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Interacting quasiperiodic spin chains in the prethermal regime
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Recent progress in the study of many-body localization in strongly disordered interacting spin chains has
emphasized the importance of distinguishing finite time prethermal behavior from long time and large volume
asymptotics. We reexamine a reported nonergodic extended (NEE) regime in the interacting quasiperiodic
Ganeshan-Pixley-Das Sarma model from this perspective, and propose that this regime is a prethermal feature.
Indeed, we argue that the NEE regime may be identified through a change in the functional form of spin-
spin autocorrelation functions, demonstrating that the NEE regime is distinguishable within intermediate-time
dynamics. This is in contrast with existing conjectures relating the NEE regime to the presence of an asymptotic
mobility edge in the single-particle spectrum. Thus, we propose a mechanism for the formation of an NEE
regime which does not rely on asymptotic properties of the spin chain. Namely, we propose that the NEE regime
emerges due to regularly spaced deep wells in the disorder potential. The highly detuned sites suppress spin
transport across the system, effectively cutting the chain and producing a separation of timescales between
the spreading of different operators. To support this proposal, we show that the NEE phenomenology also
occurs in random models with deep wells but with no mobility edges, and does not occur in quasiperiodic
models with mobility edges but with no deep wells. Our results support the broad conclusion that there is not a
sharp distinction between the dynamics of quasiperiodically and randomly disordered systems in the prethermal
regime. More specifically, we find that generic interacting quasiperiodic models do not have stable intermediate
dynamical phases arising from their single-particle mobility edges, and that NEE phenomenology in such models
is transient.
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I. INTRODUCTION

Improved understanding of the instabilities of many-body
localization (MBL) with random disorder [1–10] have lead to
substantial revision of the accepted phase diagram for strongly
disordered spin chains [10–23]. There is no longer consensus
regarding the presence of an MBL critical point at finite dis-
order strength [23], and it is clear that if such a critical point
does exist, it is at a much larger value of the disorder strength
than estimated prior to the last five years [19,20]. One of the
key lessons from this recent body of work is the important dis-
tinction between the asymptotic (large volume and long time)
behavior of an eventually thermalizing disordered chain and
its prethermal behavior at finite—but potentially extremely
long—timescales [19,22].

Much of the recent progress regarding the asymptotic be-
havior of strongly disordered chains comes from analyzing
the effect of rare regions of low disorder [10,19,20,24,25]. In
quasiperiodically disordered chains, such rare regions do not
occur. However, this does not preclude the existence of some
other, still unidentified, instability. While heuristic arguments
have been made for the stability of asymptotic quasiperiodic
MBL in one and two dimensions [26,27], and renormalization
schemes predict critical exponents for the MBL transition
distinct from the random case [27–30], the more detailed
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mathematical analysis of Ref. [9] cannot be straightforwardly
generalized to the quasiperiodic case.

On the other hand, it is not obvious that the prethermal
behavior of quasiperiodically disordered chains should be
distinct from random chains. Very generally, at small sys-
tem sizes, it should be very difficult to distinguish whether
a sequence of L ≈ 20 local disorder potentials come from a
quasiperiodic sequence or a random one. Nonetheless, sev-
eral numerical studies at small system size have identified
unexpected features in interacting models with quasiperi-
odic disorder, which have not been previously identified in
random models [31–36]. In particular, at intermediate disor-
der strength in the interacting Ganeshan-Pixley-Das Sarma
(GPD) model [37], Ref. [31] found that the crossover of
the half-chain entanglement entropy from being area law
to being volume law happens at a different point than the
crossover of the fluctuation of an observable from being large
to being small. This suggests that in the intermediate en-
ergy regime, eigenstates are extended (volume-law entangled)
while eigenstate expectation values of local operators vary
wildly for consecutive eigenstates, failing to satisfy the eigen-
state thermalization hypothesis (ETH) [38–40]. This has been
identified as a nonergodic extended (NEE) regime. The same
regime in the same model was also found later by training a
neural network on the half-chain entanglement spectrum to
distinguish the ETH, NEE, and MBL behaviors [33], and by
fitting the entanglement entropy growth when coupling the
system to a bath to distinguish the three behaviors [36].
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Note that the term NEE in this paper refers to the failure of
the eigenstate thermalization hypothesis while the real-space
entanglement entropy satisfies the volume law. In particular,
we refer to the extendedness in real space, which is different
from the extendedness in Fock space [41,42], a different topic.

Previous work has speculated that the existence of the NEE
regime could be related to the presence of a mobility edge
in the single particle spectrum of the GPD model [31,34] by
explaining the NEE states as the result of interaction mixing
two types of noninteracting energy eigenstates: ones that fill
only localized single-particle orbitals and ones that fill some
extended orbitals. The existence of this regime has also been
described as a signature of an asymptotic many-body mobil-
ity edge (MBME) [3,31,34,43,44]. (Though, note that there
are analytical arguments against the existence of asymptotic
MBMEs [45,46].)

However, mobility edges are an asymptotic feature, and
numerics of the kind reported in Refs. [31,33–36] are nec-
essarily restricted to the prethermal regime. In this paper,
we reexamine several quasiperiodically disordered models,
including the GPD model, from the perspective of the prether-
mal regime. In particular, in Sec. III, we analyze the decay of
autocorrelation functions and compare their behavior to the
predictions of the statistical Jacobi approximation (SJA)—a
technique developed in Ref. [22] (also see Ref. [47]) to re-
late the statistics of many-body resonances [16,24,48–51] to
autocorrelation functions in the prethermal regime (Sec. II).
The SJA accurately accounts for the behavior of the inter-
acting Aubry-André (AA) model [52,53], indicating that its
thermalization at intermediate disorder is controlled by a pro-
liferation of successive resonances, much like random models.
However, the GPD model shows a regime—qualitatively co-
inciding with previous estimates for the position of the NEE
regime—where the SJA fails to be predictive and autocorre-
lators decay with a distinct functional form compared to the
AA model and known random models. We interpret this as a
dynamical manifestation of the NEE behavior.

Based on the appearance of NEE signatures well within the
prethermal regime, we propose a mechanism for the formation
of an NEE regime which does not rely on large system sizes
or long times (Sec. IV). Namely, we observe that the GPD po-
tential has approximately regularly spaced deep wells which
may effectively cut the chain (Fig. 1), and demonstrate in a toy
model that this can lead to a separation of timescales between
the spreading of different operators. For instance, magneti-
zation may spread much slower than information in general
spreads. At small system size, this means that eigenstates will
be volume law entangled to support the spread of informa-
tion across the whole system, but the expectation value of,
say, the spin projection Sz

i in different eigenstates can vary
greatly, as this operator need not have thermalized. This is pre-
cisely the phenomenology originally used to identify the NEE
regime [31].

To validate our explanation, we further investigate two
more models (Sec. V)—the t1–t2 model, which has a single-
particle mobility edge [54], and a model with random disorder
and regularly spaced deep wells, the single-particle sector of
which is localized at all energies. We refer to this as the
random wells model. In this case, we see that the quasiperiodic
t1–t2 model shows no NEE regime, while the random wells

FIG. 1. Illustration of the nonergodic extended (NEE) mecha-
nism in a fermionic chain. (a) The GPD potential has deep wells
(green dots) between typical segments (orange dots). The separating
site between the segments is highly detuned, so the chain can be
approximated as a similar system where each segment becomes a
supersite (dashed circle). (b) Due to the repulsive interaction, the
effective interaction between two supersites (right) is stronger than
the hopping between them (left), making the particle spreading
timescale τparticle longer than the information spreading timescale
τinfo. (c) In finite-size or finite-time simulations with maximum ac-
cessible timescale τfinite, the system echibits MBL, NEE, or ETH
behavior depending on the relationship between the three timescales.

model does, demonstrating that the NEE regime is unrelated
to the asymptotic behavior of the single particle sector and, in-
deed, does not rely on quasiperiodicity. Our results support the
broad conclusion that there is not a sharp distinction between
the prethermal dynamics of quasiperiodically and randomly
disordered spin chains.

Historically, the observation of the NEE regime
[31,33–36] (interpreted as an NEE phase) in the interacting
GPD model [37] hinted at a possible role of the single-particle
mobility edge (SPME) in dictating interacting dynamics. This
was supported by the observation of three different dynamical
regimes (MBL, NEE, ETH) in the interacting GPD model, in
contrast to just the two dynamical regimes (MBL and ETH)
observed in the extensively studied interacting Anderson
(random) model and interacting AA model, which have
no SPMEs. The putative existence of an NEE phase (or,
equivalently, an MBME associated with the NEE transition)
was even reported in an experiment on a synthetically
prepared interacting GPD model in cold atoms [55]. [We
note in this context that the GPD model has often been called
the generalized Aubry-André (GAA) model in the literature.
We find this nomenclature to be misleading since there are
many possible generalizations of the Aubry-André model
[54,56,57], which have very different properties compared
to the GPD model.] By contrast, cold atom experiments on
a different generalization of the AA model, closely related
to the t1–t2 model, did not decisively find any NEE phase
in the interacting case [58], although the corresponding
noninteracting system showed the SPME decisively [59]. Our
current paper takes on particular significance in this context,
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establishing the putative NEE phase of the interacting GPD
model to be a prethermal effective phase (that is, long lasting
transient), which arises from the specific details of the GPD
model (its deep potential wells) and not from any SPME
or even quasiperiodicity in the system. The fact that we
find NEE features in the random wells model but do not
find NEE features in the quasiperiodic t1–t2 model clearly
shows that the observed NEE behavior is a peculiar—though
highly interesting—feature of the interacting GPD model.
Our work also conceptually combines all earlier work on
the GPD model into one unified scenario: the interacting
GPD model has nontrivial prethermal dynamics involving
widely different timescales, which produce the effective NEE
behavior, which is, however, a prethermal transient rather
than anything connected with the existence of a SPME in the
noninteracting GPD model.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the SJA; in Sec. III, we study the interacting
AA and GPD models; in Sec. IV we demonstrate that the NEE
regime may arise due to the presence of deep wells in the GPD
model; in Sec. V we study the quasiperiodic t1–t2 model and
the random wells model in the context of the NEE behavior;
and we conclude in Sec. VI with a summary and discussion of
future directions of research. Two appendices complement the
results in the main text by providing the eigenstate properties
of the random wells model (Appendix A) and the GPD model
with the next-nearest-neighbor hopping (Appendix B) as a
verification of our proposal.

II. THE STATISTICAL JACOBI APPROXIMATION

It has been proposed that the thermalization of ran-
domly disordered spin chains at intermediate disorder is
controlled by the proliferation of many-body resonances
[13,16,22,49–51]. Initial states slowly Rabi oscillate between
resonant macroscopically distinct spin configurations of al-
most equal energy. Longer evolution times resolve finer and
finer successive resonances, which eventually lead to ther-
malization. References [22,47] introduced the SJA to relate
the proliferation of resonances to the observable behavior
of autocorrelation functions. The SJA does not seem to
rely on any particular feature of the disorder potential, and
Ref. [22] speculated that it would continue to be predictive for
spin chains with correlated disorder, including quasiperiodic
disorder.

The prediction of the SJA serves as our null hypothesis in
studying a potential nonergodic extended regime. If the SJA
accurately predicts the behavior of autocorrelation functions,
then it is likely that thermalization is controlled by many-body
resonances, just as in other prethermal models. However, if the
SJA fails to be predictive, it is an indication that thermalization
proceeds through an alternative mechanism or potentially that
the model is nonergodic.

The SJA is based on the Jacobi algorithm [60], an iterative
algorithm for matrix diagonalization. In addition to obtaining
the exact eigenstates of the Hamiltonian, this algorithm pro-
vides a way to extract a basis of near eigenstates associated
to a finite timescale—the Jacobi basis. This makes it a use-
ful tool for the prethermal regime, as some control over the
statistical properties of the Jacobi basis can be maintained at

intermediate times, which allows the prediction of dynamical
observables.

For a Hamiltonian H represented as a matrix in a local
tensor product basis, the algorithm starts by finding the off-
diagonal element Hab (where a and b label the basis states and
a �= b) with the largest absolute value, diagonalizing the block

U †

(
Haa Hab

Hba Hbb

)
U =

(
H ′

aa 0

0 H ′
bb

)
(1)

and extending this to the entire H as

H ′ = (U † ⊕ I )H (U ⊕ I ). (2)

This procedure is then repeated iteratively (the transformed
basis in H ′ becomes the new basis that a and b label), so H
becomes increasingly diagonal (that is,

∑
a �=b |Hab|2 decreases

strictly and converges to zero). If at some step |Hab| is much
larger than |Haa − Hbb|, the corresponding basis state at a and
b becomes resonant. That is, the new basis has

|a′〉 ≈ |a〉 + |b〉√
2

, |b′〉 ≈ |a〉 − |b〉√
2

. (3)

The quantity of interest in the SJA is the number density
of the resonant decimated elements w = |Hab|, which we
called the distribution of resonances ρres(w). Moreover, this
can be energy-resolved by targeting a specific energy E and
collecting only the decimated elements with either Haa or Hbb

close to E [47]. The distribution of resonances as a function of
w = |Hab| can be characterized by a power law at intermediate
timescales (that is, intermediate values of w−1) [22],

ρres(w, E ) ∝ w−1+θ (E ), (4)

where θ (E ) is called the resonance exponent.
Under some mild assumptions [22], the SJA then relates

ρres, and more specifically θ (E ), to the functional form of
autocorrelation functions. In particular, the main observable
used in the numerical calculation of this paper, where the
system is a one-dimensional (1D) spin-1/2 chain, is the
energy-resolved spin-spin connected autocorrelator,

C(E , t ) = [〈ψE |Sz
L/2(t )Sz

L/2(0)|ψE 〉]
− [〈ψE |Sz

L/2(0)|ψE 〉]2
, (5)

where L is the length of the chain, |ψE 〉 is a Haar-random su-
perposition of the 100 energy eigenstates with energy closest
to E , Sz

j (t ) is the Heisenberg picture spin-z operator on site j at
time t , and square brackets indicates an average over disorder
and the states |ψE 〉. The term [〈ψE |Sz

L/2(0)|ψE 〉] coincides
with the expectation value of Sz

L/2 in a microcanonical shell
around energy E , with the average over Haar random states
serving as a low variance estimator of the trace [61].

The SJA predicts that C(E , t ) is described by a stretched
exponential at intermediate timescales [22],

C(E , t ) ≈ A(E ) exp

[
−

(
t

τ (E )

)β(E )
]
, (6)

where τ (E ) is the thermalization timescale and β(E ) =
−θ (E ) is the stretch exponent. We numerically calculate
C(E , t ) by first obtaining the eigenstates closest to E using
the polynomially filtered exact diagonalization (POLFED)
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algorithm [62], and then time evolving the random super-
position |ψE 〉, as well as Sz

L/2|ψE 〉 under the Hamiltonian
H using the Krylov subspace projection method [63,64].
The disconnected piece of C(E , t ) can then be computed
for a particular disorder realization as the matrix element
(〈ψE |eiHt )Sz

L/2(e−iHt Sz
L/2|ψE 〉). The term 〈ψE |Sz

L/2(0)|ψE 〉
can be computed from the initial conditions.

After obtaining C(E , t ), least-squares fitting is used to
estimate β(E ) and τ (E ). However, for a finite-size system,
C(E , t ) will approach a fixed nonzero value at large t , and
hence we add a constant shift B(E ) as an additional phe-
nomenological parameter to fit C(E , t ). This allows us to fit
the curve using a larger time range, which we observe makes
the fit more constrained, compensating for the additional free-
dom of using an extra fit parameter.

Either the failure of the stretched exponential fit, unphys-
ical fit parameters or the deviation of β from the value of
−θ computed from the Jacobi algorithm indicates a failure
of the SJA. This failure may be an indication that the system
is nonergodic.

III. THE GPD MODEL

The interacting GPD model [37] is a spin-1/2 Heisenberg
model

H =
L−1∑
j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1 + Sz

jS
z
j+1

) + W
L∑

j=1

h jS
z
j, (7)

with on-site quasiperiodic potential

h j = cos(2πϕ j + φ)

1 − α cos(2πϕ j + φ)
. (8)

Here, Sx,y,z
j are the spin-1/2 operators at site j along the x, y, z

axes, W is the disorder strength, the spin exchange amplitude
has been set to 1, ϕ = 1+√

5
2 is the golden ratio, φ is an initial

phase (which are averaged over 50 to 400 random choices),
and α ∈ (−1, 1) is a dimensionless parameter. When α = 0,
Eq. (7) reduces to the interacting Aubry-André (AA) model
[52,53]. When α < 0 (>0), the cosine potential of the AA
model is distorted so that the peaks become sharper at neg-
ative (positive) energy. We focus on the case of α = 0 (AA)
and −0.8 (GPD), where in the latter case the sharp peaks at
negative energy cause some h j to become deep wells which
are highly detuned from their neighboring sites [Fig. 1(a)].
We fix the filling fraction to 1/4 (that is, 1/4 of the spins are
up), since the proposed effect of an MBME would be more
distinguished at a lower filling fraction, and 1/4 is still high
enough to make the effect of interaction significant.

In Fig. 2, we plot C(t ) for several energy densities E/L, as
well as the shifted stretched exponential fit Eq. (6) for the AA
and GPD models. The fit parameters, and also the density of
states (DOS) at that E/L, are shown in Fig. 3. We find that the
AA model shows the expected stretched exponential behavior
as predicted by the SJA. However, at higher energy densities
(E/L � 0.15) of the GPD model, we observe a sudden drop
of the characteristic timescale τ toward zero, indicating C(t )
becomes essentially scale-invariant, which is not consistent
with the stretched exponential prediction. The value of β also
decreases.

100 101 102 103 104
0.00

0.02

0.04

0.06
-0.05 0.0
0.05 0.1
0.15

100 101 102 103 104
0.00

0.01

0.02

0.03

0.04
0.0 0.05
0.1 0.15
0.2

FIG. 2. The decay of the spin-spin connected autocorrelation
function C(t ) of the AA and GPD models [Eqs. (7) and (8) with α =
0 and α = −0.8, respectively] at various energy densities. Dashed
curves are the shifted stretched exponential fit of Eq. (6).

This observation holds across the entire range of W where
it is sensible to make the fit at the available timescale. That
is, where C(t ) slowly decays to a value substantially smaller
than its initial value. For smaller or larger W , the decay is
either too fast or too slow to observe the functional form of
the decrease in C(t ), such that a meaningful and stable fit is
impossible. Also note that we only show the data for energy
densities such that the normalized density of states (DOS) is
larger than 2 (roughly the middle two-thirds of the spectrum),
since the fit at the edge of the spectrum is again very unstable.
This crossover occurs near the peak of the DOS, rather than at
the edge of the spectrum.

However, we do not expect this phenomenon to survive
the thermodynamic limit. This can be seen in the comparison
between L = 20 and L = 24 in Fig. 3, where the sudden drop
of τ appears to be less dramatic and happens at slightly larger
E/L for the L = 24 curves. This means that the stretched
exponential fit, and therefore the SJA, is better at larger L.
Therefore, we suspect that the failure of SJA is a finite-size
effect.

We also compare the stretch exponent β to the resonance
exponent θ obtained directly by running the Jacobi algorithm.
The result is shown in Fig. 4. The distribution of resonances
ρres(w) shows power-law behavior except for very large w,
which is dominated by short-time effects. The expected power
law curves from the stretched exponent are shown in dashed
lines. For the AA model, the two sets of curves agree very
well. However, for the GPD model, they do not agree for some
values of W . This indicates that the AA model agrees with the
model of resonances even at fixed energy density, but the GPD
model does not.

These results suggest that thermalization in the interact-
ing GPD model is not described well by the proliferation of
many-body resonances. In particular, the failure of the SJA
in the higher energy part of the model may indicate that
the system is nonergodic on these time scales. Moreover,
the position of this regime agrees qualitatively with previous
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FIG. 3. The coefficients β (top) and log τ (middle) obtained from the shifted stretched exponential fit of C(t ), and the normalized density
of states (bottom) for the AA (left) and GPD (right) models at two selected values of W , each as a function of energy density. The GPD model
shows a sudden drop to τ → 0 at high energy density (especially for L = 20). Error bars indicate the 68% bootstrap confidence interval due to
the random choice of φ.

proposals for the position of the NEE regime in the GPD
model [31,33,34,36,65]. (Note that the regimes obtained by
the studies based on finite-time dynamical simulation are
expected to differ quantitatively from those based on eigen-
state properties.) Therefore, we interpret the regime of the
GPD model where the stretched exponential fit fails as the
NEE regime, and conclude that thermalization in this regime
proceeds through a different mechanism than the AA model
and typically studied random models. Note that the indication

FIG. 4. The distribution of resonances ρres obtained from the
Jacobi algorithm and the comparison with the predicted power law
from the stretched exponent β. These agree well for the AA model
but not for the GPD model.

of the NEE behavior through the finie-time SJA study suggests
that the NEE regime can appear as a prethermal feature. Since
it is logically possible that there exists an asymptotic NEE
phase that causes the failure of SJA at all timescales, including
the timescale at which we study, our observation above does
not logically imply that the NEE behavior is only a prethermal
feature. However, we believe that the latter is true, as will be
explained and discussed in the next two sections.

IV. ORIGIN OF THE NEE BEHAVIOR

The NEE regime has been conjectured to be related to
the presence of a SPME in the GPD model [31,34]. The AA
model has no energy-dependent mobility edge and does not
exhibit an NEE regime. However, we observe that the NEE
behavior manifests in the functional form of autocorrelation
functions at intermediate timescales and small system sizes,
where the influence of a mobility edge in the asymptotic single
particle spectrum would be expected to be minimal. In addi-
tion, the drift with L of the crossover position suggests that the
regime will not survive the thermodynamic limit, and hence
is not due to a MBME (and there are theoretical arguments
against the stability of an MBME [45,46]). Instead, we pro-
pose that the NEE behavior comes from the presence of deep
wells in the GPD potential. The large detuning effectively cuts
the chain into several segments, with spin exchange being
strongly suppressed between segments, but other interactions
being less suppressed.

In this section, we first construct a toy model with the
deep well structure whose NEE behavior can be derived
analytically using perturbation theory, and discuss the rela-
tionship between the toy model and the actual GPD model.
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In the next section, we provide further numerical evidence to
support this theory.

For convenience, we formulate the toy model Hamiltonian
in fermionic notation. It takes the form of a Hubbard model

H =
∑

j

(J (c†
j c j+1 + H.c.) + Unjn j+1 + Vjn j ), (9)

where c j is the fermion annihilation operator and n j = c†
j c j is

the fermion number operator. The on-site potential consists of
random variables Vj ∈ [� j − W,� j + W], where

� j =
{

0 if j �= 0 mod N + 1
−� if j = 0 mod N + 1.

(10)

Here, N is the size of the supersites which we introduce below.
We take the intrasupersite disorder width W � J , and � 
 J ,
so there is a large detuning (deep well) every N + 1 sites that
suppresses the particle from hopping across the deep well. On
the other hand, we choose the scale of the repulsive interac-
tion U to satisfy � 
 � − U 
 J . We show below that this
leads to a parametric separation of the particle spreading and
information (and, indeed, energy) spreading timescales.

We construct an effective Hamiltonian for the middle-
energy subspace (not involving the scales −� or U ) treating
J as a small parameter. This effective Hamiltonian de-
scribes energy densities corresponding to the typical sites.
The middle-energy subspace is spanned by the particle con-
figurations in which every deep site j = 0 mod N + 1 is
unoccupied, and such that no two particles are occupying
consecutive sites. In particular, the deep wells effectively cut
our chain into segments, which we call the supersites, each
of size N . The leading intersupersite terms in the effective
Hamiltonian can be calculated from second-order perturbation
theory. Let j = 0 mod N + 1 be a deep well. The intersuper-
site hopping is described by a particle hopping from j − 1
to j + 1 (and its reverse) through the process [left part of
Fig. 1(b)]

| · · · 100 · · · 〉 �→ | · · · 010 · · · 〉 �→ | · · · 001 · · · 〉, (11)

where the three numbers in each ket are the occupation of
j − 1, j, and j + 1, respectively. This gives the term in the
effective Hamiltonian:

J2

�
c†

j+1c j−1 + H.c. (12)

On the other hand, the intersupersite interaction is described
by that of two particles at j − 1 and j + 1, through the pro-
cesses [right part of Fig. 1(b)]

| · · · 101 · · · 〉 �→
{| · · · 011 · · · 〉
| · · · 110 · · · 〉

}
�→ | · · · 101 · · · 〉, (13)

which is to be compared with the processes without the other
particle:

| · · · 100 · · · 〉 �→ | · · · 010 · · · 〉 �→ | · · · 100 · · · 〉,
| · · · 001 · · · 〉 �→ | · · · 010 · · · 〉 �→ | · · · 001 · · · 〉. (14)

This gives the term in the effective Hamiltonian:(
2

J2

� − U
− 2

J2

�

)
n j+1n j−1. (15)

Note that 1/� � 1/(� − U ) by our assumption. This indi-
cates that, in the effective model, particle exchange (hopping)
between the supersites is suppressed much more strongly than
the information exchange (interaction) between them. Sup-
pose the disorder in Vj is weak enough such that the system
in the thermodynamic limit eventually thermalizes (satisfying
ETH). We can define the timescale τparticle at which particles
can spread across the entire system and τinfo for information
similarly, so we have τinfo � τparticle.

Now suppose that we try to use some finite-size or finite-
time probe to study the ergodicity and extendedness of the
system, so there is another timescale τfinite which is the largest
timescale that we can probe. The observable properties of
the system will depend on the relationship between the three
scales τfinite, τparticle, and τinfo. In the case of τfinite � τparticle,
the effect of particle spreading will not be observed, and there
will appear to be a set of conserved quantities, namely, the
number of particles in each supersite. Thus, the system will
appear nonergodic. For example, the system will show large
fluctuations of the half-chain density among nearby eigen-
states, which was used in Ref. [31] to support the existence
of an NEE regime. Conversely, there are no such apparent
conserved quantities if τfinite 
 τparticle and if there are no still
larger timescales, we will see the asymptotic ergodic behavior.
On the other hand, if we have τfinite � τinfo, the entanglement
entropy will show area-law behavior, while for τfinite 
 τinfo

the entanglement entropy will be volume law—interpreted in
Ref. [31] as meaning that the system is extended. Therefore,
we may numerically observe the behavior of three differ-
ent regimes in dynamics at accessible system sizes, even
though the system thermalizes in the thermodynamic limit
[Fig. 1(c)]. In particular, if τinfo � τfinite � τparticle, this finite-
size or finite-time probe will show that the system is in the
NEE regime.

We can further transform our toy model to a more familiar
form for the simplest case of N = 2 and the 1/3 filling sector.
The middle-energy Hilbert subspace has a simple basis

{|n1, 1 − n1, 0, n2, 1 − n2, 0, . . .〉}n1,n2,...∈{0,1}, (16)

where the first position denotes site 1. We can map the basis
states to |n1, n2, . . .〉, which is the state space of the Ising
model. In this new Hilbert space, the effective Hamiltonian
at leading order becomes

Heff =
∑

i

(
Jσ x

i + V3i−1 − V3i−2

2
σ z

i

− J2

2(� − U )
σ z

i σ z
i+1

)
, (17)

which is a mixed-field random Ising model. Previous numer-
ical evidence strongly supports that this model thermalizes in
the thermodynamic limit if the intrasupersite disorder is not
too strong [66]. The deep well structure can thus simultane-
ously support an extensive number of almost-conserved local
operators (the supersite occupation numbers) and extended
eigenstates.

In the general case of arbitrary N and filling fractions, the
effective model will be much more complicated, but it is still
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likely to thermalize for weak disorder, so an NEE regime
emerges.

We emphasize that in the NEE regime of our toy model,
where the particle hopping across the deep wells may be
neglected, the number of particles in each supersite consti-
tutes an extensive set of conserved local integrals of motion
(LIOMs), even if it is not a complete set. Thus, the effective
model for the NEE regime is, in fact, many-body localized.
The system retains partial memory of generic initial condi-
tions for all time, and particle transport coefficients vanish.
Nonetheless, the eigenstates of this model are volume law
entangled, and energy can diffuse through the system. While
the model is localized, it is not fully localized, in the sense of
Ref. [67]. One could call our picture of the NEE regime one
of partial many-body localization.

It is also apparent that thermalization in the toy NEE model
has more structure than is apparent from the distribution of
resonances ρres(w) obtained from the Jacobi algorithm. Some
operators spread much more slowly than others, which is
information not resolved by the distribution ρres(w). While
many-body resonances may play a role in the melting of the
almost-conserved quantities of the NEE toy model, this pro-
cess must be distinguished from the much more rapid spread
of other operators.

Now we return to the GPD model. The deep well structure
happens when the parameter α is close to −1 (in our study
and the previous numerical evidence [31,33,36] for the NEE
regime in the interacting GPD model, the value −0.8 is used,
which is close enough), as the sites with cos(2πϕ j + φ) ≈ 1
cause the denominator of Eq. (8) to be close to zero. Al-
though there is no canonical choice of how close the cosine
term is to one for the site j to be considered as deep, we
can still compare with our toy model based on the visual
appearance. In the range of disorder strengths used in our
numerical calculations, we estimate � ∼ 1.3, W ∼ 0.4, and
N ∼ 5 (see Fig. 5). Also, we have J = 0.5 and U = 1 by
Jordan-Wigner transformation. We see that the assumption
that the detuning of the deep well is compensated by the inter-
action is indeed satisfied. If we use the perturbative formulas
above, we get the intersupersite hopping strength to be ∼0.2
and the intersupersite interaction strength to be ∼1, indicating
the rates of particle hopping and interaction are separated by
a factor of ∼5, lending support to our proposed mechanism
for the NEE behavior. Although perturbation theory may not
work well for these parameters, since the energy scales are
all roughly at the same order of magnitude, we propose that
the essential feature caught by our perturbative toy model is
responsible for the observed NEE regime of the interacting
GPD model.

V. THE t1–t2 MODEL AND THE RANDOM WELL MODEL

We propose that any one-dimensional model with regu-
larly spaced deep wells in its disorder potential will display
an NEE regime at intermediate timescales. In particular, our
proposal does not rely on the presence or absence of a
mobility edge in the single particle spectrum nor, indeed, on
quasiperiodicity. In this section, we investigate two additional
models: the t1–t2 model, a quasiperiodic model with a single
particle mobility edge but no deep wells, and a randomly

5 10 15 20
−6
−4
−2
0
2

5 10 15 20
−6
−4
−2
0
2

FIG. 5. Comparison between the GPD and the random wells
model. The gray curve in the top panel is the periodic function whose
values at integer points give the GPD potential. We put a horizontal
dashed line to separate the deep (green) and shallow (orange) sites.
The threshold is chosen such that the number density of deep sites is
1/5. The random wells model is constructed such that the deep sites
are equally spaced with the same number density, and the potentials
on the deep and shallow sites are both independently uniformly dis-
tributed with the same mean and variance as the corresponding type
of sites in the GPD model (the ranges are shown in gray horizontal
bars in the bottom figure).

disordered model in which we insert deep wells. The single
particle sector of the latter is always localized [1], but we
will see that it exhibits an NEE regime, while the t1–t2 model
does not.

The t1–t2 model is just the AA model with an additional
next-nearest-neighbor hopping term [54,59]. In the spin rep-
resentation, its Hamiltonian is

H =
L−1∑
j=1

[
1

2
t1(S+

j S−
j+1 + S−

j S+
j+1) + USz

jS
z
j+1

]

−
L−2∑
j=1

t2
(
S+

j Sz
j+1S−

j+2 + S−
j Sz

j+1S+
j+2

)

+ W
L∑

j=1

cos(2πϕ j + φ)Sz
j . (18)

Here, t1 and t2 correspond to the strength of nearest-neighbor
and next-nearest-neighbor hopping respectively, and U is the
interaction strength. We fix t1 = 1, t2 = 1/6 (as in Ref. [54])
and U = 1.

The random wells model is based on the perturbative toy
model in Sec. IV, with parameters chosen to make the poten-
tial visually mimic the GPD model. The Hamiltonian is the
same as Eq. (7), except that the potentials hj are each indepen-
dently drawn from a j-varying uniform random distribution.
There is no canonical choice of what points are considered
deep in the GPD model, and we do not think the exact defini-
tion is important. However, to have some consistency between
the GPD and our artificial model, we make an arbitrary choice
of threshold −2.28 and consider sites with h j < −2.28 to be a
deep well. This choice makes the number density of deep sites
in the GPD model exactly 1/5. In this way, we can design
the artificial model to have a deep well for every five sites,
such that the density of deep wells is the same as the GPD
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FIG. 6. The decay of the spin-spin connected autocorrelation
function C(t ) of the t1–t2 and the random wells models at various
energy densities. Dashed curves are the stretched exponential fit.

model under this definition. The range of the uniform random
variable h j is chosen to be [−5.38,−2.36] for j mod 5 =
j0 (deep); otherwise, it is chosen to be [−1.33, 1.19] (shal-
low). The values are chosen so the mean and variance of the
potential for a type of site (deep or shallow) is the same as
that of the corresponding type in the GPD model. Each of
the five possible choices of j0 are used in exactly one-fifth
of the disorder realizations. The visual comparison between

the GPD and our artificial random wells model is shown in
Fig. 5.

As a remark, the eigenstate properties of the random wells
model show essentially the same signatures to those of the
GPD model that in Ref. [31] were used as evidence for the
NEE regime (Appendix A).

In Figs. 6 and 7, we plot the C(t ) curve and the fit param-
eters for the t1–t2 and the random wells models, similar to
Figs. 2 and 3. The results show that the interacting t1–t2 model,
despite having a single particle mobility edge, shows similar
behavior to the interacting AA model, in that the stretched
exponential fit is good (shows sensible parameters). On the
other hand, the interacting random wells model, despite being
random rather than quasiperiodic, and thus being localized
everywhere in the single-particle spectrum, shows similar
behavior to the interacting GPD model in that the stretched
exponential fit crosses over to τ → 0 behavior in the higher
energy spectrum.

Our proposed mechanism based on deep wells also predicts
that adding a next-nearest-neighbor hopping term to a model
with deep wells will destroy the NEE regime, as a particle can
directly hop from one side of the deep well to the other. Thus,
there will be much less suppression of particle spreading, and
therefore the NEE regime should disappear. We verify this
numerically for the GPD model with next-nearest-neighbor in
Appendix B.

VI. CONCLUSION

The asymptotic properties of randomly disordered interact-
ing spin chains are predicted to be distinct in several ways
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FIG. 7. The coefficients β (top) and log τ (middle) obtained from the shifted stretched exponential fit of C(t ), and the density of states
(bottom) for the t1–t2 (left) and random wells (right) models at two selected values of W , each as a function of energy density. The random
wells model shows a sudden drop to τ → 0 at high energy density (especially for L = 20). Error bars indicate the 68% bootstrap confidence
interval due to the random choice of φ or disorder realizations. (Compare to Fig. 3.)
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from quasiperiodically disordered spin chains [26,27,29,30].
However, at accessible system sizes, few robust differences
between the behavior of quasiperiodic and random disorders
have been observed [28]. This indicates that the prethermal
regime—in which the system eventually thermalizes, but does
so extremely slowly—is phenomenologically the same in ran-
dom and quasiperiodic spin chains. One of the few observed
differences between these cases in past work has been the
presence of an apparently NEE regime in the quasiperiodic
GPD model, which has been attributed to the presence of a
single-particle mobility edge [31,33,34,36].

By diagnosing the presence of the NEE regime through
the functional form of spin-spin autocorrelation functions,
we have demonstrated that the NEE phenomenology can be
observed within the prethermal regime, and so is unlikely
to be due to the asymptotic presence of a single-particle
mobility edge. Rather, we propose that this regime emerges
due to the presence of deep wells in the GPD potential,
which suppress spin exchange across the chain. This proposal
is also consistent with the failure of the SJA to describe
the decay of autocorrelators, as the thermalization process
is different for different operators, and the SJA does not
resolve such differences. Notably, this mechanism does not
rely on quasiperiodicity. Indeed, we can replicate the same
phenomenology in a randomly disordered model with deep
wells. Thus, while our results show the unremarkable feature
that details of the disorder potential may influence thermaliza-
tion, they also demonstrate that there is not a sharp distinction
between random and quasiperiodic disorder in the prethermal
regime.

Based on the interpretation of the NEE phenomenology as
belonging to the prethermal regime, we see little evidence for
the presence of an asymptotic many-body mobility edge in
past numerics [31,33,34,36]. Rather, the various observations
which led to this conjecture seem to be well explained by
the maximum accessible timescale τfinite crossing between
the information spreading timescale τinfo and the particle (or
magnetization) spreading timescale τparticle, as illustrated in
Fig. 1.

That we can see signatures of the NEE regime in autocorre-
lation functions, rather than past entanglement-based probes,
indicates that this regime can in principle be observed in
experiments [59,68–75]. However, our dynamical probes are
rather indirect, and likely difficult to use in an experimental
setting. The proposal that the τ → 0 feature of the stretched
exponential fit is related to nonergodicity is speculative, with a
more conservative conclusion being merely that the model has
additional features other than many-body resonances which
control the decay of autocorrelation functions. This feature
of the fit is also likely to be greatly affected by experimental
noise. Thus, it would be desirable to have a direct and reliable
measurement of τinfo and τparticle to more directly test our
proposed mechanism for the NEE regime. Due to our lack of
direct probes, further investigation is still required to settle the
nature of the NEE regime. Studies of the eigenstate properties
of the random wells model are currently underway [76], and
preliminary results show that the behaviors of the GPD and
random wells models appear almost identical to the machine
learning model of Ref. [33].

There may, in general, be several more timescales than τinfo

and τparticle associated to the spreading of different classes of
operators. Even at the timescales accessible to current numer-
ics and experiments, we suspect there can be multiple distinct
intervening NEE regimes between apparent localization and
clear thermalization. Verifying this conjecture also requires
developing reliable ways of identifying these timescales
directly.

Asymptotically, we expect that the delocalization of any
operator will generically cause the delocalization of all op-
erators. A generic perturbation will couple the previously
localized operators to the delocalized class, allowing them to
spread. Thus, there should be no NEE regime, in the form of
partial localization, in the thermodynamic limit. However, it is
interesting to ask whether the NEE regime can be considered
a distinct dynamical phase to MBL in a nonstandard thermo-
dynamic limit [77,78].

We mention that the GPD model has been studied exper-
imentally [55] and it would be interesting to analyze this
experiment in the context of our finding of prethermal NEE
features in the GPD model. In fact, an interesting experiment
would be to directly compare the prethermal dynamics of the
GPD model with the random wells and t1–t2 models, since
all three models are accessible in cold atom systems. We
predict that the noninteracting GPD model will be similar to
the noninteracting t1–t2 model, with both manifesting SPMEs
(with the random wells model having no SPME) whereas the
interacting GPD model will manifest NEE features similar
to the interacting random wells model with the interact-
ing t1–t2 model showing no such prethermal NEE features.
More broadly, the GPD model exhibits interesting dynamical
features beyond the prethermal NEE phenomenology dis-
cussed here, including the enhancement of localization by
interactions [79].

Our proposal also raises the theoretical question of whether
there are other mechanisms by which the thermalization
timescales for different classes of operators may separate. Any
process which induces this feature should produce an NEE
regime. Our work using the statistical Jacobi approximation
in the interacting GPD model could be a guide for such future
studies of prethermal quantum dynamics.
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APPENDIX A: EIGENSTATE PROPERTIES
OF THE RANDOM WELLS MODEL

In this Appendix, we study the eigenstate properties of
the random wells model using similar quantities to Ref. [31],
which were used to support the existence of an NEE regime
in the GPD model.

In Fig. 8, we show the standard deviation of the
collection of eigenstate expectation values {O(E )},
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FIG. 8. Comparison of the standard deviation of the observable
O [Eq. (A1)] among 100 consecutive eigenstates of energy close
to E , and the half-chain entanglement entropy between the GPD
and the random wells models at W = 0.35. Error bars indicate the
68% bootstrap confidence interval due to the random choice of φ or
disorder realizations. The almost quantitative agreement (except at
the very right end of the spectrum) indicates that the two models are
essentially indistinguishable at these system sizes.

defined by

O(E ) =
L/2∑
j=1

〈ψE |Sz
j |ψE 〉, (A1)

where E runs over 100 consecutive energy eigenstates. In a
system which satisfies the ETH, this standard deviation should
be very small, and become smaller with increasing system
size [40]. We also show the average half-chain von Neumann
entanglement entropy S(L/2) of an eigenstate in that range.
We compare these quantities between the interacting GPD and
the random wells model, both at W = 0.35, with parameters
the same as in the main text.

Except at very high energy densities, the two quantities
(and the DOS of these two models) not only show quali-
tative similarity, but also agree almost quantitatively. This
suggests that the GPD model is essentially indistinguish-
able from the random wells model at numerically tractable
system sizes.

In particular, the argument in Ref. [31] for the exis-
tence of an NEE regime based on similar numerical data
carries through in exactly the same way for the random
wells model. The decrease of stdO at low to middle energy
densities—between E/L = −0.1 and E/L = 0.05—suggests
that the system may be crossing from a nonergodic regime
[where consecutive eigenstates are very distinct, producing
large fluctuations in O(E )] to an ergodic regime (where
consecutive eigenstates look similar). On the other hand,
the entanglement entropy shows a change from area law
(S(L/2) ∼ const) to approximately volume law (S(L/2) ∝ L)
at the slightly lower value E/L ≈ −0.15, which suggests
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FIG. 9. The fit parameters β (top) and log τ (middle) obtained
from the shifted stretched exponential fit of C(t ), and the normalized
density of states (bottom) for the t1–t2 model with GPD potential at
L = 20 and two selected values of W , each as a function of energy
density. This model shows no signature of an NEE regime, consistent
with the arguments of Sec. IV. (Compare to the GPD model in
Fig. 3.)

that the system goes from fully localized to extended at
that energy density. The separation of these two crossovers
implies that an NEE regime exists in both the interact-
ing GPD and the random wells models at middle-low
energy densities.

The data presented in Fig. 8 is not as clear as in Ref. [31]
as we only use two different system sizes and work at smaller
system sizes than their study. Note also that we use a higher
filling fraction, among other parameter differences, compared
to Ref. [31]. Ongoing study [76] shows that the random wells
model also reproduces essentially the same data as in Ref. [31]
using the setup of that work.

The difference in the position of the NEE regime as diag-
nosed by the dynamical properties presented in the main text
(at middle-high energy densities) and the eigenstate properties
studied here (at middle-low energy densities) is expected due
to the difference in the probing timescale τfinite. Since eigen-
state properties probe the longest possible timescale at a given
system size, the τfinite here is longer than the dynamical study
in the main text. From Fig. 1(c), we see that the parameter
regime which shows the MBL behavior will drift to the NEE
behavior, and the one that shows the NEE behavior will drift
to the ETH behavior, upon increasing τfinite. Therefore, in our
case, the NEE regime is expected to drift towards lower energy
densities when using a larger τfinite.

APPENDIX B: THE t1–t2 MODEL WITH THE GPD
POTENTIAL

In this Appendix, we provide another verification of
our proposed mechanism for the NEE regime described
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in Sec. IV by adding next-nearest-neighbor hopping to a
model with deep wells. Our proposed mechanism predicts that
this addition should remove the NEE regime.

The model is defined by replacing the cosine term in
Eq. (18) with the GPD potential in Eq. (8), with the same
parameters as in the main text. This is equivalent to adding

next-nearest-neighbor hopping to the GPD results presented in
Sec. III. The next-nearest-neighbor hopping avoids the large
detuning of the deep well, making the NEE regime disappear.
The results shown in Fig. 9 support this picture, as there is no
sudden decrease of τ at higher energy densities. This result
supports our explanation of the NEE regime in Sec. IV.
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