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Imaginary gap-closed points and dynamics in a class of dissipative systems
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We investigate imaginary gap-closed (IGC) points and their associated dynamics in dissipative systems. In
a general non-Hermitian model, we derive the equation governing the IGC points of the energy spectrum,
establishing that these points are only determined by the Hermitian part of the Hamiltonian. Focusing on a
class of one-dimensional dissipative chains, we explore quantum walks across different scenarios and various
parameters, showing that IGC points induce a power-law decay scaling in bulk loss probability and trigger a
boundary phenomenon referred to as “edge burst.” This observation underscores the crucial role of IGC points
under periodic boundary conditions (PBCs) in shaping quantum walk dynamics. Finally, we demonstrate that
the damping matrices of these dissipative chains under PBCs possess Liouvillian gapless points, implying an
algebraic convergence towards the steady state in long-time dynamics.
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I. INTRODUCTION

The field of non-Hermitian physics has witnessed re-
markable development over the past few decades [1–6].
In classical systems, non-Hermiticity is introduced through
controlled gain or loss and leads to novel phenomena be-
yond Hermitian counterparts [7–20]. In quantum systems,
effective non-Hermitian Hamiltonians arise from conditional
dynamics under continuous monitoring and postselection of
null measurements [21–26] or via the Feshbach projection
formalism [27–30]. Realizations of non-Hermitian systems
span diverse open quantum platforms [31–41]. Notably, non-
Hermitian Hamiltonians can exhibit peculiar properties, for
instance, the existence of exceptional points [42–46], which
induce novel universality classes of phase transitions in non-
Hermitian quantum systems [47–60]. Another unique feature
of non-Hermitian systems is the non-Hermitian skin effect
(NHSE), namely, the anomalous localization of an exten-
sive number of bulk-band eigenstates at the edges [61–64].
The NHSE plays a central role in the non-Hermitian topo-
logical phases and reshapes convectional bulk-boundary
correspondence [65–90]. The topology origin of the NHSE
is intimately linked to the point gap of non-Hermitian Bloch
Hamiltonians [91,92].

On the other hand, the NHSE also induces novel dynamical
phenomena in open quantum systems. These include damping
behavior and diverging relaxation time in Liouvillian dynam-
ics [93–97], directional amplification of signals [98,99], self-
healing of skin modes [100], and directional invisibility of
scattered wave packet [101,102]. Intriguingly, non-Hermitian
dynamics exhibit boundary condition independence in the

*These authors contributed equally to this work.
†Contact author: linh1721@outlook.com
‡Contact author: pijh14@gmail.com

thermodynamic limit [103]. However, in finite-size systems,
energy spectra under open boundary conditions (OBCs) show
dramatic differences from those under periodic boundary con-
ditions (PBCs) due to the NHSE [62,90,91]. Thus, one may
question which non-Hermitian Hamiltonians determine the
dynamical evolution of the systems. Furthermore, the bound-
ary’s role is also crucial to understanding non-Hermitian
dynamics.

Motivated by the above questions, we first analyze a gen-
eral non-Hermitian model whose non-Hermiticity comes from
the onsite dissipation. Our investigation centers on imaginary
gap-closed (IGC) points, which are eigenstates possessing
real energies and dictate the long-time behavior of the sys-
tem [104]. Notably, these IGC points depend solely on the
Hermitian component of the Hamiltonian, unaffected by dis-
sipative terms. Furthermore, IGC states are populated on
nondissipative sites and can be viewed as dark modes. When
focusing on a class of one-dimensional dissipative models,
the PBC spectra exhibit IGC points, while their OBC coun-
terparts lack such points as eigenstates feature the NHSE. By
introducing the non-Hermitian quantum walk, we investigate
the relation between IGC points and the scaling behavior
of bulk loss probability in space. Consequently, these IGC
points lead to a spatial power-law decay of the loss probability
in the bulk of the system. Moreover, an associated bound-
ary phenomenon, termed “edge burst,” emerges. Specifically,
when a quantum particle is initially prepared on a specific
bulk site, there is a prominent peak in the loss probability at
the edge. We discuss this phenomenon in different quantum
walk scenarios and the impact of various parameters, showing
the universality of the correlation between edge burst and
IGC points. Finally, we analyze the Liouvillian dynamics and
demonstrate that damping matrices of these dissipative chains
under PBCs can have Liouvillian gapless points, implying an
algebraic convergence towards the steady state in long-time
dynamics.
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FIG. 1. The general non-Hermitian lattice model. Red: interac-
tions within nondissipative sites; blue: interactions within dissipative
sites; green: interactions between nondissipative sites and dissipative
sites.

This paper is organized as follows. In Sec. II, we introduce
a general non-Hermitian model and analyze its IGC points. In
Sec. III, we investigate the quantum walk dynamics in a class
of one-dimensional dissipative chains. In Sec. IV, we discuss
the impact of various parameters on quantum walks. In Sec. V,
we demonstrate that IGC points of the PBC Liouvillian spec-
trum capture the long-time dynamics of the system. Finally, a
summary is given in Sec. VI.

II. NON-HERMITIAN MODEL AND UNIVERSAL
IMAGINARY GAPLESS MODES

Let us first consider a general non-Hermitian lattice model
(Fig. 1), whose non-Hermiticity totally comes from the onsite
dissipation. We classify the lattice sites into two categories:
nondissipative sites and dissipative sites, denoted by (h, i) and
(nh, i), respectively. Then, the Hamiltonian of this system can
be divided into three parts,

H = Hh + Hnh + Hinter, (1)

where Hh is the interaction within nondissipative sites, Hnh

is the interaction within dissipative sites, and Hinter is the
interaction between nondissipative sites and dissipative sites.
Their expressions are given by

Hh =
∑
i, j

ai j |h, i〉 〈h, j| ,

Hnh =
∑
i, j

bi j |nh, i〉 〈nh, j| ,

Hinter =
∑
i, j

(ci j |nh, i〉 〈h, j| + H.c.), (2)

where coefficients ai j , bi j , and ci j are complex numbers, satis-
fying ai j = a∗

ji, bi j = b∗
ji(i �= j), and Im(bii ) < 0 for all i and

j. Thus, Hh and Hinter are Hermitian operators, while Hnh is
non-Hermitian.

The imaginary part of the system’s energy spectrum must
be smaller than or equal to zero for its dissipative nature.
Now we assume the existence of IGC points in the energy

spectrum, i.e.,

∃ |IGC〉 , so that H |IGC〉 = EIGC |IGC〉 ,

and Im(EIGC) = 0. (3)

Subsequently, we discuss the conditions these IGC states
should satisfy. Begin with the Lemma 1.

Lemma 1. In systems where non-Hermiticity arises solely
from onsite dissipation [Eq. (2)], the wave functions of IGC
states are only populated on nondissipative sites, i.e.,

|IGC〉 =
∑

i

ψh
i |h, i〉 . (4)

Proof. Assume that

|IGC〉 =
∑

i

ψh
i |h, i〉 +

∑
j

ψnh
j |nh, j〉 . (5)

Then

〈IGC| (H − H†) |IGC〉 = −2i
∑

j

γ j

∣∣ψnh
j

∣∣2
, (6)

where −γ j = Im(b j j ) is the dissipative rate of site (nh, j), and
γ j > 0. Notice that the left-hand side of Eq. (6) also equals to

〈IGC| (H − H†) |IGC〉 = EIGC − E∗
IGC = 0. (7)

So ψnh
j = 0 for all (nh, j) sites. �

Lemma 1 aligns well with our physical intuition. If an
eigenstate has a population on dissipative sites, then the norm
of the eigenstate will decrease with time, which implies the
presence of an imaginary part in the energy. Via Lemma 1,
the eigenequation of IGC states becomes

0 = (H − EIGC) |IGC〉
= (Hh − EIGC) |IGC〉 + Hinter |IGC〉 . (8)

Notice that (Hh − EIGC) |IGC〉 is only populated on nondissi-
pative sites, while Hinter |IGC〉 is only populated on dissipative
sites. Hence, Eq. (8) can be decomposed into two separate
parts

(Hh − EIGC) |IGC〉 = 0, Hinter |IGC〉 = 0. (9)

This implies that IGC states not only belong to the kernel
of Hinter but also function as eigenstates of a system solely
comprised of nondissipative sites, retaining their original
eigenvalues. The term Hinter can be interpreted as a represen-
tation of the coupling between nondissipative and dissipative
sites. Equation (9) signifies that upon connecting the nondis-
sipative subsystem to the dissipative subsystem, these IGC
states remain eigenstates of the combined system with their
eigenvalues preserved.

In summary, IGC states can be described as dark modes
characterized by the absence of a population on dissipative
sites. Notably, IGC states are the eigenstates of Hh, satisfy-
ing the connection conditions Hinter, independent of Hnh. Our
findings hold true for a broad class of systems, as evidenced
by their applicability to arbitrary Hamiltonian that only have
non-Hermitian terms on its diagonal like Eq. (2). However,
limitations arise when considering effective Hamiltonians
with off-diagonal non-Hermitian terms. These nondiagonal
forms, often encountered in systems like atoms coupled by the
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FIG. 2. Model of the one-dimensional dissipative ladder. Each
unit cell is labeled by spatial coordinate x and contains two sites, A
and B. The non-Hermiticity comes from site-dependent decay γx .

electromagnetic field [105–107], whose dissipative dynamics
can lead to phenomena like fluorescence [108], superradi-
ance [109–111], and subradiance [112]. Our current theory
necessitates further development to encompass these phenom-
ena effectively.

III. IMAGINARY GAPLESS MODES AND DYNAMICS
OF QUANTUM WALK

To investigate the impact of IGC modes on dynamical
evolution, we delve into a more concrete model and analyze its
quantum walk behavior. We consider a one-dimensional tight-
binding model on a dissipative ladder of length L, as shown in
Fig. 2. The A-B coupling range is n, meaning particles can
hop between different sublattices up to the nth-nearest unit
cells. Hopping along the same chain carries a Peierls phase
φ [113,114], which induces gauge fluxes in closed hopping
contours and breaks the time-reversal symmetry of the system.
The non-Hermiticity comes from the site-dependent dissipa-
tion γx, which induces the NHSE under OBC [115]. Then, we
check the IGC states of this system under PBC. According to
Eq. (9), IGC states of this system are also the eigenstates of
chain A, given by

|IGC〉 = 1√
L

L∑
x=1

eikx |x, A〉 . (10)

These states possess eigenenergies

EIGC = tp cos (k − φ), (11)

where k = 2πn/L with n = 0, 1, 2, . . . , L − 1.

The specific value of k is determined by the connection
condition obtained in Eq. (9):

n∑
m=0

tm cos(mk) = 0. (12)

At k = 0, the left-hand side of Eq. (12), denoted as F (k),
attains its maximum value

∑n
m=0 tm > 0. So, if the minimum

value of F (k) is smaller than or equal to zero, Eq. (12) has real
roots, and the energy spectrum is IGC. In finite chains, satisfy-
ing condition (12) with a discrete crystal momentum k might
not be achievable. However, from a dynamical perspective,
their bulk dynamical behavior mirrors that of the infinite-chain
limit due to the local nature of propagation. Treating k as

(c)                                                 (d)

(a)                                                 (b)

(e)                                                 (f)

FIG. 3. The model with only the nearest A-B coupling (a) energy
spectra with t0 = 0.3. Blue: OBC; red: PBC. (b) The bulk distribution
of the relative loss probabilities Px/P130 in a double-logarithmic plot
with t0 = 0.3 for system size L = 200, initial position x0 = 150. (c),
(d) The distribution of Px for a walker initiated at x0 = 150 with L =
200 under OBC. t0 = 0.3 for (c) and t0 = 0.6 for (d). (e) Relative
height Pedge/Pmin and (f) the edge loss probability Pedge with chain
length L = 200, and x0 varying from 40 to 160. t0 = 0.3 for (c) and
t0 = 0.6 for (d) in a logarithmic plot. Throughout (a)–(f), φ = π/2,
t1 = 0.5, tp = 0.5, and γ = 0.5 are fixed.

continuous in this limit enables the identification of rigorous
IGC points.

Notably, the system under OBC lacks IGC states. This is
because any IGC state would also be an eigenstate of the
Hermitian Hh, which is an extended state, contradicting the
NHSE’s localized nature under OBC. Alternatively, in sys-
tems with the NHSE, OBC spectra are enclosed by their PBC
counterparts [91,102]. For this dissipative lattice, the PBC
spectra maximum imaginary part is zero, rendering the OBC
spectra always imaginary gapped. An example is shown in
Fig. 3(a).

Although substantial differences exist in the spectrum
and eigenstates between OBC and PBC for this model,
the dynamics within the bulk exhibit similarity for both
cases. This similarity is evident from the Schrödinger
equation i(d/dt ) |ψ (t )〉 = H |ψ (t )〉 (we set h̄ = 1 through-
out this paper). Under PBC, the Hamiltonian is given by
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HPBC = HOBC + δH . Here, δH represents the coupling term
that connects the two boundaries. When a wave function
|ψ (t )〉 predominantly resides in the bulk, with negligible
population at the boundaries, δH |ψ (t )〉 ≈ 0, and then conse-
quently, the Schrödinger equations for OBC and PBC become
effectively equivalent in this approximation. This feature is
exemplified in Fig. 3(b). In the following, we show that the dy-
namical evolution properties of quantum walks under OBCs
can be elucidated by IGC points of the PBC spectra.

Considering a quantum walk in this model under OBC, a
particle is released at the site (x0, A). Subsequently, the par-
ticle’s wave function diffuses from the initial location (x0, A)
and escapes from lossy B sites. The wave-function norm de-
creases as

d

dt
〈ψ (t )|ψ (t )〉 = i

〈
ψ (t )|(H† − H )|ψ (t )

〉

= −
∑

x

2γx|ψB
x (t )|2. (13)

The escape probability from site (x, B) is employed to charac-
terize this quantum walk, given by

Px = 2γx

∫ ∞

0

∣∣ψB
x (t )

∣∣2
dt . (14)

Then, we can use the non-Hermitian Green’s function [104]
to express Px as

Px = γx

∫ +∞

−∞

dω

π

∣∣∣∣〈x, B

∣∣∣∣ 1

ω − H

∣∣∣∣x0, A〉
∣∣∣∣
2

. (15)

Note that �xPx = 1 is satisfied under the initial-state nor-
malization 〈ψ (0)|ψ (0)〉 = 1. Intuitively, the distribution Px

features a peak centered on the site x0, displaying left-right
asymmetry attributable to the NHSE, which causes the wave
function to move leftward preferentially [116]. However, un-
der certain parameters, a prominent peak, named edge burst,
emerges at the left edge [117]. In a recent paper, Xue et al.
investigated this model with the nearest A-B hopping term and
uniform dissipation, i.e., γx is a constant, revealing that the
edge burst phenomenon results from the interplay between the
IGC spectrum under PBC and the NHSE [104].

When there are IGC states, the escape probability Px de-
cays slowly as a power law with the distance from the initial
position x0,

Px ∼ |x − x0|−αb . (16)

In this case, the walker remains a large wave-function ampli-
tude when it arrives at the left edge [118]. Then, the walker
becomes trapped due to the NHSE and escapes from (1, B)
site over time, leading to a high peak Pedge, as shown in
Fig. 3(c). If we shift the left boundary to infinite, the walker
is no longer localized at x = 1 and carries out left walking
quickly through this position, resulting in a tiny P1. This
argument gives an estimation of Pedge as follows:

Pedge ∼
0∑

−∞
Px ∼

∫ 0

−∞
|x − x0|−αbdx ∼ (x0)−αb+1. (17)

Here, we have assumed that bulk Px is only determined by
the relative distance to the initial position x0, and system-
size effects can be neglected. On the other hand, Eq. (16)

implies that Px takes the minimum near the edge, which
gives the estimation Pmin ∼ x−αb

0 . Therefore, it follows from
Eq. (17) that

Pedge/Pmin ∼ x0, (18)

which can be confirmed by our numerical results shown in
Fig. 3(e). Thus, if the initial position x0 is far from the edge,
there is a large peak Pedge compared to almost invisible Px in
the vicinity sites.

In contrast, when there are no IGC states, bulk Px decays
fast as exponential law with

Px ∼ (λb)x0−x (λb < 1). (19)

In this case, wave-function amplitude becomes very small
when the walker arrives at the left edge. Similarly, we have
the estimation

Pedge ∼
0∑

−∞
Px ∼

∫ 0

−∞
(λb)x0−xdx ∼ (λb)x0 . (20)

Pedge is of the same order as the decay tail and, therefore,
as shown in Fig. 3(d), no edge burst exists. The relationship
between Pedge and x0 in Eq. (20) is verified by the numerical
results shown in Fig. 3(f).

IV. IMPACT OF PARAMETERS

The above discussion shows that IGC points of PBC spec-
tra are crucial to the non-Hermitian dynamics. In this section,
we explore the quantum walk across various parameters,
demonstrating the universality of the correlation between edge
burst and IGC points. This correlation remains independent
of the values or distribution of A-B hopping terms, Peierls
phases, and loss rates. This indicates that the bulk dynamics
can be effectively captured in these models by specific spectra
characteristics under PBCs.

A. A-B coupling model second-nearest intercell hopping

In this subsection, we consider the impact of A-B hopping
terms with long range. For concreteness, the intercell A-B cou-
pling extends to the second-nearest neighbor, and the Peierls
phase takes φ = π/2. Additionally, a uniform loss rate of γ is
applied. The Bloch Hamiltonian is given by

H (k) = hx(k)σx +
(

hy(k) + i
γ

2

)
σz − i

γ

2
I, (21)

where hx(k) = t0 + t1 cos k + t2 cos 2k, hy(k) = tp sin k, and
σx,z are the Pauli matrices. Since hx(k) = F (k), the IGC points
are determined by hx(k) = 0. This condition, expressed in
terms of the Bloch phase factor β = eik , becomes

t0 + t1
2

(β + β−1) + t2
2

(β2 + β−2) = 0. (22)

This is a quartic equation of β with the constraint |β| = 1.
Therefore, the maximum number of IGC points is four, which
is confirmed by the numerical results of the energy spectra.
Furthermore, we can infer that if intercell A-B couplings are
up to the nth-nearest neighbors, the maximum number of IGC
points is 2n.

As hx(0) = t0 + t1 + t2 > 0 [maximum value of hx(k)], the
existence of IGC points solely depends on the minimum value
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(a)                                                    (b)             

(c)                                                    (d)                                 
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FIG. 4. (a), (b) Energy spectra under (a) PBCs and (b) OBCs,
t0 = 0.3 (red), 0.4 (blue), and 0.5 (green). (c), (d) The bulk distribu-
tion of Px in double-logarithmic (c) and logarithmic (d) plots. System
size L = 200, and the initial position x0 = 150. Throughout (a)–(d),
tp = 0.5, t1 = 0.5, t2 = 0.1, γ = 0.5 are fixed.

hx(k0). By analyzing hx(k), we find that the expression for
hx(k0) takes a different form when the parameters change.
When t2 � t1/4, hx(k0) is given by

hx(k0) = t0 − t1 + t2, (23)

with k0 = π . Conversely, for t2 > t1/4, the expression
changes to

hx(k0) = t0 − t2
1

8t2
− t2, (24)

with cos k0 = −t1/4t2. Combining Eqs. (23) and (24), we
obtain the maximum value of hx(k0) as t0 − (t1/

√
2), achieved

when t2 = t1/2
√

2. Thus, the inequality hx(k0) � 0 always
holds in the regime t0 � t1/

√
2, regardless of the value of

t2. Consequently, the energy spectra of the Bloch Hamilto-
nian (21) are guaranteed to exhibit IGC points. However, for
t0 > t1/

√
2, the existence of IGC points becomes contingent

on specific values of hopping parameters t0, t1, and t2. For
example, as shown in Fig. 4(a), when fixing other parameters
and increasing the parameter t0, two IGC points gradually
close together. At a critical value, they merge into a single IGC
point. Besides, no IGC points exist when t0 exceeds this criti-
cal value. Apparently, the corresponding OBC spectra do not
have IGC points, which is shown in Fig. 4(b). As discussed in
Sec. III, whether energy spectra have IGC points can be linked
to the quantum walk behavior. Figures 4(c) and 4(d) illustrate
this connection, where the bulk distribution of particle loss
probabilities Px exhibits power-law behavior for PBC spectra
with IGC points and exponential behavior for spectra without
them.

To demonstrate the feature of the edge burst phenomenon
for this model, we choose specific parameter values t0 = 0.3

(a)                                                    (b)                                 

(c)                                                    (d)                              

L

FIG. 5. (a) The relative height Pedge/Pmin with varying t2. (b) Part
of the energy spectra with system size L = 500 under PBCs, t2 =
0.25 (red), 0.33 (blue), and 0.50 (green) (c), (d) The loss proba-
bility Px for a walker initiated at x0 = 150 with L = 200. t2 = 0.2
for (c) and t2 = 0.5 for (d). Throughout (a)–(d), tp = 0.5, t0 = 0.3,
t1 = 0.5, γ = 0.5 are fixed.

and t1 = 0.5. As previously established, the IGC condition is
automatically satisfied because the maximum value of hx(k0)
is strictly negative. The relative heights Pedge/Pmin are vital
to depict edge burst, as these physical quantities are closely
related to the decay scaling behavior of the walker in the
bulk. Here, Pedge are the escape probabilities at two edges
and equal to P1 or PL. Pmin is defined as min{P1, P2, . . . , Px0}
for Pedge = P1 and min{Px0 , Px0+1, . . . , PL} for Pedge = PL. We
calculate Pedge/Pmin as the parameter t2 increasing from zero
[see Fig. 5(a)]. For small t2, the ratio P1/Pmin � 1 while
PL/Pmin ∼ 1, which indicates a single remarkable probability
loss peak at the left edge [Fig. 5(c)]. As t2 exceeds a critical
value, PL/Pmin increases rapidly and becomes much larger
than one. In this case, the system exhibits two remarkable
probability loss peaks at both left and right edges [Fig. 5(d)].
This phenomenon is closely linked to the bipolar skin effect,
which corresponds to the self-intersecting point of the PBC
spectrum [119] [see green line in Fig. 5(b)]. Another inter-
esting aspect of the edge burst phenomenon is that the ratio
of P1/Px0 can be greater than 1 [see Fig. 5(c)], which is not
observed in the system for t2 = 0.

B. Model with varying Peierls phases φ

In this subsection, we focus on the influence of the Peierls
phase φ. For simplicity, we only consider the nearest-neighbor
intercell A-B coupling with uniform loss rate γ , and the Bloch
Hamiltonian is

H (k) = (t0 + t1 cos k)σx +
[
tp cos(k − φ) + i

γ

2

]
σz − i

γ

2
I.

(25)
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(a)                                                 (b)

L

FIG. 6. (a) Energy spectra under PBCs. Peierls phases φ are set
to 0 (red), π/6 (black), π/3 (green), and π/2 (blue). (b) The relative
height Pedge/Pmin with varying φ. System size L = 200 and initial
position x0 = 150. Throughout (a) and (b), tp = 0.5, t0 = 0.3, t1 =
0.5, γ = 0.5 are fixed.

IGC points are given by t0 + t1 cos k = 0. The eigenvalues of
IGC states described by Eq. (11) can be expressed in terms of
the system parameters as follows:

EIGC = tp

t1

( − t0 cos φ ±
√

t2
1 − t2

0 sin φ
)
. (26)

This analytical expression exhibits good agreement with nu-
merical results of energy spectra under PBCs, as shown in
Fig. 6(a). Therefore, Peierls phases φ do not alter the IGC
conditions or impact the bulk scaling behavior of Px. They
only shift the values of EIGC along the real axis.

When φ = 0, the Hermitian part of the Bloch Hamil-
tonian (25) has time-reversal symmetry. Consequently, the
onsite dissipation does not induce the NHSE. In this case,
the distribution of Px is left-right symmetric, and there is no
edge burst phenomenon. As φ increases from zero, this model
breaks time-reversal symmetry and thus features the NHSE.
We can see from Fig. 6(b) that the quantum walk exhibits
a bipolar edge burst for a not very large φ and reduces to
a standard edge burst on the left side when it exceeds some
critical value. The corresponding PBC spectra also exhibit the
emergence and disappearance of self-intersecting points, as
shown in Fig. 6(a).

C. Model with varying loss rate γx

In this subsection, we discuss the effect of loss rate distri-
bution. We focus on the model with nearest-neighbor intercell
A-B coupling and φ = π/2 for convenience. The system
breaks discrete translational symmetry if the loss rate γx is
not uniform. Thus, the Hamiltonian under PBC cannot be
expressed in a simple Bloch form, and eigenstates cease to be
Bloch waves. However, as established in Sec. II, IGC states
exhibit invariance, remaining unaffected by the specific form
of γx. Let us consider a linear form of γx as follows:

γx = γ0x + γc. (27)

As shown in Fig. 7(a), this nonuniform system transitions
from IGC to imaginary gapped when increasing the value of
t0. IGC points of the PBC spectra also determine the bulk
dynamics of quantum walk in this nonuniform system. When
IGC points exist, Px follows a power-law decay in the bulk.
Conversely, in the absence of points, Px follows an exponential

0.3

0.5

0.6

(a)                                                  (b)             

(c)                                                  (d)             

0.3

0.5

0.6

FIG. 7. (a) Energy spectra under PBCs. t0 = 0.3 (red), t0 = 0.5
(blue), t0 = 0.6 (green). (b) The distribution of Px when t0 = 0.3.
(c), (d) The bulk distribution of Px in double-logarithmic (c) and
logarithmic (d) plots with nonuniform loss rates. For (b)–(d), system
size L = 200 and the initial position x0 = 150. Throughout (a)–(d),
tp = 0.5, t1 = 0.5, γ0 = 0.01, γc = 0.20 are fixed.

law decay in the bulk. We can see this clearly in Figs. 7(c)
and 7(d). Besides, a remarkable probability loss peak
appeared at the edge when bulk Px shows a power-law decay,
as shown in Fig. 7(b). This gives an explicit explanation of the
edge burst phenomenon in Ref. [120].

V. RELATION TO THE LIOUVILLIAN DYNAMICS

Leveraging the established correspondence between non-
Hermitian dynamics and steady states of open quantum
systems (as explored in Ref. [121]), our conclusions can be
generalized to open quantum systems as well. When a quan-
tum system is coupled to a Markovian bath, the corresponding
dynamical evolution of the density matrix is governed by the
master equation, which can be expressed in Lindblad formal-
ism [21]

dρ

dt
= −i[H0, ρ] +

∑
α

(2LαρL†
α − {L†

αLα, ρ}), (28)

where H0 is the Hamiltonian of the system, Lα are the Lind-
blad dissipators describing quantum jumps randomly moving
the state |ψ〉 to Lα|ψ〉. In this system, the quantum dynam-
ics started from single-particle states are controlled by the
effective Hamiltonian Heff = H0 − i

∑
α L†

αLα as dρ/dt =
i(ρH†

eff − Heffρ).
In the open chain, we consider [Fig. 8(a)], the dissipators

are given by Lx = √
γxcBx . Notably, the long-time evolution of

the system can be captured by the single-particle correlation
function Cxy(t ) = Tr[ρ(t )c†

xcy]. For this dissipative system,
any initial state will converge to the nonequilibrium steady-
state correlation C(∞), determined by dC(∞)/dt = 0. In this
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(b)                                                 (c)

0.3,
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0.6,

OBC
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OBC
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A

B

A

B

A

B

A

B

(a)                                                               

FIG. 8. (a) The corresponding bosonic quadratic open quantum
system. (b), (c) The model only considers the nearest A-B coupling
and chooses φ = π/2, t1 = 0.5, tp = 0.5, and 0.4 < γx < 0.6 (ran-
domly distributed). (b) Liouvillian spectra. Blue: OBC, t0 = 0.3; red:
PBC, t0 = 0.3; purple: OBC, t0 = 0.6; green: PBC, t0 = 0.6. (c) The
bulk distribution of Px in a double-logarithmic plot.

paper, we mainly consider the speed of converging to the
steady state and focus on the deviation C̃(t ) = C(t ) − C(∞),
whose evolution equation is given by

d

dt
C̃(t ) = XC̃(t ) + C̃(t )X †, (29)

where the damping matrix X = i(HT
0 + iM ) and directly con-

nects to the non-Hermitian Hamiltonian H in real space as
X = iH∗. Here, M is a diagonal matrix whose diagonal ele-
ments are {0, γ1, 0, γ2, . . . , 0, γn}. The solution of C̃ is

C̃(t ) = eXtC̃(0)eX †t . (30)

By expressing X in terms of right and left eigenvectors,

X =
∑

n

λn|ψn〉〈φn|, (31)

we can write Eq. (30) as

C̃(t ) =
∑
n,n′

exp[(λn + λ∗
n′ )t]|ψn〉〈φn|C̃(0)|φn′ 〉〈ψn′ |. (32)

Due to the dissipative nature of the system, Re(λn) �
0 always holds. The Liouvillian gap is defined as � =
min[2 Re(−λn)], which is crucial to the long-time dynam-
ics. A finite gap implies exponential convergence towards
the steady state, while a vanishing gap implies algebraic
convergence [93,122].

Using a method similar to Sec. II, we can demonstrate that
the damping matrix X of the open chain under PBC also has
universal Liouvillian gapless points. We can check our conclu-
sion numerically with a specific model. Let the hopping tm =
0, m = 2, 3, . . . , we can take the distribution of dissipators to
be randomly distributed, namely, Lx = √

γxcB
x , where γx is a

random number within 0.4 and 0.6, it varies for each x. And
we get the Liouvillian spectrum [Fig. 8(b)]. We can see that if
the condition of Eq. (12) can be satisfied, the Liouvillian spec-
trum can have Liouvillian gapless points, which correspond to
the eigenmodes of the form (1, 0, eik, 0, ei2k, 0, . . . , eikN , 0).
These modes can be viewed as dark modes, which lead to
the algebraic convergence towards the steady state in the bulk
[Fig. 8(c)]. Here, we already replaced the loss probability on
B sites Px with the steady-state density on B sites nB

x , which
can be written as [121]

nB
x = [C(∞)]xB,xB = γx

∫ +∞

−∞

dω

π
| 〈xB| 1

iω − X
|x0A〉 |2.

(33)
Comparing Eqs. (15) and (33), we can find the equivalence
between the loss probability Px and the steady-state density
nB

x . Results show that the Liouvillian gapless points are indeed
only related to the properties of Hermitian Hamiltonian under
PBC and irrelevant to the dissipation of the system.

VI. SUMMARY

In summary, our investigation centers on IGC points and
relative dynamic characteristics in dissipative systems. For
the onsite dissipative non-Hermitian model, we deduce the
equation governing the IGC points. This analysis reveals that
IGC states are unaffected by the non-Hermitian part of the
Hamiltonian and serve as dark modes characterized by the
absence of a population on dissipative sites. Then, we examine
quantum walks across diverse scenarios and parameters for a
class of one-dimensional dissipative chains, highlighting the
pivotal role of IGC points under PBC in shaping quantum
walk dynamics. Finally, we show that the PBC damping ma-
trix of the dissipative chain can exhibit Liouvillian gapless
points, which correspond to an algebraic convergence towards
the steady state in long-time dynamics. As the onsite dissipa-
tion is feasible to implement, our theory of IGC points can be
confirmed in various non-Hermitian platforms, for example,
the photon quantum walk [123], dissipative cold-atom sys-
tems [124], and nuclear spin systems [125].
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