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Exploring spin squeezing in the Mott insulating regime: Role of anisotropy,
inhomogeneity, and hole doping

Tanausú Hernández Yanes ,1,2,* Artur Niezgoda ,3 and Emilia Witkowska 1

1Institute of Physics PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, Poland
2Universität Innsbruck, Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik, 6020 Innsbruck, Austria

3ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain

(Received 8 May 2024; revised 10 June 2024; accepted 11 June 2024; published 24 June 2024)

Spin squeezing in systems with single-particle control is a well-established resource of modern quantum tech-
nology. Applied in an optical lattice clock it can reduce the statistical uncertainty of spectroscopic measurements.
Here, we consider dynamic generation of spin squeezing with ultra-cold bosonic atoms with two internal states
loaded into an optical lattice in the strongly interacting regime as realized with state-of-the-art experiments using
a quantum gas microscope. We show that anisotropic interactions and inhomogeneous magnetic fields generate
scalable spin squeezing if their magnitudes are sufficiently small, but not negligible. The effect of nonuniform
filling caused by hole doping, nonzero temperature, and external confinement is studied at a microscopic level
demonstrating their limiting role in the dynamics and scaling of spin squeezing.
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I. INTRODUCTION

Quantum technology is an emerging interdisciplinary field
of study that combines the areas of physics, mathematics,
and computer science. A prominent resource fueling emergent
technologies like quantum simulators, computers and sensing
is entanglement [1–4], a concept originating from the quan-
tum mechanics formalism to explain correlations that cannot
be reproduced classically. A plethora of useful entanglement-
enhanced approaches are examined and spin squeezing is a
well-established one [5].

Spin squeezing applies to a system composed of N qubits,
further described by the collective spin with the corresponding
quantum number S = N/2. The uncertainty of spectroscopic
measurements of unknown phase ϕ for a given state is
�ϕ = ξ/

√
N , where

ξ 2 = N�2Ŝ⊥min

|〈S〉|2 (1)

is the spin squeezing parameter while �2Ŝ⊥min is the minimal
variance in the plane orthogonal to the direction of the mean
collective spin 〈S〉, where S = (Ŝx, Ŝy, Ŝz ) [6,7]. If ξ 2 < 1, the
corresponding state is spin squeezed. However, a remarkable
metrological gain is obtained with scalable spin squeezing
when its level decreases significantly with the total number
of spins.

The archetypal model undergoing such desired scalability
is the famous one-axis twisting (OAT) protocol (all-to-all in-
teractions) where the best squeezing scales with the system
size as ξ 2

best ∝ N−2/3 [8]. It was simulated with pioneering
experiments using bimodal Bose-Einstein [9,10] and spinor

*Contact author: hdez@ifpan.edu.pl

[11–14] condensates utilizing atom-atom collisions and atom-
light interactions in cavity setups [15,16]. These platforms,
however, weakly support a single-spin addressing and control
required very often by quantum technology tasks. There is an
increasing interest in generation of spin squeezed states using
platforms where individual addressing of spins is possible
[17–24]. Recent experiments using an array of trapped ions
[25] and Rydberg atoms [26,27] have demonstrated the gener-
ation of such scalable squeezing with tens of spins. Ultracold
atoms in optical lattices offer yet another platform for scalable
spin squeezing generation in a system composed of tens of
thousands of spins. It was already considered for spin squeez-
ing generations by utilising atom-atom collisions for bosons
in superfluid regime [18,19,23] and spin-orbit coupling in the
Mott phase [20,28,29].

In this paper, we study dynamical generation of scal-
able spin squeezing with ultracold bosonic atoms in two
internal states loaded into a one-dimensional optical lattice.
We consider the strongly interacting regime with one atom per
lattice site, where the system forms a ferromagnetic Heisen-
berg XXZ spin chain with nearest-neighbor interactions
[30,31]. This is the Mott insulating regime. The anisotropy
of the corresponding XXZ spin model is set by intra- and in-
terspecies interactions. When interaction strengths equal each
other, the model reduces to the isotropic XXX Heisenberg
spin chain. We concentrate on the system and parameters as in
the recent experiments with rubidium-87 atoms in the optical
lattice, which can be diagnosed using the quantum gas mi-
croscope when the nearly single-atom control and resolution
were obtained [32].

However, our analytical theory is general and can be ap-
plied to trapped ions and molecules when they simulate the
same models [33,34].

Even for the simple system considered by us, experimen-
tal imperfections may arise such as slight anisotropy of the
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interactions, residual local magnetic fields, hole doping, ex-
ternal trapping effects, or nonzero temperature. They could
negatively affect the dynamics of the system. Throughout this
work, we found that in most cases, not only these different
effects can be accurately accounted for, but in most cases, they
are beneficial for spin squeezing generation.

We show analytically, and confirmed numerically, that
a weak anisotropy of interactions allows generating scal-
able spin squeezing from the initial spin coherent state,
and the OAT model approximates the dynamics well. While
recent work [23] also demonstrates spin squeezing gener-
ation through anisotropy, here we strictly define the weak
anisotropy regime where scalable spin squeezing can be ob-
served. Beyond that, we evaluate analytically the timescale
of the best squeezing showing its experimental feasibility.
We show that adding a weak inhomogeneous magnetic field
generates scalable spin squeezing by itself, similarly. The
coexistence of weak anisotropy and inhomogeneous field does
not destroy squeezing generation but smoothly changes the
timescale.

We address the problem of hole doping on the genera-
tion of spin squeezing. We develop a microscopic theory to
explain the change in the variation of the spin squeezing
parameter in time due to hole doping. While the squeezing
due to anisotropic interactions is weakly affected, the inho-
mogeneous field introduces subsystem rotations that modulate
squeezing over time. This result is proven analytically for
the case when holes are fixed in place. We also explore the
t−J model, where tunneling is allowed and identify the upper
and lower bounds for the generation of squeezing at a given
filling factor. We find in the anisotropy case that squeezing
immediately converges to the lower bound result if tunneling
is allowed. On the other hand, in the inhomogeneous magnetic
field case the squeezing level hardly changes with the effective
tunneling. In both cases, the movement of holes facilitates
the correlation between individual atoms initially belonging
to different partial chains separated by these holes.

The effect of harmonic trapping is also taken into account
and even beneficial acceleration of dynamics is observed.
Lastly, we explore the effects of nonzero temperature on the
squeezing generation of our model. We illustrate our results
for the parameters of experiments [32] demonstrating they can
be realized with state-of-the-art techniques.

II. MODEL

We consider N rubidium-87 atoms in two internal states |a〉
and |b〉 loaded in an optical lattice potential having M lattice
sites. For simplicity, we consider a one-dimensional lattice
with open boundary conditions. The system is described by
the two-component Bose-Hubbard model

ĤBH = − J
∑

j,i= j±1

(â†
j âi + b̂†

j b̂i )

+ Uaa

2

∑
j

n̂a
j

(
n̂a

j − 1
)

+ Ubb

2

∑
j

n̂b
j

(
n̂b

j − 1
) + Uab

∑
j

n̂a
j n̂

b
j, (2)

in the lowest Bloch band and under the tight-binding approxi-
mation [35]. â j (b̂ j) is the annihilation operator of an atom in
internal state a (b) in the jth site of the lattice, and n̂a

j = â†
j â j ,

n̂b
j = b̂†

j b̂ j are the corresponding number operators. J is the
tunneling rate, the same for bosons in the states a and b.
Uaa, Ubb, and Uab are specific intraspecies and interspecies
interaction strengths. The model (2) can be realized using
a quantum gas microscope [32,36]. We assume interaction
dominates over the tunneling strength leaving the system in
the Mott insulating regime. In the case of unit filling, one
atom per lattice site, the effective Hamiltonian reduces to the
Heisenberg XXZ model

ĤXXZ = −J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + �Ŝz

j Ŝ
z
j+1 − 1

4

)
, (3)

where the couplings J⊥ = 4J2U −1
ab and anisotropy parame-

ter � = Uab/Uaa + Uab/Ubb − 1 are derived by second-order
perturbation theory in the tunneling [30]. When � = 1 the
Hamiltonian takes the form of isotropic Heisenberg XXX
model. Here, Ŝx

j = (Ŝ+
j + Ŝ−

j )/2, Ŝy
j = (Ŝ+

j − Ŝ−
j )/(2i), Ŝz

j =
(â†

j â j − b̂†
j b̂ j )/2 with Ŝ+

j = â†
j b̂ j , Ŝ−

j = (Ŝ+
j )†. The collective

spin operators are just a summation over the individual ones,
Ŝσ = ∑M

j=1 Ŝσ
j for σ = x, y, z,±.

The generation of spin squeezing starts with the ini-
tial spin coherent state |θ, ϕ〉 = e−iϕŜz e−iθ Ŝy

⊗M
j=1 |a〉 j for

ϕ = 0 and θ = π/2 followed by unitary evolution with the
Hamiltonian (3). Note that the state for ϕ = θ = 0 is the
Dicke state |S, m〉 = ⊗M

j=1 |a〉 j for maximal spin quantum
number S = N/2 and magnetization m = N/2. In our numeri-
cal simulations, we consider open boundary conditions [29]
and use the parameters as in the recent experiment of A.
Rubio-Abadal et al. [32] with 87Rb atoms, lattice spacing
d = 532 nm, tunneling amplitude J = h̄ × 2π × 24.8 Hz and
almost equal inter- and intraspecies interactions Uaa ∼ Ubb ∼
Uab = U [37] with U = 24.4J . For the sake of simplicity,
timescales will be expressed in tunneling units. The initial
state is prepared as a coherent state along the x direction
in the Bloch sphere, namely, |θ = π/2, ϕ = 0〉. Finally, the
spin squeezing parameter (1) is evaluated for collective spin
operators.

III. ROLE OF ANISOTROPY

The dynamical generation of spin squeezing is possible by
anisotropic interactions, that is when � �= 1. We demonstrate
this feature in Fig. 1(c) by plotting the best spin squeezing,
see also Fig. 3 in Ref. [23]. This numerical observation is con-
firmed by our perturbative analysis of the system Hamiltonian
(3) when the term Ĥz = −J⊥(� − 1)

∑M−1
j=1 Ŝz

j Ŝ
z
j+1 is treated

as a perturbation to the isotropic XXX model. This leads to
the zero-order dominant term of the form

Ĥ (0)
eff = χ

(0)
M Ŝ2

z , with χ
(0)
M = J⊥

1 − �

M − 1
, (4)

where we omitted constant energy terms. Details of derivation
are described in Appendix B. The resulting Hamiltonian (4)
is the famous OAT model [8] which dynamics is solvable
analytically for any N . The effective model approximates
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FIG. 1. (a) The ratio f between results of the XXZ model (3) and
the effective one (4) for the best spin squeezing ξ 2

best (first minima
of ξ 2) and the best spin squeezing time marked by purple and blue
lines, respectively, when M = N = 16 and � ∈ (−1, 1) ∪ (1, 2].
(b) The same as in (a) but in the perturbative regime enlarged for
� ∈ [2 cos(π/N ) − 1, 1) ∪ (1, 3 − 2 cos(π/N )]. (c) The best spin
squeezing generated dynamically with the XXZ model (3) for dif-
ferent values of � (see markers in upper and middle panels) vs N .
A scalable level of squeezing is possible in the perturbative regime
marked by triangles and squares.

the dynamics of spin squeezing in the perturbative regime
when 2 cos(π/M ) − 1 � � � 3 − 2 cos(π/M ) and � �= 1.
In Appendix D we collect specific analytical expressions for
the first and second moments of spin components governed
by OAT.

The validity of our analytical finding is demonstrated in
Figs. 1(a) and 1(b) by showing the relative level of best
squeezing and best squeezing time obtained numerically from
the full XXZ model (3) and the effective one (4). Notice
the comparison of timescales (blue line) is slightly different
than unity in the perturbation regime since we calculate χ

(0)
M

only up to first order. However, the comparison of squeez-
ing level (purple line) is less sensitive to this constraint of

the approximation. For the considered set of parameters, the
characteristic timescale for the best squeezing ξ 2

best is close
to the one predicted by the OAT model, namely, Jt/h̄ �
31/6(M − 1)N−2/3Uab/(4|1 − �|J ). It is Jt/h̄ � 850 for M =
N = 16, � = 0.98, and Uab = 22.2J (� + 1). We found nu-
merically for this set of parameters that the spin squeezing
parameter for the OAT model reaches the minima at Jt/h̄ �
692 while for the XXZ model at Jt/h̄ � 713.

IV. INHOMOGENEOUS MAGNETIC FIELD

The addition of an external homogenous magnetic field
BŜz to the XXZ model does not spoil spin squeezing gen-
eration as long as N is fixed. It contributes in the same
form to the effective Hamiltonian (4) leading to the model
Ĥeff = χ

(0)
M Ŝ2

z + BŜz which dynamics is solvable analytically
as shown in Appendix D.

Similarly, even a weak inhomogeneous magnetic field

ĤB =
M∑

j=1

β j Ŝ
z
j (5)

does not destroy spin squeezing generation but changes the
timescale of dynamics. To demonstrate this effect, let us con-
sider the isotropic case when � = 1 with an addition of a
weak inhomogeneous magnetic field (5). The second-order
correction obtained by using the Schrieffer-Wolff (SW) trans-
formation [28] takes the OAT form

Ĥ (2)
eff = −χ

(2)
M Ŝ2

z + vMŜz, (6)

when ĤB is treated as a perturbation to the XXX model and
where

χ
(2)
M = 1

M − 1

M−1∑
q=1

∣∣c(q)
M

∣∣2

E (q)
M

, (7)

vM = 1

M

M∑
j=1

β j, (8)

with

c(q)
M =

M∑
j=1

p(q,M )
j (β j − vM ), (9)

p(q,M )
j =

√
2

M
cos

[
π

M

(
j − 1

2

)
q

]
, (10)

E (q)
M = J⊥

[
1 − cos

( π

M
q
)]

, (11)

for q ∈ [1, M − 1]. The derivation is explained in
Appendix C. We omitted constant energy terms in (6).
The validity of (6) for the dynamical generation of spin
squeezing via an inhomogeneous field (5) when � = 1 is
demonstrated in Fig. 2. This is an interesting example of
when spin squeezing, and therefore two-body correlations
between elementary spins, are induced by inhomogeneity.
In this case, the mechanism of spin squeezing generation
is caused by spin wave excitations which are extended over
the entire system allowing individual spin to correlate
[29]. It is the same mechanism as for the dynamical
generation of spin squeezing via spin-orbit coupling

214310-3



HERNÁNDEZ YANES, NIEZGODA, AND WITKOWSKA PHYSICAL REVIEW B 109, 214310 (2024)

FIG. 2. The spin squeezing parameter ξ 2 for isotropic
XXX Heisenberg model with inhomogeneous field ĤB

and the effective one (6) are marked by solid and dashed
lines, respectively. The amplitudes of magnetic field are
βl = √

2/M cos [π (l − 1/2)(M − 1)/M]. Here, N = M = 16,
J = 1,Uaa = Ubb = Uab = U = 24.4J, J⊥ = 4 J2

U , 
 = E (M−1)
M /10

(purple lines) and 
 = E (M−1)
M /5 (blue lines) with E (M−1)

M =
J⊥(1 − cos(π M−1

M )).

[20,29]. This means any kind of inhomogeneous magnetic
field (constant from shot to shot) will couple to the spin
wave states, generating squeezing under the appropriate
perturbation conditions. We discuss this point in more detail
in Appendix C where we also show other examples when
the magnetic field takes a random value on each lattice
site. This random potential also leads to the generation of
two-body correlations and spin squeezing in the perturbative
regime.

V. DOPING OF HOLES

In this section, we consider an important effect coming
from the nonoccupied sites which we call holes. In general,
the dynamics is then captured by the t−J model [38,39] which
is the XXZ model with the additional tunneling term. The
tunneling leads to the hole movement along the chain. Here,
we assume that positions of holes are fixed during unitary
dynamics. The approximation is valid in the regime of param-
eters where the tunneling is strongly suppressed as compared
to J⊥. The system dynamics can be then approximated by the
XXZ model. This allows an understanding of the role of holes
at a microscopic level.

Let us first consider the simplest situation with one hole
located somewhere in the middle of the chain (not at the
borders) as illustrated in Fig. 3. Since the hole is not moving,
the configuration can be identified as two independent spin
chains with open boundary conditions.

In this case, the collective Dick state for maximal magne-
tization containing the hole reads

|N/2, N/2〉h = |↑〉 j=1 · · · |0〉 j= jh · · · |↑〉 j=M . (12)

It can be represented as the product state of two partial Dicke
states separated by the empty site,

|N/2, N/2〉h = |NL/2, NL/2〉 ⊗ |0〉 jh

⊗ |NR/2, NR/2〉, (13)

FIG. 3. An example of a configuration with the position of a hole
fixed. The hole located at the third lattice site jh = 3 separates the
chain in two parts. The left (right) partial chain consists of two (four)
spins. The two partial chains are independent Heisenberg spin chains
with open boundary conditions. Their dynamics are independent of
each other.

where NL is the number of spins on the left-hand side of the
hole and NR is the number of spins on the right-hand side. The
empty site does not contribute to the unitary dynamics driven
by the XXZ Hamiltonian with nearest-neighbors interactions.
Therefore we will omit the term |0〉 jh when writing the states
in the remaining part of the paper.

The initial spin coherent state for ϕ = 0 and θ = π/2 reads
|t = 0〉h = e−iŜyπ/2|N/2, N/2〉h. It can be formulated in the
following way:

|t = 0〉h = |L〉 ⊗ |R〉, (14)

where we have introduced

|L〉 = e−iŜy,Lπ/2|NL/2, NL/2〉 (15)

|R〉 = e−iŜy,Rπ/2|NR/2, NR/2〉, (16)

and used Ŝy = Ŝy,L + Ŝy,R with L(R) summing up over the
left(right)-hand part of the chain.1

The dynamics of each partial chain (left and right) is inde-
pendent of each other, and therefore the evolution of the initial
state of the system can be considered as

|ψ (t )〉h = ÛL|L〉 ⊗ ÛR|R〉, (17)

where the unitary operators are ÛL = P̂LeiĤt/h̄P̂L and (ÛR =
P̂ReiĤt/h̄P̂R) with P̂L (P̂R) being the projector operator on the
left (right) partial chain for a given Hamiltonian Ĥ containing
nearest-neighborsinteractions only.

The dynamics of partial chains is well approximated by
effective OAT-like models for a weak anisotropy (4) and inho-
mogeneous magnetic field (6) as we discussed in two previous
sections. However, evolution operators acting on the left and
right partial spin chains need to be constructed appropriately.

1Here, Ŝσ,L = ∑NL
j=1 Ŝσ

j and Ŝσ,R = ∑NR
j=1 Ŝσ

NL+1+ j .
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A. Unitary evolution for partial chains
for weak anisotropic interactions

The effective model in the weak anisotropy limit when
2 cos(π/M ) − 1 � � � 3 − 2 cos(π/M ) and � �= 1 reads

Ĥ (0)
eff,L = −χ

(0)
L Ŝ2

z,L, (18)

for the left partial chain with χ
(0)
L = J⊥(� − 1)/(NL − 1) and

the same for the right partial chain when L is replaced with
R. Therefore the unitary operator describing the dynamics
with the hole for the left partial chains is ÛL = e−iĤ (0)

eff,Lt/h̄ and
similarly for the right partial chain when L is replaced with R.

B. Unitary evolution for partial chains
for weak inhomogeneous magnetic fields

On the other hand, if spin squeezing is generated entirely
by the inhomogeneous magnetic field (5) for � = 1 the fol-
lowing effective model can well approximate the dynamics of
the left partial chain

Ĥeff,L = χLŜ2
z,L + vLŜz,L, (19)

with

χL = 1

NL − 1

NL−1∑
q=1

∣∣c(q)
L

∣∣2

E (q)
L

, (20)

vL = 1

NL

NL∑
l=1

βl , (21)

where

c(q)
L =

√
2

NL

NL∑
l=1

p(q,L)
l (βl − vL ). (22)

For convenience, we have redefined

p(q,k)
j =

√
2

Lk
cos

[
π

Lk

(
j −

(
lk − 1

2

))
q

]
, (23)

E (q)
k = J⊥

[
1 − cos(

π

Lk
q)

]
, (24)

where k is the index of the partial chain, lk is its starting site,
Lk is its length and q ∈ [1, Lk − 1].

The form of the effective model (19) for the right partial
chain is the same when one replaces L with R and where

vR = 1

NR

NR∑
l=NL+2

βl (25)

c(q)
R =

√
2

NR

NR∑
l=1

p(q,R)
l

(
βNL+1+l − vR

)
. (26)

The corresponding unitary operator describing the system
dynamics of the initial state (14) is ÛL(R) = e−iĤeff,L(R)t/h̄.

C. Evaluation of spin squeezing parameter

To calculate the evolution of the spin squeezing param-
eter (1) one can use the approximated effective models as
long as the system parameters are in the perturbative regime.
This simplifies the calculations and enables the simulation

of large systems unattainable by exact many-body numerical
simulations.

To demonstrate the validity of our treatment of the system
dynamics with hole doping, let us start with a general treat-
ment of the first and second moments of spin operators that
are necessary for calculations of ξ 2. The unitary evolution of
first moments separates into two parts, e.g., if X̂ = X̂L + X̂R,
we have

〈X̂ (t )〉h = 〈X̂ 〉L + 〈X̂ 〉R, (27)

where subscript L (R) refers to the left (right) partial chain.
〈X̂ (t )〉h is a sum over the two partial chains, each evolved
with the corresponding unitary operator. On the other hand,
an expectation value of second moments is separated into four
parts, e.g., X̂Ŷ = (X̂L + X̂R)(ŶL + ŶR), and reads

〈X̂Ŷ (t )〉h = 〈X̂Ŷ 〉L + 〈X̂Ŷ 〉R + 〈X̂ 〉L〈Ŷ 〉R + 〈X̂ 〉R〈Ŷ 〉L. (28)

Each term in 〈X̂Ŷ (t )〉h evolves with the unitary operator
marked by the subscript L or R. While (28) shows an ap-
parent interconnection between partial chains, the covariance
�(X̂Ŷ )2

h = 〈X̂Ŷ 〉h − 〈X̂ 〉h〈Ŷ 〉h turns out to be simply additive

�(X̂Ŷ )2
h = �(X̂Ŷ )2

L + �(X̂Ŷ )2
R. (29)

According to the definition (1), this means that spin
squeezing is immediately reduced when the system is broken
into partial chains, however, the minimal variance can be
optimal when the probability distributions of the partial chains
add up appropriately.

We illustrate this observation in Fig. 4. One can observe
a good agreement between full many-body numerical cal-
culations (solid lines) and approximated effective dynamics
(dashed lines) as described in Secs. V A and V B. In the
anisotropy case, shown in Fig. 4(b), the partial chains obey
Hamiltonian (18) which maintains the mean spin direction
across the short time dynamics. Thus the main effect in the
suppression of squeezing is due to the reduction of the collec-
tive mean spin. There is a secondary effect in the broadening
of the minimal variance when the squeezing timescales of the
partial chains differ (i.e., χ

(0)
L �= χ

(0)
R ).

On the other hand, the results for spin squeezing in the
presence of an inhomogeneous magnetic field (19) includes
a linear term that makes the probability distribution of each
partial chain rotate around the Ŝz axis at different velocities.
This creates oscillations in the squeezing parameter due to the
misalignment of the partial mean spin directions, as illustrated
in Fig. 5. This feature is further discussed in Appendix F.

Generalization of these results to any number and configu-
rations of fixed holes is straightforward, as detailed explained
in Appendix E.

D. Effective bounds when movement of holes is allowed

In the previous sections, we assumed the positions of
particles and holes were fixed. However, a realistic scenario
includes particle movement as stated in this section’s begin-
ning. The dynamics is then well captured by the t−J model:

Ĥt−J = −t
∑

i, j=i±1

P̂0(â†
i â j + b̂†

i b̂ j )P̂0 + ĤXXZ, (30)
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FIG. 4. (a) Configuration of holes for results shown in bottom
panels. The spin squeezing parameter induced by anisotropy (b) and
inhomogeneous magnetic field (c) for the system with N = 16 atoms
and a single hole (M = 17) at different sites as indicated by color.
The results from the exact many-body simulation are depicted in
solid lines while the ones given by the effective models are depicted
in dashed lines, respectively. In the anisotropic case, Uaa = Ubb =
24.4J,Uab = 0.99Ua (� = 0.98), β j = 0; ∀ j. In the inhomogeneous
magnetic field case, Ua = Ub = Uab = 24.4J, β j = 
 cos( π

M (M −
1)( j − 1/2)), where 
 = E (M−1)

M /50 = J⊥(1 − cos π

M (M − 1))/50.

where P̂0 is a projector operator over the manifold’s ground
states (i.e., single occupancy). We define t ∈ {0, J} to main-
tain the usual notation of the t−J model. The evolution of
a system is constrained to single occupied states but where
particles can tunnel will be trivially bounded by two scenarios:
no tunneling and infinite tunneling. The absence of tunneling,
t = 0 in (30), is equivalent to a system where the holes are
pinned down in fixed sites. Meanwhile, when tunneling is
effectively infinite, the system will behave as if fully occupied
with a certain filling factor f per site. Tunneling is effectively
infinite for a given timescale when the rest of the terms are
energetically much smaller. For instance, an increase in con-
tact interactions in Eq. (3) will in turn decrease J⊥, increasing

FIG. 5. Modulation of spin squeezing dynamics for two partial
chains, each with N = 8, due to asynchronous rotation around the Ŝz

axis. Both partial chains L and R obey the Hamiltonian (19) where
χ

(0)
L = χ

(0)
R = χ but vR − vL = 100χ . (t1) The Husimi distribution

with respect to coherent states of the partial chains (Q(θ, φ) =
|〈ψL(R)(t )|θ, φ〉|2) is drawn over the Bloch sphere in different colors
at time t1. The collective mean spin (lower bar) is reduced and the
minimal variance (purple bracket) increases when the probability dis-
tributions separate. (t2). At times t ∝ 2π/(vR − vL ), the probability
distributions overlap, maximizing the mean spin and reducing the
minimal variance.

the timescale of the effective OAT model but making the
tunneling more prevalent.

As a result, an increase in effective tunneling will transform
the evolution from the fixed holes scenario to the infinite
tunneling scenario. We examined the scenario of fixed holes in
previous sections. The analytical result for the infinite tunnel-
ing scenario is exactly the OAT model but expectation values
are modulated by the filling factor. This is the lower bound
for spin squeezing. In any intermediate cases with the holes
tunneling spin squeezing would be worse, depending on the
energy scales ratio t/J⊥.

To illustrate this process, we consider a simple statistical
ensemble of Nr realizations where the initial state has a fixed
number of particles N in a lattice of M sites with N < M,

ρ̂(0) = 1

Nr

Nr∑
r=1

⎡
⎣ M⊗

j=1

|�x〉〈�x| j

⎤
⎦, (31)

where over set of on-site random numbers r ∈
{x1, x2, . . . , xNr }. Each state in (31) is

|�x〉 j = θ̄ ( f − x j )|↑〉 j + (1 − θ̄ ( f − x j ))|0〉 j, (32)

where θ̄ (x) is the Heaviside step function and x j ∈ (0, 1] is an
independent random number different for each lattice site. If
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FIG. 6. The evolution of spin squeezing parameter on the t−J
model (30) induced by anisotropy (a) and inhomogeneous magnetic
field (b) for different values of t/J⊥ indicated in the colorbar and
fixed filling factor f indicated in the panels. For each instance, χ

is estimated as the corresponding parameter of effective models (4),
(6) when N = M = 12. Grey areas indicate the regions between the
semianalytical upper and lower bounds, as explained in the text.
The best squeezing ξ 2

best versus filling factor f is shown in (c) and
(d) when its generation is governed by anisotropy and inhomoge-
neous magnetic field, respectively. To tune the effective tunneling, we
fix J = 1 but change 2Uab/(1 + �) ∈ {24.4J, 50J, 100J}, with J⊥ =
J2/(4Uab),Uaa = Ubb = 2Uab/(1 + �). For the anisotropic case,
� = 0.98, β j = 0, while for the magnetic field case, � = 1, β j =
E (M−1)

M /50 cos ( π

M (M − 1)( j − 1/2)).

x j � f , then the site is occupied by an atom while if x j > f
the site is empty resulting in a hole at that lattice site. In this
way, we represented the presence of holes within the lattice by
the filling factor f . Next, the state corresponding to each re-
alization r is rotated to form the spin coherent state for ϕ = 0
and θ = π/2, |t = 0〉r = e−iŜyπ/2[

⊗M
j=1 |�x〉〈�x| j], and uni-

tary evolution is applied with the t−J model. To tackle the
dynamics, we employ a semianalytical approach. We analyti-
cally determine the dynamics of individual realizations using
microscopic models developed in previous sections but we
treat the statistical ensemble numerically. This set the upper
bound for spin squeezing at a given filling factor.

In Fig. 6, we compare the results for spin squeezing gen-
eration using anisotropy and inhomogeneous magnetic field
when M = 12. Since the effective model for the anisotropic
case (4) lacks a linear term, the addition of multiple config-
urations of partial chains does not destroy squeezing and the
inclusion of effective tunneling immediately provides results
close to the theoretical bound given by the OAT model.2

2In the infinite tunneling limit, the effective model describing the
dynamics is the OAT one with expectation values modulated by the

FIG. 7. The effect of external harmonic trapping potential V̂ext

on the spin squeezing dynamics obtained by numerical simula-
tions from the two-component Bose-Hubbard model (2) in the Mott
insulating phase compared to the effective model (4). M = N =
8, J = 1, Uaa = Ubb = 24.4J, and Uab = 0.99Ua (� = 0.98). Solid
line colors correspond to different values of ε. The perturbation
condition in this case is ε < 1.86J .

This contrasts with the inhomogeneous magnetic field
case, where presence of a linear term in its effective model
(6) illustrates the difficulty in achieving the infinite tunneling
limit in this case. Since each configuration of holes returns
a different velocity, we can picture an overlap between prob-
ability distributions as in Fig. 5, but many of them move at
different speeds.

VI. EFFECT OF EXTERNAL CONFINEMENT

Up to now, we considered a homogeneous system with
open boundary conditions. In this section, we show how the
best squeezing time is tuned by an external harmonic potential
without compromising the squeezing level, up to a certain
threshold. To be specific, we focus our attention on the sim-
plest case with weak anisotropy, � �= 1, without a magnetic
field or holes.

The external trapping potential can be described in the
second quantization form as

V̂ext = ε

M∑
j=1

(
j − M + 1

2

)2(
n̂a

j + n̂b
j

)
, (33)

where ε = mω2/2 is the strength of the effective harmonic
confinement with m being the particle mass and ω the trap-
ping frequency. Typically, the harmonic confinement is much
smaller than the hopping rate, ε/J � 0.01 [40].

In fact, as long as J � Uσσ ′ , ε < min(Uσσ /2 − J,Uab −
J )/(M − 2), double occupancy is unlikely and the effective
OAT model (4) well approximates the dynamics. In Fig. 7,
we illustrate the regimes above and bellow this threshold for
a given set of parameters. For small values of ε the influence
of the trapping potential is weak and only accelerates slightly
the squeezing dynamics. On the other hand, a large ε means

filling factor f . This is an itinerant bosons limit where lattice barriers
lose their role and atoms move freely along the system.
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a promotion of double or larger occupied states, affecting the
squeezing level as well. In the limit case of trapping potential
frequency of the order of individual lattice sites, the indistin-
guishably of individual spins is lost (all bosons located in a
single lattice site), and our description is not valid. In this
limit, the system is effectively bimodal. It is relevant to remark
that at such a trapping strength, the system might actually also
promote particles to higher bands outside the lattice [41].

VII. NONZERO TEMPERATURE

Thermal fluctuations limit the best squeezing achievable
in two-component Bose-Einstein condensates [42,43]. The
same can be expected in the lattice system. To illustrate
the effect we performed exact many-body numerical simu-
lations. We consider the isotropic Heisenberg XXX model,
� = 1, exposed to the weak inhomogeneous field with
ĤB = 
/2

∑M
j=1(eiφ j Ŝ+

j + e−iφ j Ŝ−
j ), φ = 2π/M and periodic

boundary conditions as in Ref. [28]. To observe spin squeez-
ing, we choose the Gibbs state characterized by temperature
T as the initial state of the dynamics:

ρT =
N−1∑
q=0

e−Eq/kBT

Z
|q〉〈q| (34)

next rotated with R̂ = e−iŜyπ/2, namely,

ρ̂R = R̂†ρ̂T R̂ (35)

to create the initial spin coherent state with ϕ = 0 and θ =
π/2. In (34), the ground state is the Dicke state |q = 0〉 =
|N/2, N/2〉 with E0 = 0, and higher energy states are spin
wave states |q〉 given by

|q〉 = 1√
N

N∑
l=1

eiq j2π/N Ŝ−
l |N/2, N/2〉, (36)

with periodic boundary conditions considered for this
specific calculation, and where q = 2πn/N and n =
±1,±2, . . . ,±(N/2 − 1), N/2. The states |q〉 are eigenstates
of the total spin operator and its projection with the energy
Eq = J⊥[1 − cos(2πq/N )]. The thermally populated states
are the lowest energy states of the ĤXXX Hamiltonian which
are spin-wave states. The form (34) is justified for kBT �
|Eq=N/2| when the temperature is much smaller than the largest
energy gap when the occupations of the higher energy states
are negligible.

In Fig. 8, we show numerical results for various tem-
peratures. Admixture of higher energy states influences spin
squeezing dynamics and lowers the best squeezing generated
in the system while the best squeezing time is shortened.
However, as long as the temperature is much smaller than the
smallest energy gap, kBT � Eq=1 the effect is negligible as
demonstrated in Fig. 8. However, a detailed description of this
effect goes beyond this work.

VIII. SUMMARY AND CONCLUSIONS

We study the generation of scalable spin squeezing with
ultra-cold bosonic atoms in optical lattices in the Mott regime.
This is possible through two main mechanisms related to

FIG. 8. An illustration of the effect of nonzero temperature on
the spin squeezing parameter. (a) The variation of the spin squeezing
parameter in time for various temperatures is indicated in the legend.
The smallest energy gap is J⊥(1 − cos(2π/N )) ≈ 0.29J⊥ and 
 =
0.01J⊥. (b) A difference between the best spin squeezing for zero
and nonzero temperatures.

imperfections in the system: anisotropy of contact interactions
and inhomogeneous magnetic fields.

We develop the microscopic theory to predict the dynam-
ics of the spin squeezing parameter in the presence of hole
doping in the simplified scenario when the positions of holes
are fixed. In the more general t−J model, where a hole
moves freely along the chain, the correlations in the system
are bounded between the cases of zero and infinite effective
tunneling. The first case was considered by us in this paper
at the microscopic level. In the second case, the movement
of holes allows correlation of individual spins and, hence, the
system behaves as fully occupied but the expectation values
are modulated by the filling factor f . Additionally, we address
numerically the question of the effect of external confinement
and thermal fluctuations. While external trapping potential
accelerates spin squeezing dynamics, nonzero temperature
diminishes the level of squeezing. However, in the latter case,
the effect is negligible as long as the temperature value is
much smaller than the smallest energy gap.

We believe our analysis sheds more light on the practical
limitations of spin squeezing strategy for quantum technology
tasks with ultracold atomic systems using a quantum gas mi-
croscope, or even trapped ions or molecules. However, we are
aware that a transition from science to technology takes time
and would happen when the quantum advantage outweighs
the complexity of the experiments which are still under very
extensive development. For example in the case of squeezed
light, it took more than forty years for the successful appli-
cation of entanglement-enhanced detection of gravitational
waves [44,45].
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APPENDIX A: DERIVATION OF THE XXZ MODEL
IN THE PRESENCE OF ANISOTROPY

AND INHOMOGENEOUS MAGNETIC FIELD

We start our derivation from the two-component
Bose-Hubbard Model for open boundary conditions with
the addition of an inhomogeneous magnetic field

Ĥ = ĤBH + ĤB, (A1)

where

ĤBH = − J
∑

j,i= j±1

(â†
j âi + b̂†

j b̂i ) + Uaa

2

∑
j

n̂a
j

(
n̂a

j − 1
)

+ Ubb

2

∑
j

n̂b
j

(
n̂b

j − 1
) + Uab

∑
j

n̂a
j n̂

b
j, (A2)

ĤB =
M∑

j=1

β j Ŝ
z
j . (A3)

In fact, it does not have to be a magnetic field, it can be any
other coupling that leads to the position-dependent external
potential. Notice Ŝz

j = (n̂a
j − n̂b

j )/2, so the local magnetic field
is diagonal with respect to the Fock states.

The Bose-Hubbard Hamiltonian commutes with the total
number of particles in each component [ĤBH, N̂σ ] = 0, where
N̂σ = ∑

j n̂σ, j with σ = a, b, but it does not commute with
the occupation numbers n̂a, j, n̂b, j of the jth site, due to the
presence of the hoping terms. We address the case where the
total filling is commensurate with the lattice.

We consider the system in the Mott phase when interaction
dominates over the tunneling strength. In the Mott regime, the
system Hamiltonian is well described by the following model:

Ĥ = −
N−1∑
j=1

[
Jaan̂a

j n̂
a
j+1 + Jbbn̂b

j n̂
b
j+1 + J−

abn̂a
j n̂

b
j+1

+ J+
abn̂b

j n̂
a
j+1 + J⊥

1

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1)

]
+ ĤB, (A4)

where

Jaa = 4J2Uaa

U 2
aa − (β j − β j+1)2

, (A5)

Jbb = 4J2Ubb

U 2
bb − (β j − β j+1)2

, (A6)

J−
ab = 2J2

Uab − (β j − β j+1)
, (A7)

J+
ab = 2J2

Uab + (β j − β j+1)
, (A8)

J⊥ = 4J2Uab

U 2
ab − (β j − β j+1)2

, (A9)

when taking into account the inhomogeneous field and after
performing a SW transformation with the tunneling term as
a perturbation. The resulting system Hamiltonian can also be
rephrased as

Ĥ = −
N−1∑
j=1

[
JzŜ

z
j Ŝ

z
j+1 + J⊥

1

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1) − JN

4

]

+ BŜz +
∑

j

h j Ŝ
z
j − h̄

(
Ŝz

1 − Ŝz
N

) + ĤB, (A10)

where

Jz = Jaa + Jbb − J−
ab − J+

ab, (A11)

JN = Jaa + Jbb + J−
ab + J+

ab, (A12)

B = Jbb − Jaa, (A13)

h j = − J2(β j − β j+1)

U 2
ab − 1

4 (β j − β j+1)2
+ J2(β j−1 − β j )

U 2
ab − 1

4 (β j−1 − β j )2
,

(A14)

h̄ = − J2(βN − β1)

U 2
ab − 1

4 (βN − β1)2 . (A15)

We found numerically the influence of the h̄, h j terms is
negligible if the difference β j − β j+1 � Uab and ĤB dom-
inates the perturbation of the XXZ model. In numerical
calculations, we will keep using Eq. (A10) but in a further
analysis, we simplify the model in two main scenarios while
also discarding these contributions and the homogeneous
magnetic field BŜz.

In the first case, we can take β j = 0; ∀ j, leading to the
simple XXZ model in (3),

Ĥ = ĤXXZ = −J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + �Ŝz

j Ŝ
z
j+1 − 1

4

)
,

(A16)

where J⊥ = 4J2/Uab and the anisotropy parameter � =
4J2(U −1

aa + U −1
bb − U −1

ab )/J⊥. This can be further decomposed
into an XXX model with perturbative term such that

Ĥ = ĤXXX + Ĥz, (A17)
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where

ĤXXX = − J⊥
M−1∑
j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + Ŝz

j Ŝ
z
j+1 − 1

4

)
,

(A18)

Ĥz = − J⊥(� − 1)
N∑

j=1

Ŝz
j Ŝ

z
j+1. (A19)

The calculation of the resulting effective model is described
in Appendix B.

On the other hand, by choosing U = Uaa = Ubb = Uab and
U � (β j − β j+1); ∀ j one easily obtains an XXX model with
the inhomogeneous magnetic field.

Ĥ = ĤXXX + ĤB. (A20)

Excited states of the XXX model are given by the spin wave
states [29], for which the ĤB term is a generator of. This leads
to the effective model in (6). See Appendix C for more details.

APPENDIX B: DERIVATION OF THE EFFECTIVE MODEL
FROM ANISOTROPY

The initial state for unitary evolution is the phase state

|θ, ϕ〉 = e−iϕŜz e−iθ Ŝy

N⊗
j=1

|a〉 j, (B1)

which can be conveniently expressed in terms of the Dicke
basis for maximal spin S = N/2, namely,

|θ, ϕ〉 =
N/2∑

m=−N/2

(
N

m + N/2

)1/2

(cos θ/2)N/2−m

× (eiϕ sin θ/2)N/2+m|m〉. (B2)

In the above representation, |m〉 is the Dicke state as Ŝ2|m〉 =
S(S + 1)|m〉 and Ŝz|m〉 = m|m〉, and Ŝ2 and Ŝz are collective
operators.

We consider the effective model describing the dynamics
in the Dicke manifold where the initial state is localized. We
derive the effective model in a perturbative way. The unper-
turbed Hamiltonian is the XXX model (A18) and it is weakly
coupled to the anisotropy term Ĥz (A19).

When the coupling is weak compared to the energy of the
spin exchange J⊥, the dynamics of the initial spin coherent
state |θ, ϕ〉 governed by the full Hamiltonian Ĥ = ĤXXX + Ĥz

projected over the Dicke manifold can be well approximated
using SW transformation [28,29] where the coupling Ĥz is
treated as a perturbation.

The dominant zero-order term Ĥ (0)
eff is determined by a

projection of the coupling term over the Dick states and gives
the following matrix representation:

〈m′|Ĥz|m〉 = −J⊥(� − 1)

(
− N

4(N − 1)
+ m2

N − 1

)
δm′,m.

(B3)

Using the representation of the Ŝz operator, we obtain

Ĥ (0)
eff = −J⊥

� − 1

N − 1
Ŝ2

z + const. (B4)

APPENDIX C: DERIVATION OF THE EFFECTIVE MODEL
FROM INHOMOGENEOUS MAGNETIC FIELD

A weak inhomogeneous magnetic field ĤB (A3) can gen-
erate spin squeezing when added to the isotropic XXX
Heisenberg model (A18). In fact it can be any other coupling
which leads to the above form, also in different directions,
e.g., x or y.

To see this, one needs to calculate the second-order term
Ĥ (2)

eff in perturbation, which matrix elements are defined as

〈m′|Ĥ (2)
eff |m〉 = −

∑
m′′,q

〈m′|ĤB|m′′, q〉〈m′′, q|ĤB|m〉
Eq

. (C1)

Details about the SW transformation and its application to the
Heisenberg XXX model with the coupling can be found in
Ref. [28]. In the above equation states |m, q〉 are spin-wave
states which are eigenstates of the isotropic Heisenberg model
(A18) for open boundary conditions [29], namely,

|m, q〉 = ±
√

NcN/2,±m

N∑
j=1

p(q)
j Ŝ±

j |m ∓ 1〉, (C2)

where cN/2,±m =
√

N−1
(N/2∓m)(N/2∓m+1) . The sign ± in Eq. (C2)

for |m, q〉 corresponds to two equivalent definitions of the
spin waves in terms of the on-site spin raising and lowering
operators Ŝ±

j acting on the Dicke states |m〉. Furthermore, the

coefficients featured in Eq. (C2) are p(q)
j =

√
2
N cos[ π

N ( j −
1
2 )q], with q = 1, . . . , N − 1. The corresponding eigenen-
ergies Eq of the isotropic model (A18) read Eq = J⊥
[cos( π

N q) − 1].
To calculate the form of the second-order term Ĥ (2)

eff ,
it is useful to use the following commutation relations
[Ŝz

j, Ŝn
−] = −nŜ−

j Ŝn−1
− , and [Ŝz

j Ŝ
z
j+1, Ŝn

−] = −n(Ŝ−
j+1Ŝn−1

− Ŝz
j +

Ŝ−
j Ŝn−1

− Ŝz
j+1) + n(n − 1)Ŝ−

j Ŝ−
j+1Ŝn−2

− . They allow writing the

action of ĤB on the Dick state |m〉 in the convenient form

ĤB|m〉 =
∑

j

β j Ŝ
z
j |m〉 = −

√
S − m

S + m + 1

∑
j

β j Ŝ
−
j |m + 1〉,

(C3)

to get the matrix elements in (C1).
A term coupling directly the Dicke states with the spin

wave states of q = 0 proportional to
∑

j β j will appear in
〈m′|ĤB|m′′, q〉. However, Eq=0 = 0, meaning we would have
an infinite term. To correct this, we simply have to make this
sum zero by adding and subtracting a term to ĤB so that

ĤB =
N∑

j=1

(β j − v)Ŝz
j + vŜz = ĤB′ + vŜz, (C4)

where v = 1/N
∑

j β j . This guarantees
∑

j (β j − v) = 0, so
if in the previous analysis we substitute ĤB by ĤB′ we can
correctly calculate (C1).
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FIG. 9. (a) Variation of spin squeezing parameter ξ 2 dynamically generated using the XXX model with a randomly generated inhomoge-
neous magnetic field (A18) (solid lines) and the effective model (6) (dashed lines). Colors indicate the maximal magnitude of the magnetic field
with respect to the smallest energy gap of the spin wave states. Since χM ∝ max |β j |2, the best squeezing time tbest ∝ 1/|χM | will be faster the
larger this value is, in principle. (b) The perturbation condition for each spin wave state is max |β j | � E (q)

M . The effective model approximates
the exact dynamics more accurately if the fidelity with spin wave states of quasi-momenta q (|c(q)

M |/ max |β j |) is negligible when the perturbation
condition is not fulfilled (compare with (a)). (c) Due to the functional form of the energy gap, the contributions of smaller q in χM = ∑

q χ
(q)
M

tend to dominate the squeezing timescale. N = M = 16, J = 1, Uaa = Ubb = Uab = U = 24.4J, and J⊥ = 4 J2

U , E (q)
M = J⊥(1 − cos(πq/M )).

The final expression for the effective Hamitonian Ĥ (2)
eff will

then be

Ĥ (2)
eff = χ

(
Ŝ2 − Ŝ2

z

) + vŜz,

where χ = 1

N − 1

N−1∑
q=1

∣∣∑
l p(q)

l (βl − v)
∣∣2

Eq
. (C5)

This effective model can even be generated using a ran-
dom magnetic field which excites many spin wave states, as
demonstrated in Fig. 9.

APPENDIX D: DYNAMICS DRIVEN BY χS2
z + vSz

Consider the unitary evolution of the initial state

|�(t = 0)〉 =
∑

m

cm|S, m〉 (D1)

with the Hamiltonian

H = χ
(
Ŝ2 − Ŝ2

z

) + vŜz, (D2)

namely,

|�(t )〉 =
∑

m

cmeiχm2t−ivmt |S, m〉 (D3)

where we omitted the constant phase factor.
One can express the evolution of spin operators in terms of

evolution given by the pure OAT model when v = 0. Simple

algebra shows that the first moments read

〈Ŝ+〉 = eivt/h̄〈Ŝ+〉OAT, (D4)

〈Ŝ−〉 = e−ivt/h̄〈Ŝ+〉OAT, (D5)

〈Ŝx〉 = cos(vt/h̄)〈Ŝx〉OAT − sin(vt/h̄)〈Ŝy〉OAT, (D6)

〈Ŝy〉 = cos(vt/h̄)〈Ŝy〉OAT + sin(vt/h̄)〈Ŝx〉OAT, (D7)

〈Ŝz〉 = 〈Ŝz〉OAT = 0, (D8)

where for OAT, we have

〈Ŝx〉OAT = S cos2S−1(χt/h̄), (D9)

〈Ŝy〉OAT = 〈Ŝz〉OAT = 0. (D10)

On the other hand, the second moments are

〈Ŝ2
+〉 = ei2vt/h̄〈Ŝ2

+〉OAT, (D11)

〈Ŝ2
−〉 = e−i2vt/h̄〈Ŝ2

−〉OAT, (D12)

〈Ŝ+Ŝ−〉 = 〈Ŝ+Ŝ−〉OAT, (D13)

〈ŜyŜz〉 = cos(vt/h̄)〈ŜyŜz〉OAT + sin(vt/h̄)〈ŜxŜz〉OAT

= cos(vt/h̄)〈ŜyŜz〉OAT, (D14)
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〈ŜxŜz〉 = cos(vt/h̄)〈ŜxŜz〉OAT − sin(vt/h̄)〈ŜyŜz〉OAT

= − sin(vt/h̄)〈ŜyŜz〉OAT, (D15)〈
Ŝ2

x

〉 = 1
2 (1 + cos(2vt ))

〈
Ŝ2

x

〉
OAT + 1

2 (1 − cos(2vt ))
〈
Ŝ2

y

〉
OAT,

(D16)〈
Ŝ2

y

〉 = 1
2 (1 + cos(2vt ))

〈
Ŝ2

y

〉
OAT + 1

2 (1 − cos(2vt ))
〈
Ŝ2

x

〉
OAT,

(D17)〈
Ŝ2

z

〉 = 〈
Ŝ2

z

〉
OAT, (D18)

〈ŜxŜy〉 = cos 2vt〈ŜxŜy〉OAT + 1
2 sin 2vt

(〈
Ŝ2

x

〉
OAT − 〈

Ŝ2
y

〉
OAT

)
= 1

2 sin 2vt
(〈

Ŝ2
x

〉
OAT − 〈

Ŝ2
y

〉
OAT

)
, (D19)

while the ones derived for the OAT model are〈
S2

x

〉
OAT = S/4[(2S − 1) cos2S−2(2χt ) + (2S + 1)], (D20)〈

S2
y

〉
OAT = −S/4[(2S − 1) cos2S−2(2χt ) − (2S + 1)], (D21)

〈S+S− + S−S+〉OAT = 2
(〈

S2
x

〉
OAT + 〈

S2
y

〉
OAT

)
, (D22)

〈S2
+ + S2

−〉OAT = 2
(〈

S2
x

〉
OAT − 〈

S2
y

〉
OAT

)
, (D23)

〈S2
+ − S2

−〉OAT = 4i〈SxSy〉OAT = 0, (D24)

〈SxSz〉OAT = 0, (D25)〈
S2

z

〉
OAT = S/2, (D26)

〈SySz〉OAT = S(2S − 1)/2 cos2S−2(χt ) sin(χt ). (D27)

APPENDIX E: GENERALIZATION TO ANY NUMBER
OF HOLES AND CONFIGURATIONS

The generalization of the two-hole analysis to an arbitrary
number of holes and their configurations is straightforward. In
general, holes are located between occupied sites that consti-
tute partial chains. All partial chains are independent as long
as the positions of holes are fixed.

Let us start with the Dicke state for maximal magnetization
written as the product state

|N/2, N/2〉{h} =
⊗

n

∣∣Ln/2, Ln/2〉
⊗
k∈{h}

∣∣0〉k, (E1)

where {h} describes the set of fixed locations of Nh holes in
the chain having M sites, n is the index numerating individ-
ual partial chains in the system and Ln is the corresponding
number of spins. The total number of spins in the whole chain
is N = M − Nh = ∑

n Ln. We will omit the empty sites |0〉k

when describing the states in the further part of the text.
The initial spin coherent state is a product of coherent states

of partial chains

|t = 0〉{h} =
⊗

n

|n〉, (E2)

where
|n〉 = e−iπ Ŝy,n/2|Ln/2, Ln/2〉, (E3)

for θ = π/2 and φ = 0.

The further unitary dynamics is separable and each partial
chain evolves independently

|ψ (t )〉{h} =
⊗

n

Ûn|n〉, (E4)

meaning the state at any point in time can be described as a
separable state of partial chains.

In the case of spin squeezing generation by anisotropy,
the Hamiltonian described in Sec. V A extends, and for each
partial chain n reads

Ĥ (0)
eff,n = −χ (0)

n Ŝ2
z,n, (E5)

with χ (0)
n = J⊥(� − 1)/(Ln − 1). When the spin squeezing is

generated via the inhomogeneous field with � = 1, as dis-
cussed in Sec. V B, the effective OAT-like model for each
partial chain is described effectively by the following Hamil-
tonian:

Ĥeff,n = χnŜ2
z,n + vnŜz,n, (E6)

where

χn = 1

Ln − 1

Ln−1∑
q=1

∣∣c(q)
n

∣∣2

E (q)
n

, (E7)

vn = 1

Ln

ln+Ln−1∑
l=ln

βl , (E8)

c(q)
n =

√
2

Ln

ln+Ln−1∑
l=ln

p(q,n)
l (βl − vn), (E9)

where ln is the location of the first spin in the partial chain and
E (q)

n = J⊥(1 − cos(πq/Ln)).
Finally, to calculate the spin squeezing parameter ξ 2 one

needs to calculate the first and second moments of the spin
operators to obtain their covariances. Expectation values of an
on-site linear operator can be described as a sum over all par-
tial chains, 〈X̂ 〉{h} = ∑

n 〈X̂ 〉n while for a product of two linear
operators reads 〈X̂Ŷ 〉{h} = ∑

n 〈X̂Ŷ 〉n + ∑
n

∑
n′ �=n 〈X̂ 〉n〈Ŷ 〉n′ .

From these results, one obtains �(X̂Ŷ )2
{h} = ∑

n �(X̂Ŷ )2
n. The

effective models for partial chains, as well as their separation,
allow approximation of the dynamics of spin squeezing pa-
rameter by using analytical expressions shown in Appendix D
valid for any N and M.

APPENDIX F: SWS WITH HOLES

One can construct the spin-wave states about these spin
states separated by holes for maximal spin. When considered
in the Bethe basis:

|l〉h = Ŝ−
l |S = N/2, m = N/2〉h (F1)

the spin wave states can be defined in the following way for
the Nh holes

|n, qn〉 =
M∑

l=1

p(qn )
l |l〉h, (F2)
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FIG. 10. Comparison of spin squeezing parameter dynamics among combinations two of chains of M = N = 8 particles with Hamiltonian
(F6) with same value of χn (χ1 = χ2 = χ ) but different values of vn, indicated in the title of each panel.

where n numerates partial chains, and they are eigenstates of
the ĤXXX Hamiltonian when

p(qn )
l =

√
2

Ln
cos

[
π

Ln
(l − (ln − 1/2))qn

]
,

l ∈ (ln, ln + Ln − 1) (F3)

p(qn )
l = 0 otherwise (F4)

with ln being the position of the first spin in the partial chain.
One can show that eigenenergies are

Eqn = J⊥

[
1 − cos

(
π

Ln
qn

)]
, (F5)

where Ln is the length of individual sub-chain (number of
spins constituting the partial chains), while the corresponding
quantum number of quasi-momentum qn ∈ [1, Ln − 1].

Thus ĤXXX + ĤB leads through the second-order processes
to the effective pure OAT model in each partial chain

Ĥ (2)
eff,n = −χn

(
Ŝ2

n − Ŝ2
z,n

) + vnŜz,n, (F6)

where

χn = 1

Ln − 1

Ln−1∑
qn=1

∣∣c(q)
n

∣∣2

E (q)
n

,

c(q)
n =

√
2

Ln

ln+Ln−1∑
l=ln

p(q,n)
l (βl − vn),

vn = 1

Ln

ln+Ln−1∑
l=ln

βl ,

and one needs to set ln = 1 in p(q,n)
l . Examples of various

dynamics are presented in Fig. 10.
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