), respectively.

�-centered grid and we used a plane-wave cutoff of 800 eV
is used. We perform our calculations within a range of chosen
+U values implemented on the d orbitals of Cr to demonstrate
their influence on each of the contributions to α.

We perform two different modes of calculations in the two-
formula unit primitive cell. We first fix the lattice constants
to experimental values (a = 5.358 Å and rhombohedral cell
angle of φ = 55.0◦). We then relax the internal coordinates
and compute K and Ze

jκ . This mode is named as fixed-lattice
relaxed-internal (FLRI). Then, we proceed with the methods
proposed in Sec. III to compute the LM and CI responses
for both the spin and orbital moments. Next, we allow the
lattice constants to relax along with the internal coordinates
of the atoms—which we denote as relaxed-lattice relaxed-
internal (RLRI)—and use the same approach to compute the
components and contributions to α. We perform both FLRI
and RLRI modes as a function of the Hubbard on-site correc-
tion in a range between 0.0–3.0 eV. As for the ground state
values of the nearly quenched orbital magnetization, we find
|mL

a | � 0.03 μB/Cr at U = 1.5 eV agreeing quite well with
the value estimated in Ref. [84] |mL

a | � 0.04 μB/C also using
LDA. We find only a 5% difference in |mL

a | between FLRI and
RLRI calculations.

Using Eqs. (9) and (10), we parse all contributions
LM, S, CI, and L to the transverse component αxx and
present them in Fig. 7 in (a), (b), (c), and (d), respectively.
The colors green and purple refer to FLRI and RLRI modes
accordingly. Similarly, we provide the same information for
the longitudinal αzz component in Fig. 8. While the LDA is
generally known to underestimate lattice constants and cell
volumes compared to experimental evidence (as we also see
in the RLRI mode), one can appreciate that this does not
influence our results significantly. Instead, the main driver
of changes in the values of α come from the choice of the
Hubbard +U . One should note that within the range of U =
2.0 ± 0.5 eV, the insulating gap and moments of CRO are
reproduced satisfactorily. However, even within this range, the
values of various contributions can vary.

Clear trends are seen in the data, with αLM,S
xx the dominant

factor in the response (not explicitly shown in Figs. 7 and
8) in agreement with previously published experimental and

FIG. 8. FLRI (green) and RLRI (purple) calculations of the lon-
gitudinal αzz in ps/m for the separated LM, S, CI, and L contributions
in (a), (b), (c), and (d), respectively.

calculated results (see Table IV). Note that we only present
the FLRI results at U = 1.5 eV in the table which is our
best estimate regarding available data on the material. The
spin CI contribution factoring into an MEPR of about 36%
percent of the total transverse response. The orbital MEPR
(αL

xx/αxx) much lower—at only about 1% percent. For the
longitudinal αzz, we find a negligible LM,S contribution (as
expected since modulations along the spin easy axis are gen-
erally quite stiff in insulators). We demonstrate that the orbital
LM component is the considerable factor in driving a nonzero
αzz—although much lower than the reported low-temperature
measurements.

We primarily compare our results to Malashevich et al in
Ref. [17], which to our knowledge is the only work that fully
characterizes α. While our predictions of αLM,S

xx and αLM,L
zz are

larger than those reported for calculations utilizing the Perder-
Burke-Ernzerhof (PBE) exchange correlation functional, we
do make note that the authors performed the LDA calculations

TABLE IV. Calculated contributions to α from the literature in
ps/m as well as DFT method and code. The results of this work are
presented for U = 1.5 eV in the FLRI mode. The range of measured
amplitudes of α

exp
i j from Refs. [85,86] are both performed at T =

4.2 K. The same AFM domain state is considered for this comparison
[22].

Our work [17] [16] [21] [22]
LDA+U PBE LDA+U LDA LDA

Ref. GPAW [69] QE [87] ABINIT [88] VASP [89] ELK [90]

αxx

LM,S 1.18 0.77 1.11 0.31 0.921
LM,L 0.016 0.025 – – –
CI,S 0.425 0.22 0.34 0.53 –
CI,L −0.0027 −0.014 – – –
αzz

LM,S 0.003 0.003 0 0.005
LM,L 0.084 0.008 –

αexp
xx 0.73–1.60

CI,S 0.002 0.0007 0
αexp

zz 0.23–0.27
CI,L 0.076 −0.009 –
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finding larger values for αL which are still comparable to our
numbers within LDA+U . We also should mention that the
computed values of αL are only found within the PAW spheres
and therefore some contributions from interstitial regions may
be missing. Despite this, we still see good agreement of our
results within the experimental range of values—and in qual-
itative agreement with other selected published values. We
should also note that we find the same sign and comparable
value for the transverse component of αCI,L. For αCI,L

zz , we do
find a much larger contribution than presented in Ref. [17]
(but opposite sign). However, it is hard to say if our local
PAW sphere approach underpins the differences in values that
we obtain or it originates in the different exchange correlation
functional used.

APPENDIX B: DERIVATION OF CLAMPED-ION ORBITAL
MAGNETOELECTRIC COEFFICIENT

Within the PAW approach, the change in the dimensionless
expectation value of L = r̂ × p̂/h̄ defined through Eq (5), due
to a perturbation V̂ to first order is

δma
orb,i = μB

Nk

∑
k

n 
=m

( fkn − fkm)

〈
ψa

kn

∣∣L̂i

∣∣ψa
km

〉〈ψkm|V̂ |ψkn〉
εkn − εkm

,

(B1)

We take V̂ to be the electrostatic potential energy of a
homogeneous electric field such that V̂ = er · E. Using stan-
dard commutation relations to eliminate the position operator
which is ill-defined in the periodic unit cell the matrix ele-
ments can be expressed as (n 
= m)

〈ψkm|V |ψkn〉 = e〈ψkm|r̂k|ψkn〉Ek

= e
〈ψkm|[H0, r̂k]|ψkn〉

εkm − εkn
Ek

= −ih̄e
〈ψkm|ṙk|ψkn〉

εkm − εkn
Ek

= −ih̄e
〈ψkm| p̂k|ψkn〉
me(εkm − εkn)

Ek . (B2)

Substituting Eq. (B2) into Eq. (B1), we have

δma
orb,i = iμBh̄e

Nkme

∑
k

n 
=m

( fkn − fkm)

×
〈
ψa

kn

∣∣L̂i

∣∣ψa
km

〉〈ψkm| p̂k|ψkn〉
(εkn − εkm)2 Ek . (B3)

With respect to a given field direction Ej , the variation be-
comes

δma
orb,i

δEj
= 2iμ2

B

Nk

∑
k

n 
=m

( fkn − fkm)

×
〈
ψa

kn

∣∣L̂i

∣∣ψa
km

〉〈ψkm| p̂ j |ψkn〉
(εkn − εm)2 (B4)

using 2μB = eh̄m−1
e . To compute the clamped-ion orbital

magnetoelectric contribution of the cell (within the PAW ap-
proximation), we sum over the atomic indices and multiply by
a factor of μ0/�0.

μ0
∂Morb,i

∂Ej
= μ0

�0

∑
a

δma
orb,i

δEj

= 2iμ0μ
2
B

�0Nk

∑
a

∑
k

∑
n 
=m

( fkn − fkm)

×
〈
ψa

kn

∣∣L̂i

∣∣ψa
km

〉〈ψkm| p̂ j |ψkn〉
(εkn − εkm)2 , (B5)

which is the same as Eq. (8). The expression carries units of
inverse velocity. This term is similar to the cross-gap term
derived in Ref. [82].
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K. Tanigaki, Phys. Rev. B 99, 195111 (2019).

[67] F. Islam, T. V. Trevisan, T. Heitmann, S. Pakhira, S. X. M.
Riberolles, N. S. Sangeetha, D. C. Johnston, P. P. Orth, and
D. Vaknin, Phys. Rev. B 107, 054425 (2023).

[68] Q.-P. Ding, N. S. Sangeetha, A. Pandey, D. C. Johnston, and Y.
Furukawa, Phys. Rev. B 104, 224413 (2021).

[69] J. J. Mortensen, A. H. Larsen, M. Kuisma, A. V. Ivanov, A.
Taghizadeh, A. Peterson, A. Haldar, A. O. Dohn, C. Schäfer,
E. O. Jónsson, E. D. Hermes, F. A. Nilsson, G. Kastlunger,
G. Levi, H. Jónsson, H. Häkkinen, J. Fojt, J. Kangsabanik,

214404-13

https://doi.org/10.1103/PhysRevLett.106.107202
https://doi.org/10.1103/PhysRevB.86.094430
https://doi.org/10.1103/PhysRevLett.109.197203
https://doi.org/10.1103/PhysRevB.89.174413
https://doi.org/10.1103/PhysRevB.89.064301
https://doi.org/10.1103/PhysRevB.94.100405
https://doi.org/10.1088/1361-648X/ad1a59
https://doi.org/10.1103/PhysRevLett.103.267205
https://doi.org/10.1103/PhysRevB.81.024110
https://doi.org/10.1103/PhysRevB.92.184112
https://doi.org/10.1103/PhysRevLett.116.227601
https://doi.org/10.1039/C9TC04466C
https://doi.org/10.1103/PhysRevLett.125.247601
https://doi.org/10.1103/PhysRevB.103.L060103
https://doi.org/10.1103/PhysRevLett.131.136701
https://doi.org/10.1088/1361-648X/ad0d27
https://doi.org/10.1063/5.0044532
https://doi.org/10.1016/j.mtbio.2021.100149
https://doi.org/10.1038/natrevmats.2016.46
https://doi.org/10.1038/s41563-018-0275-2
https://doi.org/10.1103/PhysRevLett.92.207201
https://doi.org/10.1103/PhysRevB.83.104416
https://doi.org/10.1103/PhysRevB.94.014428
https://doi.org/10.1103/PhysRevB.95.094404
https://doi.org/10.1103/PhysRevB.100.104417
https://doi.org/10.3389/fmats.2023.1179651
https://doi.org/10.1038/s41467-023-39128-7
https://doi.org/10.1016/j.physb.2022.414380
https://doi.org/10.3390/ma15228229
https://doi.org/10.1103/PhysRevB.92.024404
https://doi.org/10.1038/nature06139
https://doi.org/10.1103/PhysRevLett.101.157202
https://doi.org/10.1103/PhysRevB.95.104409
https://doi.org/10.1103/PhysRevB.98.054434
https://doi.org/10.1021/ic060092e
https://doi.org/10.1016/j.jmmm.2009.07.015
https://doi.org/10.1103/PhysRevB.84.094445
https://doi.org/10.1103/PhysRevB.86.184430
https://doi.org/10.1103/PhysRevB.94.094417
https://doi.org/10.1103/PhysRevB.94.155155
https://doi.org/10.1103/PhysRevB.97.014402
https://doi.org/10.1103/PhysRevMaterials.7.044410
https://doi.org/10.1016/0925-8388(95)01939-1
https://doi.org/10.1016/j.jssc.2018.11.029
https://doi.org/10.1016/0022-4596(88)90009-6
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1103/PhysRevB.79.075120
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1103/PhysRevB.99.195111
https://doi.org/10.1103/PhysRevB.107.054425
https://doi.org/10.1103/PhysRevB.104.224413


MANGERI, OVESEN, AND OLSEN PHYSICAL REVIEW B 109, 214404 (2024)

J. Sødequist, J. Lehtomäki et al., J. Chem. Phys. 160, 092503
(2024).

[70] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R.
Christensen, M. Dułak, J. Friis, P. C. Jennings, P. B. Jensen, J.
Kermode, J. R. Kitchen, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg,
S. Lysgaard, J. Maronsson, T. Maxson, T. Olsen, L. Pastewka,
A. Peterson et al., J. Phys.: Condens. Matter 29, 273002 (2017).

[71] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[72] We set the cut-off radii (in Å) of the PAW spheres as

follows: Ba(1.16), Sr(1.29), Ca(1.17), P(0.95), As(1.06),
and Sb(1.23) as implemented in the default atomic
PAW potential settings of GPAW commit version
ce976839bd3631d9bab285a2ff27476b2b6b46e0.

[73] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

[74] X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72,
035105 (2005).

[75] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001).

[76] G. Strang, Linear Algebra and its Applications (Thomson Edu-
cation, Brooks/Cole, 2006), pp. 139–142, 4th ed.

[77] J.-P. Rivera, Eur. Phys. J. B 71, 299 (2009).
[78] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,

Phys. Rev. Lett. 95, 137205 (2005).
[79] R. Resta, J. Phys.: Condens. Matter 22, 123201

(2010).

[80] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651(R)
(1993).

[81] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[82] A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt,

Phys. Rev. B 81, 205104 (2010).
[83] M. V. Eremin, Phys. Rev. B 102, 104107 (2020).
[84] S. Shi, A. L. Wysocki, and K. D. Belashchenko, Phys. Rev. B

79, 104404 (2009).
[85] E. Kita, K. Siratori, and A. Tasaki, J. Appl. Phys. 50, 7748

(1979).
[86] H. Wiegelmann, A. G. M. Jansen, P. Wyder, J.-P. Rivera, and

H. Schmid, Ferroelectrics 162, 141 (1994).
[87] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.

Buogiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D.
Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal
Corso, S. de Gironcoli, P. Delugas, R. A. J. DiStasio, A. Ferretti,
A. Floris, G. Fratesi, G. Fugallo et al., J. Phys.: Condens. Matter
29, 465901 (2017).

[88] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-
M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N.
Brouwer, F. Bruneval, G. Brunin, T. Caignac, J.-B. Charraud,
W. Chen, M. Côte, S. Cottenier, J. Denier, G. Geneste et al.,
Comput. Phys. Commun. 248, 107042 (2020).

[89] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758
(1999).

[90] The Elk Code, http://elk.sourceforge.net/.

214404-14

https://doi.org/10.1063/5.0182685
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.72.035105
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1140/epjb/e2009-00336-7
https://doi.org/10.1103/PhysRevLett.95.137205
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/RevModPhys.66.899
https://doi.org/10.1103/PhysRevB.81.205104
https://doi.org/10.1103/PhysRevB.102.104107
https://doi.org/10.1103/PhysRevB.79.104404
https://doi.org/10.1063/1.326810
https://doi.org/10.1080/00150199408245099
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1103/PhysRevB.59.1758
http://elk.sourceforge.net/

