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Phase transitions induced by standard and feedback measurements in transmon arrays
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The confluence of unitary dynamics and nonunitary measurements gives rise to intriguing and relevant phe-
nomena, generally referred to as measurement-induced phase transitions. These transitions have been observed in
quantum systems composed of trapped ions and superconducting quantum devices. However, their experimental
realization demands substantial resources, primarily owing to the classical tracking of measurement outcomes,
known as postselection of trajectories. In this work, we first describe the statistical properties of an interacting
transmon array which is repeatedly measured by standard and feedback measurements. We predict the behavior
of relevant quantities in the area-law phase using a combination of the replica method and non-Hermitian
perturbation theory. We show numerically that a transmon array, modeled by an attractive Bose-Hubbard model,
in which local measurements of the number of bosons are probabilistically interleaved, exhibits a phase transition
in the entanglement entropy properties of the ensemble of trajectories in the steady state for both measurement
types. Furthermore, in the numerical simulations, we observe that by using deterministic feedback operations
after the local number measurements, the distribution of the number of bosons measured at a single site carries
relevant information about the statistics of individual trajectories.

DOI: 10.1103/PhysRevB.109.214308

I. INTRODUCTION

Complex quantum systems can undergo a phase transi-
tion when subjected to quantum measurements, known as a
measurement-induced phase transition (MIPT) [1]. Described
years ago within the context of quantum to classical transi-
tion [2], its study has experienced a resurgence due to the
advent of quantum technologies [3–32]. In general, this phase
transition is addressed in hybrid circuits composed of unitary
evolution and nonunitary quantum measurements, which tend
to increase and eliminate the entanglement between the el-
ements of the system, respectively. In this way, two phases
are defined: for infrequent measurements, the entanglement
of the subsystems follows a volume-law, while for frequent
measurements it follows an area-law. The relevant parameter
of this phase transition is given by the measurement rate in the
case of projective measurements [3,6,11], the strength of weak
measurements [7,8,11,33,34] or the type of measurements ap-
plied [20]; and may even be achieved solely by measurements
due to frustration [23]. Based mainly on numerical studies
of random quantum circuits, it has been argued that such a
phase transition should be described by a two-dimensional
(2D) nonunitary conformal field theory, which explains the
universal scaling of entanglement entropy near the critical
point, although a complete analytical understanding is still
lacking [4,6,12,25,35,36].

The recent development of noisy intermediate-scale quan-
tum [37] devices has also motivated the study of the MIPT
within the context of open quantum systems since the in-
teraction of a random quantum circuit with its environment
can be interpreted as a closed system continuously being
measured [1,6,13,14]. Therefore, the connections between the
entanglement entropy transition and other phenomena related
to quantum information and communication are especially

relevant. In this regard, the phase transition can be understood
as a transition in the system’s capability of purifying an ini-
tially mixed state [14], in the threshold of its quantum error
correction properties [13,38], or the quantum channel capacity
[13,39], as well as in the information that can be extracted
about the initial state of the system, quantified as the Fisher
information [11].

The MIPT is characterized by a transition in the statis-
tical properties of the system dynamics that can only be
detected by examining individual quantum trajectories. These
trajectories are pure states associated with specific measure-
ment outcomes or trajectory-averaged quantities involving
higher orders of the density matrix such as entanglement
entropy or fluctuations of observables [19]. However, detect-
ing these trajectories experimentally requires postselecting
all measurements to reconstruct the final state or calculate
trajectory-averaged expectation values that can hinder ex-
perimental performance due to the need for multiple circuit
iterations. There are different proposals to eliminate or reduce
postselection, such as the use of space-time duals of random
circuits in which postselection is only necessary for the final
measurements [24], the averaging of a reference ancilla that is
entangled with the circuit [14,40], or by considering swapping
between the circuit and the environment instead of measure-
ments [41]. Recently, an MIPT in trapped ions using Clifford
gates has been experimentally observed without the need for
postselection, using reference ancillae to detect the purified
phase [42]; it has been argued that it is also possible to per-
form a similar experiment to detect the unpurified phase [43].
However, the features of superconducting devices, such as
their scalability, speed, and richness of dynamics due to easy
access to larger Hilbert spaces [44–51], make this platform
an ideal device to study MIPTs. Interestingly, its existence
has recently been experimentally demonstrated by explicit

2469-9950/2024/109(21)/214308(32) 214308-1 ©2024 American Physical Society

https://orcid.org/0000-0001-7761-3962
https://orcid.org/0009-0005-0216-0424
https://orcid.org/0000-0002-6319-2789
https://ror.org/03yj89h83
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.214308&domain=pdf&date_stamp=2024-06-20
https://doi.org/10.1103/PhysRevB.109.214308


MARTÍN-VÁZQUEZ, TOLPPANEN, AND SILVERI PHYSICAL REVIEW B 109, 214308 (2024)

FIG. 1. (a) Hybrid circuit of L subsystems of dimension d evolving under a unitary time evolution (blue rectangles) and probabilistic
projective measurements (red circles) for an initial product state. The green line at the top corresponds to the steady state in which the
observables are measured. (b) The standard measurements consists of a projective measurement P̂st

n = |n〉〈n| applied with a probability p
on each site � whose outcome probabilities are given by Born’s rule pn = 〈ψ |P̂st

n |ψ〉, such that
∑d

n=1 pn = 1 defining d different trajectories
{|1〉, |2〉, . . . , |d〉}. The feedback measurement consists of a standard measurement after which we access classically the result of the outcome,
schematized by the thick wires and the monitors, based on which we apply an outcome-dependent unitary operator K̂n = |n〉〈α| + |α〉〈n| to
the system forcing the subsystem to be in the state |α〉 independently of the measurement’s outcome. Note that here the measurement schemes
are represented for a single site �, but the measurement is evaluated following a probability p at every site and time step. (c) Numerical results
for different observables averaged over circuit iterations at long times for d = 2. For the standard measurement, the system undergoes a
phase transition with increasing measurement probability. Here the averaged results and distributions of simple observables do not provide any
relevant information. For the feedback measurement, we observe a similar phase transition but, in this case, the averaged results and, especially,
its distribution provide useful statistical information. (d) Scheme of an array of L interacting transmons modeled as anharmonic oscillators
with on-site energies ω� and anharmonicities U�, interacting capacitively with strengths given by J�.

postselection in a superconducting quantum processor [52].
It is important to note that the MIPT, observed in diverse
systems, is a generic property of quantum trajectories in open
systems, regardless of implementation details in different
devices [1].

To perform postselection, one needs to know all the results
of the measurements taken during the temporal evolution.
To simplify this process, one can use a different type of
measurement where the outcome is predetermined in ad-
vance, such that the probability is based solely on whether
the measurement was conducted. This has been previously
considered in systems evolving under a Bose-Hubbard Hamil-
tonian [10] to include possible unwanted effects of projective
measurements on trapped ions [53] or to study PT-symmetry
breaking in non-Hermitian Hamiltonians [54]. It has been ar-
gued that this type of measurement instead generates a forced
measurement-induced phase transition, which may belong to
a different universality class than the MIPT described above
[55]. Recently, several works have addressed the effect of
including some feedback after each measurement, where they
have demonstrated the existence of a phase transition in the
averaged density matrix, which can be detected using simple
linear observables that are easy to measure experimentally
[56–61]. However, this phase transition consists of an ab-
sorbing state phase transition (APT) and generally belongs
to a different universality class than the MIPT observed in
the entanglement of individual quantum trajectories [58]. In-
terestingly, including feedback corrections induces the same

MIPT in individual quantum trajectories as seen in hybrid
circuits without feedback [61]. Under certain conditions, the
critical parameters of both transitions can coincide: in the
limit of infinite local Hilbert-space dimension in Haar ran-
dom and Clifford-like circuits [61], in the limit of applying a
feedback correction after each measurement in certain models
[58,59], when the feedback involves long-range entangling
operations [60]. Both transitions can even exhibit the same
critical behavior, as is the case for free fermions governed
by the essential scaling of a Berezhinskii-Kosterlitz-Thouless
(BKT) transition [56], or in the case of random circuits with
long-range feedback operations with specific features where
the entanglement entropy inherit the behavior of the absorbing
state phase transition [60]. It has been suggested that this APT
generally falls into the direct percolation (DP) universality
class, and it is expected to hold in local models targeting
short-range correlated states without additional symmetries
[58]. In the presence of symmetries, the APT has also been
associated with a parity-conserving universality class [59].

In this work, we focus on an array of transmon devices as
the physical platform for implementing measurement-induced
phenomena. Transmons are multilevel quantum systems; that
is, qudits with d levels, see Fig. 1(d). We compare a standard
measurement of a transmon occupation that produces one
of the d possible results, with a feedback measurement that
projects the system to a predetermined state, see Figs. 1(a)
and 1(b). In the case of a standard measurement, d different
results can be produced after performing the measurement,
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thus defining branching into d different options. A measure-
ment outcome n has a probability of occurrence pn given by
Born’s rule. The state after the measurement is obtained by
projecting the measured state by the operator P̂st

n = |n〉〈n|. By
contrast, the feedback measurement consists of two events:
first, a standard measurement is performed in the same way
as in the previous case, and then a local unitary operator K̂n,
which depends on the result of the measurement n, is applied
to the measured site. This implies that we need to have short-
term classical access to the result of the measurement to apply
one or another unitary operator K̂n, thus forcing the site to be
projected to a particular state and collapsing all the possible d
measurement’s outcomes to a single one, without discarding
any of them. The measurement probability is the only relevant
parameter with respect to reducing entanglement from the
system. Note that, throughout this paper, all measurements
and their feedback are both strictly local, i.e., measuring one
site involves applying a feedback unitary gate to that particular
site.

Precisely, in this work we propose that by using feedback
measurements we can extract relevant statistical properties
from the distribution of simple observables. It is important
to note that we are not studying phase transitions either
in the simple observable or in the averaged density matrix.
In Fig. 1(c), we summarize the main result of the article.
By measuring the boson number at one single site in the
steady state, we can compare the distribution of the results
with the theoretically expected distribution for area-law and
volume-law phases. In the case of a standard measurement,
the distributions are the same in the two phases, and therefore,
the observable does not give any information. On the other
hand, by introducing feedback measurements, the boson num-
ber distributions are different in different phases. Note that
the distribution of the number of bosons at the steady states
is obtained by merely collecting the outcomes, but it is not
necessary to keep any other information. Importantly, the final
results obtained for transmons modeling hard-core bosons are
applicable and can be extended to a wide range of scenarios,
including arrays of subsystems with higher dimensions, disor-
der, and interactions.

The article is organized as follows: The attractive Bose-
Hubbard model, which describes the dynamics of interacting
transmons, is presented in Sec. II and Appendix A, along
with the procedure for creating a hybrid circuit consisting of
unitary gates and nonunitary measurements. In Sec. III, we
present the methods. We briefly describe the replica method
approach used to study the relevant statistical properties of the
hybrid circuit encoded in the ground state of an effective non-
Hermitian Hamiltonian. Additionally, we introduce statistical
arguments to adequately describe the dispersion of simple
observables, a quantity that does not require postselection. In
Sec. IV, we present analytical results for the obtention of an
effective Hamiltonian describing the statistics of the circuits
and the averaged observables in the area-law phase of hard-
core bosons for both standard and feedback measurements.
This section is extended in Appendixes B–D. In Sec. V and
Appendix E, we show numerical simulations to test the analyt-
ical predictions for hard-core bosons extended in Appendix F.
Finally, Sec. VI is dedicated to conclusions and suggestions
for future work.

II. A REPEATEDLY MEASURED TRANSMON ARRAY

To study an MIPT on an array of transmons undergoing
projective measurements, we create a hybrid circuit consisting
of unitary gates originating from the intrinsic dynamics of
the transmons and nonunitary measurements introduced ex-
ternally to monitor the system, see Fig. 1(a). Regarding the
unitary elements, the dynamics of a one-dimensional array of
L interacting transmons [Fig. 1(d)] can be described by the
disordered attractive Bose-Hubbard model [46,47] with the
Hamiltonian

Ĥ

h̄
=

L∑
�=1

[
ω�n̂� − U�

2
n̂�(n̂� − 1) + J�(â†

� â�+1 + H.c.)

]
, (1)

where â� and â†
� are the bosonic annihilation and creation

operators at site �, and n̂� = â†
� â� is the corresponding number

operator. Within this description, ω� accounts for the on-site
energy and U� for the attractive interaction strength at site �, to
which the bosonic excitations are subject. The term J� refers to
the hopping rate of excitations between sites � and � + 1, and
JL implicitly includes the boundary of the array, i.e., whether
it has open or periodic boundary conditions. The Hamiltonian
of Eq. (1) conserves the total number of excitations, since
[Ĥ , N̂] = 0, where N̂ = ∑L

�=1 n̂� is the total number operator.
This implies that the dynamics occur in a single sector of a
fixed number of excitations when initializing the system with
a definite number of excitations.

For experimental purposes, it is convenient to take into
account that the typical values of the parameters are ω�/2π ≈
5 GHz, U�/2π ≈ 200 MHz, and J�/2π ≈ 10 MHz [62–64],
and range within the ratios U�/J� ≈ 2–30 and ω�/J� ≈
50–1000 [46,47]. Due to manufacturing defects, the exact
parameter values differ between transmons and should be
understood as being taken from a certain distribution. In most
of the analysis, we consider constant values ω� ≡ ω, U� ≡ U ,
and J� ≡ J , corresponding to the mean values of Gaussian
distributions with variances σ 2

ω , σ 2
U , and σ 2

J . Importantly,
volume-law states can also be obtained even in the presence
of a certain amount of disorder [65].

To create an analog circuit for analytic calculations
corresponding to the time evolution generated by the Bose-
Hubbard Hamiltonian (1), we use a Suzuki-Trotter decompo-
sition to design a unitary layer corresponding to a time step dt
in terms of two-site gates [65–70]. Briefly, we split the Hamil-
tonian of Eq. (1) into odd and even sites Ĥ = ∑L

odd � Ĥ� +∑L
even � Ĥ�, such that we can express the unitary time evolution

operator as e−iĤdt/h̄ ≈ ∏L
even �b

e−iĤ�b dt/h̄ ∏L
odd �a

e−iĤ�a dt/h̄ at
first order in dt (more details in Appendix A). After each layer
of gates, we artificially introduce a probabilistic measurement
layer in such a way that each time step, which is an effective
layer of the hybrid circuit, can be expressed as

|ψt+dt 〉 =
L∏
�

M̂�(p)
L∏

even �b

e−iĤ�b dt/h̄
L∏

odd �a

e−iĤ�a dt/h̄|ψt 〉, (2)

where M̂�(p) represent the measurement operations per-
formed with a certain probability p at each site �. Furthermore,
the state |ψt+dt 〉 needs to be renormalized. Note that we intro-
duce the measurements ad hoc, assigning them a timescale
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dt of the order of the trotterized gates, so we assume that the
probability of measuring a particular site � depends on the
timescale dt and a measurement rate �, such that p = �dt .
For the numerical simulations, we define the layers simply
by evolving the Hamiltonian (1) for a time dt and then
performing a measurement with a probability p, and finally
renormalizing the state.

The type of measurement implemented is crucial. We con-
sider a standard number measurement, whose outcome n after
performing a measurement range from zero to d − 1 with an
associate probability of occurrence given by the Born’s rule,
the projection operators are P̂st

�,n = |n〉〈n|, and here � is the site
index. We also introduce the feedback measurement, which
can be understood as follows: first, a standard measurement
is performed at site � whose result depends on Born’s rule;
second, we classically access this result; and third, based on
this result, we perform a local operation on site � to project it
locally onto the state |α�〉. The associated projection operators
are P̂fb

�,n = |α�〉〈n| for a given spatial profile (α1, α2, . . . , αL )
that define the site-dependent outcomes after performing a
measurement. This means formally that P̂fb

�,n ≡ K̂�,nP̂st
�,n, where

K̂n = |n〉〈α| + |α〉〈n|, see Fig. 1(b). In both cases, the op-
erators fulfill the measurement condition

∑d−1
n=0 P̂†

�,nP̂�,n = Î .
Interestingly the standard measurement conserves the total
number of bosons while the feedback measurement does not.
Projectors of a similar nature have been employed in studies
that successfully observed an MIPT [53,61]. Note that here
we consider a general spatial profile (α1, α2, . . . , αL ) for the
feedback measurements. Particularly, we do not consider the
profiles that would lead to an absorbed state, such as α� = 0
for all l .

III. STATISTICAL METHODS

A. Replica method

We now analyze the long-term statistical behavior of the
hybrid circuits, including unitary gates and probabilistically
interleaved measurements. However, this analysis becomes
complex due to the numerous possibilities involved, both an-
alytically and experimentally. For the analytical study of the
statistical properties of the system, we make use of the replica
method, which has been used to describe simple random
unitary circuits [11,19,71–73] whose statistical properties can
be mapped to a classical mechanics model in which relevant
statistical properties can be easily calculated, allowing studies
of phase transitions in the entanglement entropy [26,74].

For the implementation of the replica method to the Bose-
Hubbard model with interspersed measurements, we follow
the work carried out by Bao et al. in Ref. [19]. In contrast with
their Z2 symmetry-preserving circuits, we consider circuits
that conserve the total number of bosons [75]. The symmetry
of the conserved total number of bosons can be broken by the
presence of feedback measurements. Since we are interested
in the ensemble of trajectories, we start by labeling the states
at time t with a sequence of measurement outcomes mi and a
set of gate parameters θi as

ρ̂mi,θi (t ) = (
P̂mt

Ûθt
· · · P̂m1

Ûθ1

)
ρ̂0
(
Û †

θ1
P̂†

m1
· · · Û †

θt
P̂†

mt

)
, (3)

where ρ̂0 is the initial state, Ûθi are the set of unitary evolution
gates, P̂mi are the string of projection operators associated with
measurement outcomes mi, and i refers to all the positions in
the circuit space-time. For studying the steady-state properties
of the ensemble of states ρ̂mi,θi (t ), and its associated probabil-
ities, we consider the dynamics of n copies—the replicas—of
the density matrices ||ρ (n)

mi,θi
〉〉 ≡ ρ̂⊗n

mi,θi
interpreted as state

vectors in the replicated Hilbert space H(n) = (H ⊗ H∗)⊗n.
Replicated unitary operators Ǔ

(n)
θi

≡ (Ûθi ⊗ Û ∗
θi

)⊗n, measure-

ment projection operators M̌(n)
mi

≡ (P̂mi ⊗ P̂†
mi

)⊗n, as well as
general operators Ǒ(n) ≡ (Ô ⊗ Î )⊗n are used for computing
observables.

Taking into account the non-normalized averaged
state of the ensemble ||ρ (n)(t )〉〉 = ∑

mi,θi
||ρ (n)

mi,θi
(t )〉〉 =

e−tȞeff ||ρ (n)
0 〉〉, we can exactly map the dynamics to an

imaginary time evolution generated by an effective quantum
Hamiltonian Ȟeff, such that the properties of the averaged
state of the ensemble at long times are encoded in its ground
state. Note that from now on we consider h̄ = 1 to simplify
the notation. Using this formalism, we can compute the
trajectory-averaged k-moment of an observable Ô, which is
given by

〈Ok〉 = lim
n→1

〈〈I(n)||Ǒ(n)
k ||ρ (n)〉〉

〈〈I(n)||ρ (n)〉〉 = lim
n→1

O(n)
k , (4)

where · refers to the average over gate parameters and 〈·〉
to the average over measurements outcomes and the inner
product is defined by 〈〈μ||σ 〉〉 ≡ tr(μ̂†σ̂ ), for arbitrary states
μ̂ and σ̂ and a reference state ||I(n)〉〉 in the replicated Hilbert
space. Therefore, the quantities we are going to study for
addressing phase transitions are the objects O(n)

k in Eq. (4),
which corresponds to the exact trajectory-averaged quantum-
mechanical observables only in the replica limit n → 1. It
has been shown, at least for the von Neumann entropy, that
although not being the same quantity, both share critical
properties in the MIPT [11]. More details on this particular
implementation of the formalism can be found in Appendix B
and in Ref. [19].

B. Direct average of circuit realizations

Next, we elaborate the role of the moment k of Eq. (4)
in the postselection of trajectories to calculate trajectory-
averaged quantities. For that, it is useful to express the
trajectory-averaged quantities directly in terms of the mea-
surement probability p and probability distributions of the
gate parameters pθi and the outcomes of the interleaved mea-
surements pmb (θ ), such that

〈Ok〉 =
M∑

b=0

pb(1 − p)M−b
〈
Ob

k

〉
m,θ

, (5)

where the average expectation value is

〈
Ob

k

〉
m,θ

=
∫

dθi

(M
b )∑
b

db∑
mb

pmb,θi

[
tr
(
Ôρ̂ ′

mb,θi

)]k
, (6)

where ρ̂ ′
mb,θi

is the normalized density matrix of an indi-
vidual trajectory, Ô can be any operator, pmb,θi ≡ pθi pmb (θ ),
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( M
b ) = M!/[b!(M − b)!], and b is an array with all the pos-

sible ( M
b ) combinations of arranging b measurements in the

total M positions of space-time. In other words, M is the
maximum number of measurements that is performed when
p = 1 and b = i; while no measurements are performed when
p = 0 and b = ∅ → pmb,θi = pθi . The probability distribu-
tions are normalized such that

∑M
b=0 pb(1 − p)M−b( M

b ) = 1,∑db

m pmb (θ ) = 1, and
∫

dθi pθi = 1. We have considered that
pmi (θi) → pmb (θi), because for the probability distribution we
need to take into account those positions b where measure-
ments have been performed and not all the possible positions
i where a measurement could have been performed.

The trajectory-averaged first moment k = 1 quantities,
such as the number of bosons 〈N1〉 or the dispersion of the
number of bosons over different circuit iterations �N , can be
obtained in a realistic experimental device by averaging all
the results obtained from different experiments, i.e., iterations,
without taking into account the final states. By contrast, the
trajectory-averaged second moment k = 2 quantities, such as
the second Rényi entanglement entropy (related to the von
Neumann entropy 〈S〉 in the replica limit) and the fluctuation
of the number operator 〈F〉 [75,76], require to repeat the
experiment for each final state independently, postselecting
the different trajectories from the different iterations of the
circuit, see Fig. 2.

The role of k can be seen by simplifying Eqs. (5) and
(6) to a generic expression f = ∑

x p1(x)
∑

y[p2(x, y) f (y)]k ,
where p1(x) is the probability of each trajectory and p2(x, y)
is the probability of obtaining the different outcomes f (y).
This can be further simplified as f = ∑

z p(z) f (z) if k = 1
and thus obtained from a general distribution, i.e., collecting
results from different experiments without taking into account
the trajectories. Here p(z) is the probability of obtaining an
outcome f (z). The simplification does not hold for a general
case if k � 2. Notice the subtle difference between averaging
over trajectories analytically and averaging over iterations
of the circuit numerically or experimentally, see Fig. 2 and
Appendix E.

We can go further and use the simple way of describing
trajectory-averaged quantities in Eq. (5) to study quantities
related to the variance of observables in the high measure-
ment regime. In what follows, we consider the first k = 1 and
second k = 2 moments of observables related to the boson
number without any disorder in the parameters, such that
Eq. (5) becomes

〈Nk〉 =
M∑

b=0

pb(1 − p)M−b
(M

b )∑
b

db∑
m

pmb

[
tr
(
N̂ ρ̂ ′

mb

)]k
, (7)

where the usual number of bosons is given for k = 1. We are
particularly interested in the trajectory-averaged fluctuations
of N̂ for each trajectory:

〈F〉 =
M∑

b=0

pb(1 − p)M−b

×
(M

b )∑
b

db∑
m

pmb

{
tr
(
N̂2ρ̂ ′

mb

)− [
tr
(
N̂ ρ̂ ′

mb

)]2}
, (8)

FIG. 2. A scheme highlighting experimental differences in com-
puting the mean and variance of an arbitrary observable Ô with and
without postselection. For the sake of simplicity, in this example,
the circuit produces only three different trajectories with associated
probabilities {p1, p2, p3}. (a) Postselected histogram of the distri-
bution of measurement outcomes. We separate each iteration of
the circuit into three different subgroups of trajectories. The mean
values of the distribution of the observable correspond to the expec-
tation values {〈Ô1〉, 〈Ô2〉, 〈Ô3〉} and the variances to the fluctuations
{F1, F2, F3} of the operator Ô for each trajectory type. (b) Histogram
of the measurement outcomes without postselection: We mix all the
iterations of the circuit without taking into account to which tra-
jectory corresponds, and compute the mean value of the observable
mean[O] and the variance var[O] ≡ �O of the distribution of the
observable among all iterations. Since the expectation value involves
the first moment k = 1 of the density matrix, the mean value among
all iterations corresponds to the average over the expectation values
of the trajectories mean[O] ≡ 〈O1〉 = p1〈Ô1〉 + p2〈Ô2〉 + p3〈Ô3〉.
However, the fluctuations of the operator involve the second mo-
ments k = 2 of the density matrix. Therefore, the average of the
fluctuations of the trajectories 〈F〉 = p1F1 + p2F2 + p3F3 and the
variance among all iterations �O, which we name dispersion, are
not generally equivalent. However, both quantities are similar under
certain conditions, as shown in Eqs. (25) and (27).

for which we calculate the variance of N̂ for the final state
of each trajectory, and then we average over all possible tra-
jectories. We are also going to calculate the dispersion in the
number of bosons with the average given by Eq. (7)

�N ≡〈(N2)1〉 − 〈N1〉2. (9)

To simplify notation, we now omit the subindex k = 1 when
referring to the number of bosons.

IV. ANALYTICAL RESULTS FOR
TRAJECTORY-AVERAGED OBSERVABLES

In this section, we derive analytical expressions for the ef-
fective Hamiltonian in the replica space describing the circuit
statistics, as well as for the trajectory-averaged observables.
By combining the replica method and the non-Hermitian per-
turbation theory we generate specific results for hard-core
bosons and both measurement types in the area-law phase at
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low measurement rates. The main results can be extended to
higher local subsystem dimensions, too.

A. Boson dynamics in an enlarged space

We now consider n = 2 replicas, which is the lowest
number of replicas needed to capture the relevant MIPT
properties [11,19]. The transfer matrix between the state of
the system at t + dt and t is then obtained by averaging
the evolution over the distribution of unitary gates and the
probabilities p = �dt of applying measurement operators

〈〈ρ (2)
m (t + dt )||∏L

�′ 〈M̌�′ 〉∏L
� Ǔ�||ρ (2)

m (t )〉〉. At first order in

dt , we have that
∏L

�′ 〈M̌�′ 〉∏L
� Ǔ� � e−dtȞeff , where the ef-

fective Hamiltonian is given by

Ȟeff =
L∑
�

{
��

(
Ǐ −

d∑
m

P̌�,m

)

+ i

[
ωň� + J (ǎ†

� ǎ�+1 + ǎ�ǎ†
�+1) − U

2
ǔ�

]}
, (10)

where each P̌�,m derives from a measurement operator and
acts on the two replicas ň�, the operators ǎ�, ǎ†

� , and ǔ�

derive from the unitary gates and each of them are com-
posed of operators acting on one of the replicas, and finally
Ǐ is the identity operator. The exact expressions can be
found in Appendix B, see Eqs. (B11)–(B14). Using the ef-
fective Hamiltonian given by Eq. (10), we calculate various
trajectory-averaged observables, related to the first moment
k = 1 not requiring postselection and second moment k = 2
requiring postselection: S(2) is the 2-conditional Renyi entropy
that results in the properly trajectory-averaged von Neumann
entropy in the replica limit in Eq. (B25), and, similarly, the
other trajectory-averaged quantities result, in the replica limit,
in the number of bosons N (2) in Eq. (B26) and the fluctuation
of the number operator F(2) in Eq. (B27).

The ground state of the effective Hamiltonian of Eq. (10)
encapsulates the statistical information of the ensemble of
trajectories of the original hybrid circuit at long times, which
allows us to compute relevant trajectory-averaged quantities
related to the entanglement entropy and the number of bosons.
Since the effective Hamiltonian is non-Hermitian, we cannot
rule out the existence of complex eigenenergies. Therefore,
we define the ground state as the eigenstate with the eigenen-
ergy having the smallest real part. Unlike previous works
[19], in this case, the effective Hamiltonian given by Ȟeff =
ȞM + iȞU can be non-Hermitian. This kind of dynamics has
been used before for describing other continuously measured
systems [54,77,78]. Note that the term ȞU is Hermitian since
it has its origin in the replicated Bose-Hubbard Hamiltonian,
while the term ȞM has its origin in the measurements and
its Hermiticity will depend on the type of measurements im-
plemented in the circuit: the standard measurement yields a
Hermitian operator, while a feedback measurement yields a
non-Hermitian operator since it is real and nonsymmetric.

To study the ground state of the Hamiltonian in Eq. (10) it
is useful to interpret it as an effective Bose-Hubbard Hamil-
tonian in an enlarged space so that the bosons move in an
enlarged space and have additional interacting terms arising

FIG. 3. Scheme of the enlarged space where the effective Hamil-
tonian Ĥeff is defined for a hybrid circuit of L = 4 transmons (yellow
circles) arranged (a) linearly or (b) in a ring configuration. Each
rectangle represents the blocks of the replicas (dark blue for the kets
and light blue for the bras) and the sign is given by the Eq. (14). All
the terms belonging to the operator with origin in the measurements
[red lines, Eq. (12)] act on all the blocks of all replicas, while the
terms belonging to the operator with origin in the unitary evolution
of the Bose-Hubbard Hamiltonian [blue areas and arrows, Eq. (13)]
act on each block independently.

from measurements. This implies that the d4L-dimensional
effective Hamiltonian Ȟeff = ȞM + iȞU constructed by the
tensor product of four copies of operators describing dynam-
ics in an L-site real space becomes a d4L-dimensional effective
Hamiltonian Ĥeff = ĤM + iĤBH formed by operators describ-
ing the dynamics in a 4L-site enlarged space. Therefore, the
original circuit consisting of L transmons defines four dif-
ferent blocks in this enlarged space of 4L sites: [1, L], [L +
1, 2L], [2L + 1, 3L], and [3L + 1, 4L] (Fig. 3). In this way,
the term ĤM represents an interaction between blocks at the
sites l , l + L, l + 2L, l + 3L, where l corresponds to the site �

of the circuit where the measurement is performed, while ĤBH

is simply a Bose-Hubbard Hamiltonian of 4L sites, whose
parameters, i.e., J , ω, and U , have different signs between
contiguous blocks. Note that the local terms of the on-site
energies ω and interactions U cover the full 4L space, while
the hopping terms J are zero between the blocks. Therefore,
we can reinterpret the terms of the effective Hamiltonian (10)
in such a way that

Ĥeff = ĤM + iĤBH, (11)

where the measurement and Bose-Hubbard terms are

ĤM = �

L∑
l=1

(
Î −

d−1∑
n=0

P̂l,nP̂l+L,nP̂l+2L,nP̂l+3L,n

)
, (12)

ĤBH =
4L∑

l=1

Wl

[
ωn̂l + J (â†

l âl+1 + H.c.) − U

2
n̂l (n̂l − Î )

]
,

(13)

with the sign function

Wl =
{+1, l ∈ [1, L] ∪ [2L + 1, 3L]
−1, l ∈ [L + 1, 2L] ∪ [3L + 1, 4L]. (14)
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Note that Eqs. (11)–(14) apply to both standard and feedback
measurements; the only difference lies in the specific projec-
tor P̂l,n required for each case. We substitute P̂l,n with P̂st

l,n for
standard and with P̂fb

l,n for feedback measurements. For exact
details about obtaining the vectorized states from operators
and the averaged observables, see Appendix B 4.

Since the effective Hamiltonian describes the statistical
properties of the circuit trajectories, some of its features are
expected to contain information about the phase transition.
MIPT is directly related to a spontaneous symmetry breaking,
which arises because the relevant quantities, such as entangle-
ment entropy and fluctuations of observables, for the phase
transition, can be observed only in the nonlinear moments of
the density matrix, whose time evolution can be expressed by
the evolution of n � 2 replicas [19]. In this way, the dynamic
has a permutation symmetry between the n replicas; that is,
both between kets and between bras, which is preserved in
the area-law phase and broken in the volume-law phase.

Thus, we can study the nature of the ground states of Ĥeff

to understand the spontaneous symmetry breaking in limiting
cases of the measurement rate � [79]. Deep in the area-law
phase, when � → ∞, the term ĤM dominates in the effective
Hamiltonian. For the case of feedback measurements, there
is a nondegenerate ground state that is independent of the
number of replicas and it preserves the permutation symmetry.
It can be seen in Fig. 3 that adding replicas does not affect
the degeneracy of the ground state. Note that in the case
of using a standard measurement, there are dL degenerated
ground states corresponding to the possible outcomes of the
measurements that are also independent of the number of
replicas. When � → 0, the term ĤBH predominates in the
effective Hamiltonian, in which, as we see in Fig. 3, the
number of terms increases by adding replicas. However, in
the effective Hamiltonian, ĤBH is purely imaginary at order dt
and therefore does not have a well-defined ground state. This
means that all eigenstates have zero real part and the degen-
eracy trivially increases by increasing the number of replicas.
But at higher orders of dt , ĤBH does have real components
[19], whose terms also depend on the number of replicas,
thus increasing the degeneracy of the ground states with the
number of replicas, and breaking the permutation symmetry.
Note that we cannot directly use the second-order term in
the expression for the evolution operator in the replica space,
Eq. (B8), since it would be necessary to have previously per-
formed a second-order Suzuki-Trotter decomposition, making
the analytical expression considerably cumbersome. These
are general arguments to prove the existence of an MIPT;
each case must be addressed individually and verified through
numerical finite-size scaling analysis.

B. Perturbation theory for non-Hermitian Hamiltonians

The non-Hermiticity of the Hamiltonian of Eq. (11) hinders
the use of standard quantum-mechanical techniques to deter-
mine its ground state, mainly due to the non-orthogonality
of eigenvectors. Thus, we follow the biorthogonal quantum-
mechanical formalism [80,81] in which we obtain the
eigenstates and eigenenergies for the operator Ĥeff|φm〉 =
Em|φm〉 and its Hermitian conjugate Ĥ†

eff|ϕm〉 = εm|ϕm〉. In
this way, we have that εn = E∗

n is fulfilled, and {ϕm, φm}

forms a biorthogonal set such that 〈ϕm|φn〉 = δm,n and Î =∑
m |φm〉〈ϕm|. The ground state will be defined as the eigen-

state with the lowest real part of the eigenenergy Re(Em).
Since obtaining the exact analytical expression for the

ground state of Ĥeff is rather complicated, we make use of
the perturbation theory. We can define two regimes as a
function of the measurement rate �: �/J � 1 where ĤM

acts as a perturbation; and �/J � 1 where ĤBH acts as
an imaginary perturbation. In this work, we focus on the
area-law phase. Briefly, we expand the eigenenergies and
eigenstates in terms of the parameter λ ≡ J/� � 1 and solve
the Schrödinger equation for Ĥeff and Ĥ†

eff [see Eqs. (C3) and
(C4) in Appendix C]. Up to second order in λ, the normalized
nondegenerate state |φα〉 is

|φα〉 =
⎛
⎝1 − λ2

2

∑
n �=α

∣∣∣∣∣ Vnα(
E (0)

α − E (0)
n
)
∣∣∣∣∣
2
⎞
⎠∣∣φ(0)

α

〉

+ iλ
∑
n �=α

Vnα(
E (0)

α − E (0)
n
) ∣∣φ(0)

n

〉

− λ2
∑

n,m �=α

VnmVmα(
E (0)

α − E (0)
n
)(

E (0)
α − E (0)

m
) ∣∣φ(0)

n

〉

+ λ2
∑
n �=α

VααVnα(
E (0)

α − E (0)
n
)2

∣∣φ(0)
n

〉
, (15)

and the corresponding energy is

Eα = E (0)
α + iλVαα − λ2

∑
n �=α

VαnVnα(
E (0)

α − E (0)
n
) , (16)

where the matrix elements are Vab = 〈ϕ(0)
a |ĤBH|φ(0)

b 〉, and
{ϕ(0)

m , φ(0)
m } is the biorthogonal basis of the unperturbed Hamil-

tonian ĤM . It can be shown that up to the second order in λ,
the on-site energy

∑4L
l Wl n̂l and interaction

∑4L
l Wl n̂l (n̂l − Î )

terms do not play any role in obtaining the half-chain entan-
glement or boson number of Eqs. (B25) and (B26) because
their effects vanish by symmetry. We obtain the same re-
sult by considering the direct average over different circuit
realizations, see Appendix F. This implies that, in the high
measurement regime, where J/� � 1 (i.e., deep in the area-
law phase), we only need to focus on the hopping terms∑4L

l WlJ (â†
l âl+1 + H.c.).

1. Feedback measurements

To study the feedback measurement, we need to establish a
predetermined spatial profile for the local number of bosons
{α1, α2, . . . , αL} where α� = 0, 1, . . . , d − 1, which will be
forced by the measurement at each site in the original circuit
� ∈ [1, L]. Although we focus on nonabsorbing states, they
can be achieved by setting all α� either to zero or to d − 1. The
associated projectors will be given by P̂fb

�,m = |α�〉〈m|, where∑d−1
m=0 P̂fb†

�,mP̂fb
�,m = Î . Since ĤM is non-Hermitian because it is

a real nonsymmetric operator that does not conserve the total
number of bosons, we cannot use the boson number basis of
N̂ = ∑4L

l n̂l as the unperturbed basis, and we need to obtain
the full biorthogonal basis explicitly. We can start by con-
sidering the biorthogonal basis for the unperturbed effective
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Hamiltonian, Eq. (12), of one transmon of dimension d , which
is given by

|φ(0)〉 =

⎧⎪⎨
⎪⎩

|α�〉, E = 0, #1

|a〉 − |α�〉, E = �, #d − 1

|i jkl〉, E = �, #d4 − d,

(17)

|ϕ(0)〉 =

⎧⎪⎪⎨
⎪⎪⎩
∑d−1

x=0 |x〉, Ẽ = 0, #1

|b〉, Ẽ = �, #d − 1

|mnpq〉, Ẽ = �, #d4 − d,

(18)

where α�, a, b, i, j, k, l , m, n, p, q = 0, 1, . . . , d − 1 and
satisfy the following conditions: a �= α�, b �= α�, no i = j =
k = l , and no m = n = p = q. Note that we adopt the notation
|n〉 ≡ |nnnn〉. The basis for the unperturbed effective Hamil-
tonian has a dimension D = d4, fulfills the biorthonormality
condition 〈ϕ(0)

i |φ(0)
j 〉 = δi j , and has a nondegenerate ground

state. For obtaining the eigenstates for an arbitrary number
of transmons L, we consider all possible combinations of
Eqs. (17) and (18) such that∣∣�fb(0)

i1,i2,...,iL

〉 = ∣∣φ(0)
i1

〉∣∣φ(0)
i2

〉 · · · ∣∣φ(0)
iL

〉
, (19)∣∣�fb(0)

i1,i2,...,iL

〉 = ∣∣ϕ(0)
i1

〉∣∣ϕ(0)
i2

〉 · · · ∣∣ϕ(0)
iL

〉
, (20)

where i1, i2, . . . , iL are indices that run over all d4 pos-
sibilities in Eqs. (17) and (18), 〈�(0)

i1,i2,...,iL
|�(0)

j1, j2,..., jL
〉 =

δi1, j1δi2, j2 · · · δiL, jL , and the total dimension is D = d4L. Tak-
ing into account Eqs. (12), (17), and (18), we can see that
the energy of the states is given by the number of times
each site differs from the pattern α�, i.e., 0 � Ei1,i2,...,iL =
�
∑L

�=1(1 − δi�,1) � L�, such that the ground states have an
energy E1,1,...,1 = ε1,1,...,1 = 0, and are given by∣∣�fb(0)

1,1,...,1

〉 = |α1〉|α2〉 · · · |αL〉, (21)

∣∣�fb(0)
1,1,...,1

〉 = d−1∑
x1,x2,...xL=0

|x1〉|x2〉 · · · |xL〉, (22)

where α1, α2, . . . , αL are the boson number subspace pro-
jected at each site. For obtaining the biorthogonal basis, we
have made use of a different notation which eases the cal-
culations, such that the composite basis for L � 2 should be
understood as

|i1 j1k1l1〉|i2 j2k2l2〉 · · · |iL jLkLlL〉
= |i1i2 . . . iL j1 j2 . . . jLk1k2 . . . kLl1l2 . . . lL〉, (23)

where i, j, k, l refer to the different blocks of the enlarged
space, which arise from the kets and bras of the two replicas.
As regards the perturbation theory, we use the state of Eq. (21)
in Eq. (15) as the nondegenerate ground state, considering
inner products with states from Eq. (19) excluding the other
biorthogonal ground state of Eq. (22) when necessary.

2. Standard measurements

In the case of standard measurements, there are multiple
degenerate ground states, specifically dL states. To simplify
this degeneracy, we can consider a specific manifold deter-
mined by the definite initial state of the number of bosons,

as N remains constant during both unitary and nonunitary dy-
namics. The dimension of this manifold is given by ( L+N−1

N ).
Instead of developing a complete degenerate-perturbation the-
ory, we focus here on a specific case and employ certain
arguments, which we describe below. These arguments enable
us to directly utilize Eq. (15). Since, in the rest of the paper,
we are going to consider hard-core bosons and a half filling
initial state, we can further simplify the dimension to

( L
L/2

)
.

The energy correction up to the second order, as described
in Eq. (16), breaks the degeneracy for the L = 2 cases based
on the number of density walls. The minimum value corre-
sponds to a single-density wall where all bosons are stacked
on one side of the chain. The remaining degeneracy lies be-
tween symmetric and antisymmetric superpositions of bosons
stacked on the left and right sides. It can be proven that these
two states never intersect in subsequent perturbation orders,
and the degeneracy is eliminated at an order of 4(L/2)2, being
the symmetric state the one with the smallest correction, such
that the ground state is given by∣∣�st

0

〉 = 1√
2

(|1, . . . , 1, 0, . . . , 0〉 + |0, . . . , 0, 1, . . . , 1〉).

(24)

These ideas have been numerically confirmed for up to four
transmons and can be extended to larger systems. Since the
standard ĤM is Hermitian, we can utilize the usual basis in
the number of bosons.

C. Observables for hard-core bosons in the area-law phase

In this section, we examine the repeatedly measured trans-
mon chain via modeling the dynamics through the hard-core
bosons starting from a Néel state |ψt=0〉 = |1010 . . . 10〉. In
this section, we calculate the quantities from Eqs. (B25)
and (B26) for the perturbed ground states of Eqs. (21) and
(24). These quantities ultimately correspond to the trajectory-
averaged observables in the proper replica limit. The final
result will be presented here, while Appendix D provides de-
tails and a didactic example on related nonphysical projective
measurements.

1. Feedback measurements

First, we consider the feedback measurements projecting
to the half filling sector consisting of operators P̂fb

�,m = |1〉〈m|
and P̂fb

�′,m = |0〉〈m|, for � and �′ odd and even, respectively. In
other words, we make projections to |1〉 at odd sites and |0〉
at even sites; that is, the feedback measurements try to project
the system towards the state |101 . . . 10〉.

Up to the second order in J/�, i.e., deep in the area-law
phase, we have that for the half of the chain S(2)

L/2 � (J/�)2 and

F
(2)

L/2 � (J/�)2/2, which implies that entanglement entropy
and fluctuations related quantities depend on the square of
the measurement rate but not on the subsystem size, which
corresponds to the proper behavior in the area-law phase. The
number of bosons provides the most interesting results as
they are easy to measure experimentally. Even when using a
feedback measurement that does not conserve the total number
of bosons, the average quantity N (2)

L = L/2 remains constant
in the area-law phase. Higher orders are expected to yield
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the same constant value due to the symmetry of perturbation
and ground state, indicating a fixed trajectory-averaged total
number of bosons Nα = ∑L

�=1 α� for any � > 0. However,
this may not hold for a generic dimension d and spatial pro-
file. In the enlarged space, fourth-order perturbation theory
reveals states that can be mapped to trajectories in the original
circuit with different total numbers of bosons (also checked
numerically), see Appendix D 2. Thus, starting from a defined
boson number state, a system governed by a non-Hermitian
Hamiltonian exhibits states with different total boson numbers
when perturbed by an anti-Hermitian Hamiltonian. This im-
plies that the distribution of individual trajectories, as depicted
in Fig. 2, is a function of the measurement rate �, even though
the mean total number of bosons remains constant. For a small
measurement rate, we can expect a state resembling an ergodic
phase, where all basis states are expected to be visited equally,
resulting in a Gaussian distribution of the total boson number,
confirmed numerically in both the enlarged space and original
circuit. In contrast, the area-law phase features trajectories
following a delta distribution centered at Nα .

Another interesting quantity is the trajectory-averaged
number of bosons at a single location in the chain. Deep in
the area-law phase, these are given by N (2)

� � (J/�)2/2 and
N (2)

�′ � 1 − (J/�)2/2, for even � and odd �′ sites, respectively,
see Eqs. (D37) and (D38). While the specific value does
not provide information about the phase due to monotonic
changes for any � > 0, studying their distribution is mean-
ingful in the sense explained for the total number of bosons.
For two-dimensional subsystems i.e., hard-core bosons, there
are only two possible values for all system sizes. For a small
measurement rate, the number of bosons follows a uniform
distribution, while for a large measurement rate, it forms a
delta distribution centered at α� = 0 and α�′ = 1 for even �

and odd �′ sites, respectively. Note that while these quantities
do not undergo the same phase transition as the corresponding
entanglement phase transition for individual trajectories, they
can coincide because the statistics of the states in each phase
are connected to a simple observable since the feedback prob-
ability is one.

To study how the distributions change as a function of the
measurement rate, we use a general distance measure, such
as d (obs, theo) = ∑Nbins

n |obs(n) − theo(n)|s, for any positive
integer s. For an even site, the two theoretical distributions
coincide for p0 = 3/4 and p1 = 1/4, where p0 and p1 refer
to the proportion of results with 0 and 1 boson, respectively.
Taking into account that N (2)

� � (J/�)2/2, we find the cross-
ing point between the two distributions to be �d

c /J = √
2 (or

pd
c ≈ 0.03 for comparison with numerical results). Note that

this estimate may change when considering higher orders in
perturbation theory.

2. Standard measurements

For the standard measurement, we observe similar scaling
for S(2)

L/2 ≈ (J/�)2 and F
(2)

L/2 ≈ (J/�)2/2. The total number

of bosons is constant N (2)
L = L/2, but in this case, it is a

conserved quantity and remains constant for all trajectories,
as we show below. However, the number of bosons at a
single site is also constant N (2)

� � 1/2, although individual

trajectories will have different values. While the standard
measurement yields the same statistical behavior for different
phases, the measured observable value is constant regardless
of the measurement rate. On the other hand, the quantities
obtained through the replica method and statistical arguments
in Sec. III are averaged over trajectories. In the following
section, numerical simulations are conducted to analyze the
distributions of measured observables and study individual
trajectories.

V. NUMERICAL SIMULATIONS

Here we now compare the feedback and standard measure-
ments in numerical simulations. We evolve the chain of L
transmons unitarily by using methods of exact diagonalization
for a time step dt after which each site is measured with
probability p. This whole block is repeated for T/dt times,
where T is chosen long enough to guarantee a steady state.
The observables are computed at the end of time evolution
t = T . The initial state of the system is the product state
|10〉⊗L/2, which has a definite total number of bosons given by
N = L/2. The results shown below correspond to a chain of
two-dimensional subsystems (qubits). The numerical results
for higher-dimensional subsystems with standard measure-
ments are shown in Appendix E. To reduce the burden of
trajectory averaging in the numerical simulations we assume
no disorder in the parameters.

A. Phase transitions in transmon arrays by repeated standard
and feedback measurements

We are now interested in the von Neumann half-chain
entanglement entropy 〈SL/2〉, the fluctuations 〈FL/2〉 and the
dispersion �NL/2 of the half-chain number operator N̂L/2, as
well as the expectation values of the whole chain and single-
site number operators, N̂L and N̂�, respectively. Although all
the quantities are calculated from the same set of simulations,
there are crucial differences regarding postselection. In the
cases of the von Neumann entropy 〈SL/2〉 and the fluctuations
of the number operator 〈FL/2〉, we compute them for each
final state of each iteration of the simulation, which are actual
quantum trajectories that generally can correspond to a super-
position. Then we average all the results over the iterations.
This reflects the need to account for explicit postselection,
i.e., keep track of the result of each measurement to know the
exact final state. However, in the case of the boson number 〈N〉
and its dispersion �N , we do not calculate the expectation
values for the final states, but we emulate an experimen-
tally realizable nonpostselected measurement by projecting
the final state using Born’s rule and then directly averaging
these outcomes from all iterations. The averaged values are
obtained directly from the distribution of the outcomes by
mean[N] = 〈N〉 and var[N] = �N , in the sense explained in
Fig. 2. This implies that, if two trajectories are at t = T in
the same superposition state, it is possible to obtain different
outcomes for the N̂ measurement.

1. Half-chain entanglement entropy and number fluctuation

Figure 4 shows the numerical results for system sizes L =
4–12 as a function of the measurement probability using the
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FIG. 4. Numerical simulations for a repeatedly measured transmon array in the hard-core boson limit using the standard and feedback
measurements for system sizes L = 4, 6, 8, 10, and 12. (a) von Neumann entanglement entropy and (b) fluctuations of the half-chain number
operator as a function of the measurement probability p. The insets show the finite-size scaling analysis using the ansatz L−ζ/ν〈S/F〉 =
f [L−1/ν (p − pc )], where pc is the critical parameter, ζ and ν are the scaling exponents and f [x] is an unknown function [82]. (c) Dispersion
of the half-chain boson number as a function of the measurement probability p. For the feedback measurements we also include the dispersion
in the specific total photon number sectors Nα defined at t = T (light-colored dashed lines), see Appendix F. The insets show the comparison
of the fluctuations of the number operator (diamonds) and the dispersion in the number of bosons (squares) with the p−2 scaling (gray dashed
lines) for larger values of the measurement probability. For the feedback measurements we also show the dispersion divided by L − 1 (stars),
see Appendix F. (d) The full-chain 〈NL〉 (dashed lines) and the center-site 〈N�′ 〉 (solid lines) boson number as a function of the measurement
probability p. The results are averaged over 104 iterations except for L = 12, where the iteration count is 5 × 103. The other calculation
parameters are T J = 20 and dtJ = 0.02.

two types of measurements for a large number of iterations
of the circuit. The von Neumann entropy of the half of the
chain 〈SL/2〉 has values dependent on subsystem size for small
values of p and collapses to the same size-independent values
for a given pc that tend to zero, thus suggesting the existence
of a transition from a size-dependent to a size-independent
phase, see Fig. 4(a). As expected, the collapsing behavior of
the iteration-averaged fluctuation of the number operator in
the half of the chain of transmons 〈FL/2〉 as a function of
the measurement probability coincides with that of the von
Neumann entropy [Fig. 4(b)].

The values obtained in the finite-size scaling analysis [in-
sets of Figs. 4(a) and 4(b)] for the critical parameter pc

and scaling exponents ν and ζ are the following: for the
standard measurement, pS,st

c = 0.022 ± 0.002, νS,st = 2.57 ±
0.15, ζ S,st = 0.53 ± 0.06, and pF,st

c = 0.024 ± 0.002, νF,st =
2.9 ± 0.2, ζ F,st = 0.50 ± 0.08; and for the feedback measure-
ment, pS,fb

c = 0.032 ± 0.003, νS,fb = 3.4 ± 0.2, ζ S,fb = 0.9 ±
0.1, and pF,fb

c = 0.028 ± 0.004, νF,fb = 3.8 ± 0.4, ζ F,fb =
1.01 ± 0.11; for the von Neumann entropy and the fluctuation
of the number operator in both cases. The analyzed systems
are small, so the results of the finite-size scaling analysis
should be considered approximations. In that sense, we can
assume that both standard and feedback measurements yield
the same critical parameters, as one could expect, at least
when there is an absorbing state [61].

Furthermore, due to the small system size, we cannot
rule out the possibility that the observed phase transition

is a Berezinskii-Kosterlitz-Thouless (BKT) phase transition
induced by the measurements rather than a canonical MIPT
[83]. In this case, instead of a volume-law phase, there is
a subextensive phase where the entanglement entropy scales
logarithmically with system size. This is plausible because
the hard-core bosons model studied can be transformed into a
free fermions model using the Jordan-Wigner transformation
[84], which is known to undergo a BKT phase transition with
standard [83] and feedback [56] measurements. However, it is
important to note that this issue is not trivial as the transfor-
mation introduces nonlocal correlations [84] that may impact
the properties of entanglement entropy [83].

2. Half-chain number dispersion, full-chain,
and single-site boson numbers

For the standard measurement scenario, the dispersion
of the half-chain boson number �NL/2 does not exhibit a
smooth dependence on the subsystem size as a function of
the measurement probability p. This behavior differs from
the fluctuations, compare Figs. 4(b) and 4(c). In the case
of the feedback measurement and restricted only to the iter-
ations with a total number of bosons Nα = L/2 at t = T [as
described in Eq. (27)], there is a collapse of the curves for the
dispersion of the half-chain boson number. However, it occurs
for a higher measurement probability than in the case of 〈SL/2〉
and 〈FL/2〉, being the size-dependent phase overestimated and
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not giving useful information about the exact location of the
critical point.

To have a better understanding of the averaged ob-
servables, we can compute analytically the dispersion and
fluctuation by directly averaging over the circuit realizations,
through Eqs. (7)–(9). The following results are obtained for a
large measurement probability close to a perfectly measured
system, as described in Appendix F. Trajectory-averaged fluc-
tuation of the number operator in the half of the chain,
considering a feedback measurement with spatial pattern
α = α1, α2, . . . , αL and up to second order in x ≡ (1 − p), is
given by

〈
FL

2

〉 ≈ x2
[(

α L
2
+ 1

)
α L

2 +1 + α L
2

(
α L

2 +1 + 1
)]( J

�

)2

. (25)

We can also obtain the dispersion of the number of bosons
in the half of the chain, which is not a trajectory-averaged
quantity but the variance of the number of bosons of all circuit
iterations. At high measurement rates, it is enough to consider
up to the first order in x ≡ (1 − p) to observe that there is a
dependency on the size of the system,

�N L
2

≈ xg(α, L)

(
J

�

)2

, (26)

where the exact expression of the function g(α, L) can be
found in Eq. (F31). However, this dependency is due to the
nonconservation of the total number of bosons of the feedback
measurement. Selecting only the iterations where the total
number of bosons coincides with Nα = ∑L

�=1 α� = NT , we
recover the same behavior as for the fluctuation up to the
second order,

�NNα
L
2

≈ x2
[(

α L
2
+ 1

)
α L

2 +1 + α L
2

(
α L

2 +1 + 1
)]( J

�

)2

. (27)

Note that this last result does not imply postselection as such.
It only requires measuring the number of bosons at each site
at the end of time evolution as a measure of the observable
of interest, keeping the results with a total number Nα and
calculating the variance of the number distribution of bosons
for the half of the chain in a similar way as in Ref. [24].
Note that 〈F〉 and �N are essentially different quantities and
have the same behavior for the feedback measurement but
not for the standard measurement case deep in the area-law
phase. However, it is expected that �N overestimates the
size-dependent phase. It is important to keep in mind that 〈F〉
behaves similarly to 〈S〉. Therefore, the interest in studying
quantities such as �NNα , which is equal to 〈F〉 for a high
measurement rate, lies in measuring observables that do not
necessitate postselection, which could indirectly measure the
entanglement.

In the insets of Fig. 4(c), we show the numerical
simulation-based comparison of 〈FL/2〉 and �NL/2 for larger
measurement probabilities for the total dispersion of Eq. (26),
thus representing the behavior in area-law phase. For the
feedback measurement, both quantities scale as p−2 ∝ (J/�)2

as predicted by the replica method for the fluctuation and by
simple statistical arguments for the fluctuation and the disper-
sion. Interestingly, although both analytical approaches were
performed at the limit of the fully measured system, the results

agree with the numerical simulations for smaller measurement
probabilities, but still in the area-law phase. Note that if we
had considered all the iterations; that is, including cases with
a different total number of bosons, the dispersion would scale
in a similar way but with a factor L − 1 depending on the size
of the system as described in Eq. (26).

The mean value of the full-chain boson number 〈NL〉,
Fig. 4(d), results in constant values for both types of mea-
surements. However, there are fluctuations around this value
in the case of feedback measurements, as predicted. Finally,
we also show the number of bosons averaged over iterations
at a single site 〈N�′ 〉 in the middle of the chain �′ = L/2
[solid lines in Fig. 4(d)], whose value is constant ≈1/2 for the
standard measurement and increases from 0 to 1/2 for even
sites (decreases from 1 to 1/2 for odd sites) in the case of the
feedback measurement, agreeing quite with good the result of
the replica method.

B. Boson number distributions

Both measurement types conserve the full-chain boson
number on average, as shown in Fig. 4(d). However, the
mechanisms for the conservation are fundamentally different.
Since the Bose-Hubbard Hamiltonian commutes with the full-
chain photon number, the state before each measurement is
in a definite full-chain photon number sector. The standard
measurement; that is, the measurement of local photon num-
ber, induces naturally no transitions in the full-chain photon
number. Thus, we expect that the full-chain photon number
has no dependence on the measurement probability for the
standard measurement. In contrast, the feedback measure-
ment, which includes the feedback operator projecting to |0〉
at odd sites and |1〉 at even sites, induces transitions between
the photon number sectors. The transitions remove and add
photons equally likely on average, thus the total photon num-
ber averaged over trajectories stays at the value of half filling.
However, for feedback measurement, we expect that the statis-
tical distribution of photon numbers is a function of the mea-
surement probability. In other words, the fact that the phase
transition occurs in the statistical properties of the circuit dy-
namics suggests studying the distribution of the measurement
results of such observables, which ultimately depends on the
distribution of the states over the Fock space [79].

In Fig. 5 we show the numerical results regarding the boson
number distributions and their fit to two theoretical distribu-
tions for the feedback and standard measurements. We do not
consider any averaged quantity, but we take into account each
measurement outcome for each iteration without postselecting
them, see Appendix E for more details. In the case of a
single-site number operator N�′ , the standard measurements
fit the uniform distribution for all measurement probabilities
[Figs. 5(a) and 5(b)], while distribution of the feedback mea-
surement fits a uniform distribution for small measurement
probability p and to a delta distribution for large p, with a
crossing point between p ≈ 0.035 and p ≈ 0.04 [Figs. 5(e)
and 5(f)]. In the case of the total number of bosons, we show
that for the feedback measurement, there is an inversion in
the fitting of the two distributions for different system sizes
[Figs. 5(g) and 5(h)] and there is some size-dependent effect
in the fittings. For the standard measurement, all trajectories
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FIG. 5. Boson number distributions for (a)–(d) standard and (e)–(h) feedback measurements. (a), (e) Single-site boson number distribution
at the middle of the chain as a function of the measurement probability p. The small panels compare the boson number distributions with
the theoretical uniform and delta distributions (solid and dashed lines) at p = {0.005, 0.045, 0.1}. (b), (f) The distance between the single-site
number distributions with respect to theoretical uniform and delta distributions. The insets show the same analysis for the data of the sector
Nα . (c), (g) The distribution of the full-chain boson number as a function of the measurement probability p. The small panels compare the total
boson number distribution with the theoretical Gaussian and delta distributions (solid and dashed lines) at p = {0.005, 0.045, 0.1}. (d), (h) The
distance between the distributions with respect to theoretical delta and Gaussian as a function of measurement probability p. See Appendix E
for more details on the distributions. The results are computed for the same parameters as in Fig. 4.

have the same total number of bosons, because the measure-
ment preserves this symmetry thus fitting perfectly to the delta
distribution [Figs. 5(c) and 5(d)].

In the case of the feedback measurement in the area-law
phase, the high measurement probability p produces product
states close to |α1, α2, . . . , αL〉. In the volume-law phase, due
to ergodicity, the stationary states will correspond to states
that can have a contribution by all base vectors with equal
probability. Although an individual stationary state is a su-
perposition of states belonging to the same sector, due to the
presence of feedback measurements that do not preserve the
total number of bosons, different stationary states (i.e., trajec-
tories and iterations) could belong to sectors other than the
initial state. In this sense, we measure the fit of the observed
distributions to the two distributions of the extreme cases p =
{0, 1} for NL and N�′ : in the area-law phase (p = 1) there is a
delta distribution corresponding to the value of the observable
in the state |α1, α2, . . . , αL〉; and in the size-dependent phase
(0 < p � 1) the distribution of the value of the observable
corresponds to the one existing for a uniform distribution of
the base vectors.

Note that the theoretical distributions in the states yield
different distributions for the number of bosons depending on
the measurement type. In the size-dependent phase, the distri-
bution for NL is a Gaussian centered at NT = L/2 and uniform
for N�′ , but in both cases, these distributions are computed
directly by considering a uniform distribution in the vectors
of the basis. In the area-law phase, the distributions are δNL,L/2

for NL and δN�′ ,α�′ for N�′ (located at N = 0 or N = 1, depend-

ing on the parity of the site �′ in the middle of the chain).
This point is crucial because the constancy of the fitting N�′

under the standard measurement does not necessarily imply
an absence of a phase transition. As in the case of the feedback
measurements, the steady states are distributed uniformly over
the basis states for the ergodic phase corresponding to a uni-
form distribution in the number of bosons. But in the area-law
phase, we must consider the states corresponding to the 2L

eigenstates of the standard measurement so that the stationary
states are uniformly distributed over the basis vectors, as in the
case of the size-dependent phase, yielding the same results in
both phases.

In Figs. 5(e)–5(h) we observe a transition from a size-
dependent phase to a size-independent phase in the photon
number distributions for the feedback measurements, demon-
strating the change in photon number statistics. In this
particular case, the crossing point of the distance measures
for the photon number distribution is between p ≈ 0.035 and
p ≈ 0.04. We can also compare this crossing point with the
rough estimate obtained by the replica method pd

c ≈ 0.03,
which is in good agreement with the numerical results even
having considered corrections only up to the second order in
J/� in the non-Hermitian perturbation theory. In the inset of
Fig. 5(f), we show the same result for the data selected for the
sector Nα , where there is a crossing point around p ≈ 0.03.

Let us now consider a modified feedback measurement,
where there is an additional probability pF for applying
feedback after each measurement. The standard measure-
ment corresponds pF = 0 and the feedback measurement
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corresponds to pF = 1. Lowering pF from one shifts the cross-
ing point of the distributions but does not change the critical
point of the entanglement phase transition (data not shown)
in the sense described in Refs. [58,59]. Thus, this counterex-
ample shows that the photon number distribution cannot be
used as a general direct indicator for the entanglement phase
transition.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have presented a new perspective on
the experimental realization of entanglement phase transitions
in individual quantum trajectories induced by standard and
feedback measurements. We considered a superconducting
circuit consisting of interacting transmons, Eq. (1), on which
projective measurements are applied probabilistically, Eq. (2).
To access the statistical information of the dynamics, we
have used the replica method, thus obtaining analytically an
effective non-Hermitian Hamiltonian, Eq. (10), which can be
interpreted as describing the dynamics of interacting bosons in
an enlarged space, Eq. (11). Utilizing non-Hermitian perturba-
tion theory, Eq. (15), we conducted calculations to elucidate
the behavior of various quantities in the area-law phase. These
quantities include those contingent on explicit postselection,
such as entanglement entropy and fluctuations of the number
operator, as well as those not requiring explicit postselection,
such as the boson number. These calculations were conducted
for both the standard and feedback measurement scenarios.
Using simple statistical arguments, we have also introduced
a postselection independent quantity that describes the dis-
persion of the boson number, which behaves similarly to the
fluctuations of the numerical operator in the area-law phase.
Through numerical simulations, we have demonstrated the
existence of a phase transition in the entanglement proper-
ties of interacting transmons, observed in both standard and
feedback measurements, and exhibiting similar critical prop-
erties. Furthermore, we have observed a difference between
the standard and feedback measurements in the distribution of
simple-to-measure observables without postselecting trajecto-
ries.

The dynamics of our system, consisting of interacting
transmons, can be described using the Bose-Hubbard model.
To simplify our analysis and utilize available analytical tools
such as the replica method, we have designed a hybrid circuit
involving unitary gates and measurements. In experimental
systems, blocking the natural unitary dynamics of the sys-
tem becomes necessary during measurements. This can be
achieved by inhibiting the hopping interaction between the
transmons, ensuring the isolation of the bosons during mea-
surement procedures. This can be achieved either by detuning
the transmon frequencies [85] or having tunable couplers
[64]. Throughout the work, all the results are expressed as
a function of the mean value of the hopping rate J . The
choice of this parameter in the experimental set determines
the other parameters and critical values. These hybrid circuits
are models of open quantum circuits interacting with an envi-
ronment, representing the volume-law phase where the circuit
is useful for computation or communication purposes. This
encourages further investigation into the limit of continuous
measurements, enabling the study of the Bose-Hubbard model

without creating an artificial circuit. Consequently, the knowl-
edge gained here can be applied to understand the natural
dynamics of transmons as open quantum systems, aiding in
comprehending the quantum-to-classical transition.

One of the biggest issues facing the experimental imple-
mentation of an MIPT is the need to perform an explicit
postselection of all the trajectories generated by the dynamics
of the circuit in the different experiments in order to calculate
the relevant quantities [1]. In this work, we have observed a
transition in the distribution of the number of bosons, from
a Gaussian to a delta-like distribution, and noted that the
crossing point coincides with the critical parameter for the
entanglement entropy transition. Although this observation
is based on numerical simulations and we lack an analytical
understanding, it would be interesting to explore this connec-
tion further in future studies. The use of simple observables,
such as the number of bosons, is advantageous because it
does not require explicit postselection. However, it is im-
portant to note that simple observables cannot fully address
the entanglement phase transition in individual trajectories.
Nevertheless, it would be valuable to investigate under what
conditions and why an indirect relationship exists. Similar
results have been observed in other studies, where the critical
parameters of the entanglement phase transition and the tran-
sition in the averaged density quantities coincide under certain
conditions [58,59]. These feedback measurements consist of
standard projective measurements after which we access their
outcomes classically and we apply a unitary gate to bring
the system to a predetermined state. We have found through
numerical simulations and analytical analysis in the high-rate
measurement regime, that fluctuations in the number operator
have coinciding behavior with the entanglement entropy. This
holds true for both standard and feedback measurements.
Similar outcomes have been observed in standard measure-
ments [86], where fluctuations have been proven to provide an
exponential shortcut compared with measuring entanglement
entropy, thereby reducing the cost of postselection.

It is also interesting to compare our results using feed-
back measurements for studying simple observables with
other recent works involving some sort of feedback after the
measurements [56–61]. In these works, the averaged density
matrix undergoes an absorbing state phase transition (APT),
which generally belongs to a different universality class than
the MIPT occurring in the entanglement of individual quan-
tum trajectories. Unlike our model, these works assume the
existence of an absorbing state that remains unchanged under
the action of the unitary circuit. Once absorbed, the state
cannot change, and the timescale to reach this state reveals
the APT at the critical point [58–61]. In our case, there is
no absorbing state since the unitary dynamics modify the
state selected by the measurements, and it is not clear to
which universality class it belongs. Also, the order parameter
has a characteristic behavior along the APT, being constant
in the absorbing phase and depending on the measurement
parameter on the nonabsorbing phase [58,60,61]. In our case,
analytical and numerical results show that quantities, e.g., the
boson number at a single site, depend on the measurement
probability for any nonzero probability. It is intriguing to
explore whether the phase transitions in the averaged density
matrix, with and without absorbing states, belong to the same
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universality class (and the absorbing state is not a necessary
condition); or if they belong to different universality classes.
Our approach eliminates the need for obtaining the averaged
density matrix avoiding quantum state tomography. Addition-
ally, by analyzing the results based on the sectors of the total
number of bosons, we gain distinct and valuable informa-
tion about the statistics using simple observables [Eq. (27),
Fig. 4(c), and the inset in Fig. 5(c)].

For future work, it will be interesting to conduct numerical
simulations of larger systems using tensor network meth-
ods to quantitatively examine critical parameters and scaling
exponents of the phase transition and to which universality
classes belong in different conditions; we still have to de-
termine whether the hard-core bosons undergo a BKT or an
MIPT phase transition. Transmons provide an ideal setting
for this investigation because they allow for the modifica-
tion of various parameters defining different system types.
For instance, studying the effect of increasing anharmonicity;
that is, on-site interactions, or introducing disorder in the
Bose-Hubbard Hamiltonian parameters, which scales as dt2

as demonstrated, could offer a more diverse range of phases
[65,87,88]. It would also be interesting to study how the
dimension of the local subsystems affects the critical prop-
erties of the MIPT. Here we have seen preliminary results
that arrays of two-dimensional subsystems with dimension,
such as qubits or hard-core bosons, have a smaller critical
parameter than the case where the dimension of the subsystem
is larger in the case of standard measurements (see Figs. 4
and 6), as predicted for qudits [11]. Although in transmons,
the role of the anharmonicity could be nontrivially crucial
as Fig. 6(d) suggests. In our numerical simulations of higher
dimensional transmons, we used a relatively large value of
U/J = 5, which is experimentally feasible, compared with
the value of U/J = 0.14 used in a similar model [10]. In
that model, a phase transition from volume-law to area-law
behavior was observed, with critical parameters close to those
of random unitary circuit models [72]. Considering that our
results in the limit of hard-core bosons (U → ∞) possibly
indicate a BKT phase transition, it would be interesting to in-
vestigate the influence of on-site interaction strength in arrays
of system with higher local dimensions; that is, for qudits.
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APPENDIX A: SUZUKI-TROTTER EXPANSION

In this Appendix, we summarize the standard Suzuki-
Trotter expansion procedure, after which we include a
measurement layer. We show how to create a hybrid circuit
consisting of unitary evolution and interleaved probabilis-
tic measurements, starting from a unitary Hamiltonian that
describes the natural dynamics of the system. We use a
Suzuki-Trotter decomposition of the Hamiltonian, Eq. (1), to

design a unitary layer in terms of two-site gates [65–70], and
then we add a layer of measurements (in a similar way as in
Ref. [10]), but without the necessity of considering matrix
product states [89]. Let us start by considering that, after a
time interval T , the state of the system is given by

|ψT 〉 = e−iĤT |ψ0〉, (A1)

where |ψ0〉 is any initial state and we have made Ĥ/h̄ ≡
Ĥ . The Hamiltonian (1) can be decomposed into two terms
Ĥ = Ĥodd + Ĥeven, where Ĥodd ≡ ∑L

odd � Ĥ� and Ĥeven ≡∑L
even � Ĥ�, and Ĥ� is given by Ref. [90]

Ĥ� ≡ ω�n̂� + J�(â†
� â�+1 + H.c.) − U�

2
n̂�(n̂� − Î ), (A2)

where [Ĥ�o, Ĥ�′
o
] = [Ĥ�e , Ĥ�′

e
] = 0, for odd (�o, �

′
o) and even

(�e, �
′
e) sites. Note that [Ĥodd, Ĥeven] �= 0, but it does not affect

the results [91]. Now, we can perform a Trotter expansion of
order q of the unitary time evolution operator Û = e−iĤT =
e−i(Ĥodd+Ĥeven )T for a small time step dt > 0 such that [91][

e−i(Ĥodd+Ĥeven )dt
]T/dt ≈ [

fq
(
ÛHodt , ÛHedt

)]T/dt
, (A3)

where ÛHodt ≡ e−iĤodddt , ÛHedt ≡ e−iĤevendt , and fq(x, y) corre-
sponds to the qth-order expansion, where the first two orders
are given by f1(x, y) = xy and f2(x, y) = x1/2yx1/2.

Therefore, we can express the approximation to the evolu-
tion operator Û = e−iĤT as a product of O(T/dt ) operators
ÛHodt and ÛHedt , which are constituted by the product of two-
body gates

ÛHodt =
L∏

odd �

e−iĤ�dt , ÛHedt =
L∏

even �

e−iĤ�dt . (A4)

The approximation to the time evolution in (A1) is obtained
by applying iteratively fq(ÛHodt , ÛHedt ) to |ψ0〉 a number of
O(T/dt ) times [involving O(T/dt ) times the set of gates
ÛHodt and ÛHedt ]. Considering |ψ̃t 〉 as the approximate evolved
state at time t , the time evolution step is given by

|ψ̃t+dt 〉 = fq
(
ÛHodt , ÛHedt

)|ψ̃t 〉, (A5)

which introduces an error made by the order-dt Trotter ex-
pansion (A3) arising from neglecting corrections that scale as
εte ∼ (dt )2qT 2 [for an error given by εte(t ) ≡ 1 − |〈ψt |ψ̃t 〉|2].
Finally, we add a layer of measurement operators, which are
going to be applied with a probability p, such that the effective
time step of the circuit is expressed as

|ψ̃t+dt 〉 =
L∏
�

M�(p) fq
(
ÛHodt , ÛHedt

)∣∣ψ̃t
〉
, (A6)

where M�(p) represents the measurements and |ψ̃t+dt 〉 needs
to be renormalized after the measurements have been per-
formed. It is important to note that the timescale dt of the layer
of measurements does not come from any approximation, but
is set ad hoc. We are keeping just the first order in dt since
first and second-order Trotter expansion approximations yield
the same results in the posterior analysis since the effective
Hamiltonian is obtained up to first order in dt , in such a way
the Trotter expansion errors εte are minimal. For the same
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reason, in the subsequent analysis, we would obtain the same
effective Hamiltonian if we had considered q = 2.

APPENDIX B: REPLICA METHOD

The replica method is a mathematical tool that consists of
considering a number of replicas n of an object describing
a system (such as a partition function or a density matrix),
which allows us to more easily calculate certain averaged
quantities. For example, let us consider that we are interested
in computing the average of the free energy of a system
F [J] = −kBT ln Z[J], where the averaging is performed over
a certain distribution in J . In practical examples, computing
ln Z[J] can be a cumbersome task, but we can use a trick by re-
lying on the Taylor expansion, where we introduce artificially
a replica index n, such that the relation limn→0(Zn − 1)/n =
ln Z holds. This means that studying (Zn − 1)/n is analogous
to studying ln Z and in the replica limit n → 0 both quantities
are identical. In the present case, this method is useful since it
allows us to express the von Neumann entropy as

S1 = −tr[ρ̂ ′ ln ρ̂ ′] = − lim
n→1

1

n − 1
ln trρ̂ ′n, (B1)

where the n-Rényi entropy is given by Sn = (1 − n)−1trρ̂ ′n as
usual. Note that we work with a certain number of replicas and
different n-Rényi entropies might be thought to have different
critical properties, although numerical simulations indicate
that this is not the case, and they share the same critical
properties [11].

1. Replicated space

Although in this article we follow the work done by Bao
et al. [19] quite faithfully, we present below all the details of
the formalism for greater clarity since we have used a slightly
different notation and some details of our models differ. In
the last section, we present the arguments for studying the
effective Hamiltonian as a modified Bose-Hubbard model in
an enlarged space. Since we are interested in the ensemble
of trajectories of the circuit dynamics, we start by labeling
states for particular sequences of measurement outcomes mi
and set of gate parameters θi (we refer to this sequence also as
trajectory):

ρ̂mi,θi (t ) = P̂mt Ûθt · · · P̂m1Ûθ1 ρ̂0Û
†
θ1

P̂†
m1

· · · Û †
θt

P̂†
mt

, (B2)

where ρ̂0 is the initial state, Ûθi are the set of unitary evo-
lution parameters, P̂mi are the projection operators associated
with measurement outcomes mi, and i refers to all the posi-
tions in the circuit space-time. The ensemble of states P =
{ρ̂ ′

mi,θi
, pmi,θi}mi,θi is formed by the set of normalized quan-

tum states ρ̂ ′
mi,θi

≡ ρ̂mi,θi/pmi,θi and its probability distributions
pmi,θi = pθi pmi (θ ). The probabilities include the probability
distribution for the gate parameters pθi and the measurement
outcomes probability that depends on the gate distribution pa-
rameters on the state in a sense of Born’s rule pmi (θ ). Note that
the states do not need to be fully measured as in the Eq. (B2),
but P includes also partially measured states where we need
to consider P̂mi = Î in those space-time events where no mea-
surement was performed. Therefore, P includes all possible
trajectories ranging from the linear unitary trajectories with no

measurements to the trajectories where all the measurements
have been performed, whose proportion in the ensemble will
depend on the measurement probability parameter p.

For studying the steady-state properties of this ensemble
of states P, we consider the dynamics of n copies of the
density matrix, such that for a particular sequence of measure-
ments and parameters, Eq. (B2), the system density matrix is
||ρ (n)

mi,θi
〉〉 ≡ ρ̂⊗n

mi,θi
. Similarly, we define operators acting in this

replicated Hilbert space H(n) = (H ⊗ H∗)⊗n, such that the
unitary and measurement operators should be treated in the
following way:

Ǔ
(n)
θi

≡ (
Ûθi ⊗ Û ∗

θi

)(n) → Ǔ
(n)
θi

∣∣∣∣ρ (n)
mi,θi

〉〉 ≡ (
Ûθi ρ̂mi,θiÛ

†
θi

)⊗n
,

(B3)

M̌(n)
mi

≡ (
P̂mi ⊗ P̂†

mi

)(n) → M̌(n)
mi

∣∣∣∣ρ (n)
mi,θi

〉〉 ≡ (
P̂mi ρ̂mi,θi P̂

†
mi

)⊗n
,

(B4)

while a regular operator Ô (i.e., to calculate observables) acts
on the state in the following way:

Ǒ(n) ≡ (Ô ⊗ Î )(n) → Ǒ(n)
∣∣∣∣ρ (n)

mi,θi

〉〉 ≡ (
Ôρ̂mi,θi

)⊗n
. (B5)

From this point on, we work with the un-normalized
averaged state of the ensemble ||ρ (n)〉〉 = ∑

mi,θi
||ρ (n)

mi,θi
〉〉 =∑

mi,θi
pn

mi,θi
||ρ ′(n)

mi,θi
〉〉 because it can be expressed as a linear

function of the initial state at any time t , such that

||ρ (n)(t )〉〉 =
∑
mi,θi

∣∣∣∣ρ (n)
mi,θi

〉〉 = ∑
mi,θi

M̌mt Ǔθt · · · M̌m1 Ǔθ1

∣∣∣∣ρ (n)
0

〉〉
≡ V̌(t )

∣∣∣∣ρ (n)
0

〉〉
, (B6)

where the dynamics has been integrated into a linear operator
V̌(t ). In case of a continuous distribution for the gate param-
eters, we should have considered

∑
θi

→ ∫
dθi. It is precisely

this time evolution that we map exactly to an imaginary-time
evolution generated by an effective quantum Hamiltonian

||ρ (n)(t )〉〉 = e−tȞeff
∣∣∣∣ρ (n)

0

〉〉
, (B7)

such that the properties of the averaged state of the ensemble
|ρ (n)(t )〉〉 in the long-time limit are encoded in the ground state
of Ȟeff, and we have considered h̄ = 1.

2. Effective Hamiltonian in the replicated space

To obtain the effective Hamiltonian in Eq. (B7), we need to
compute the operator V̌(t ) of Eq. (B6), for which we average
at each space-time position �t ∈ {1, . . . , M} where M = LT .
Each space-time position �t can be averaged independently,
although some considerations need to be taken for averaging
two-site unitary gates. We can also average the measurement
outcomes and unitary gate parameters distributions indepen-
dently, obtaining M̌� and Ǔ�, respectively. We assume that the
gate parameters of the unitary evolution can take values from
different Gaussian distributions with different mean values
and variances: θi ≡ {ωi, Ji,Ui}: {ω, σ 2

ω} for the on-site energy
ω�, {J, σ 2

J } for the hopping strength J� and {U, σ 2
U } for the

interaction U�. In this work, we consider will n = 2 replicas;
to simplify the notation, we omit the superscript (2) in the fol-
lowing calculations. Therefore, we can perform the averaging
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over the circuit realizations in the following way:

Ǔ� = Û� ⊗ Û ∗
� ⊗ Û� ⊗ Û ∗

�

= e−iω�(ň� )dt e−iJ�(ǎ†
� ǎ�+1+ǎ�ǎ†

�+1 )dt e−i
U�
2 (−ǔ� )dt eO(dt2 )

=
(

1√
2πσ 2

ω

∫ ∞

−∞
dω�e− 1

2 (
ω�−ω

σω
)2

e−iω�(ň� )dt

)⎛⎜⎝ 1√
2πσ 2

J

∫ ∞

−∞
dJ�e− 1

2 (
J�−J
σJ

)2

e−iJ�(ǎ†
� ǎ�+1+ǎ�ǎ†

�+1 )dt

⎞
⎟⎠

×

⎛
⎜⎝ 1√

2πσ 2
U

∫ ∞

−∞
dU�e− 1

2 (
U�−U

σU
)2

e−i
U�
2 (−ǔ� )dt

⎞
⎟⎠eO(dt2 )

= (
e−iω(ň� )dt− 1

2 σ 2
ω (ň� )2dt2)(

e−iJ (ǎ†
�
ǎ�+1+ǎ�ǎ†

�+1 )dt− 1
2 σ 2

J (ǎ†
�
ǎ�+1+ǎ�ǎ†

�+1 )2dt2)(
e−i 1

2 U (−ǔ� )dt− 1
8 σ 2

U (−ǔ� )2dt2)
eO(dt2 )

= e−iǍ�dt−B̌�dt2
eO(dt2 ), (B8)

where the operators of the replicated space are given by

Ǎ� = ωň� + J (ǎ†
� ǎ�+1 + ǎ�ǎ†

�+1) − 1
2U ǔ�, (B9)

B̌� = 1
2σ 2

ω (ň�)2 + 1
2σ 2

J (ǎ†
� ǎ�+1 + ǎ�ǎ†

�+1)2 + 1
8σ 2

U (ǔ�)2, (B10)

ň� = n̂� Î Î Î − Î n̂� Î Î + Î Î n̂� Î − Î Î Î n̂�, (B11)

ǔ� = [n̂�(n̂� − Î )]Î Î Î − Î[n̂�(n̂� − Î )]Î Î + Î Î[n̂�(n̂� − Î )]Î − Î Î Î[n̂�(n̂� − Î )], (B12)

ǎ†
� ǎ�+1 = (â†

� Î Î Î )(â�+1Î Î Î ) − (Î â†
� Î Î )(Î â�+1 Î Î ) + (Î Î â†

� Î )(Î Î â�+1 Î ) − (Î Î Î â†
� )(Î Î Î â�+1), (B13)

ǎ�ǎ†
�+1 = (â� Î Î Î )(â†

�+1 Î Î Î ) − (Î â� Î Î )(Î â†
�+1 Î Î ) + (Î Î â� Î )(Î Î â†

�+1 Î ) − (Î Î Î â�)(Î Î Î â†
�+1). (B14)

Note that expressions for the operators have been simpli-
fied Ǒ = Ô1 ⊗ Ô2 ⊗ Ô3 ⊗ Ô4 ≡ Ô1Ô2Ô3Ô4, where Ôi and
Ǒ are d-dimensional and d4-dimensional operators, respec-
tively, and should be understood in the sense of Eq. (B5). In
what follows, we describe all the relevant steps followed in
Eq. (B8). In the first step, we have taken into account that
eÂ ⊗ eB̂ = eÂ⊗Î+Î⊗B̂; note that the operators defined in (A2)
include the four terms, each acting on different Hilbert spaces,
i.e., they commute. Note that some of the replicated operators
do not commute between them: [ň�, ǎ†

� ǎ�+1 + ǎ�ǎ†
�+1] �= 0

and [ǔ�, ǎ†
� ǎ�+1 + ǎ�ǎ†

�+1] �= 0. Therefore, we have consid-

ered that eÂdt+B̂dt+Ĉdt = eÂdt eB̂dt eĈdt eO(dt2 ), where the term
eO(dt2 ) includes all the commutators of order dt2 arising from
the Baker-Campbell-Hausdorff (BCH) formula. In the second
step, we perform a standard Gaussian integration considering
the means and variances of the different parameters, and that
for each integration the operators commute with themselves.
In the last step, we consider again the BCH formula and group
all the O(dt2) terms in eO(dt2 ). Note that, since the follow-
ing commutators vanish [(ň� + ň�+1)2, (ǎ†

� ǎ�+1 + ǎ�ǎ†
�+1)2],

[(ň� + ň�+1)2, ǎ†
� ǎ�+1 + ǎ�ǎ†

�+1], and [ň� + ň�+1, (ǎ†
� ǎ�+1 +

ǎ�ǎ†
�+1)2], it is true that eO(dt2 ) = I if there is no interactions

(i.e., U� = 0) and we make the change ň� → 1
2 (ň� + ň�+1).

This implies that Ǔ�(U� = 0) = e−iǍ�dt−B̌�dt2
, and we can

have a better physical interpretation of how the variance in the
distribution of parameters will affect the subsequent analysis;

in the case of U� �= 0 the result is (B8), where the terms
involving the variance of the parameters are of the same order
as a complicate term involving different commutators, and
the interpretation is less clear. It is important to note that to
study the dt2 terms properly, we need to perform the Trotter
expansion up to second order [i.e., considering q = 2 and
f2(x, y) = x1/2yx1/2]. Interestingly, nondisorder systems yield
the same result up to the first order without requiring a Trotter
expansion.

For the average over the measurement results, we define
the following operators, which include the average over the
possible outcomes,

〈M̌�〉 = (1 − ��dt )Ǐ + ��dt
d∑
n

P̌�,n, (B15)

where �� may be viewed as the rate at which a measurement
of a certain type is performed, Ǐ = Î Î Î Î is the identity opera-
tor in the replicated space, and the projection operator is

P̌�,n = P̂�,nP̂†
�,nP̂�,nP̂†

�,n, (B16)

where P̂�,n are the projectors described in the main text,
different for each type of measurement. As discussed in Ap-
pendix A, we introduce ad hoc the factor dt , but it does not
derive from any Trotter expansion as the one of the Bose-
Hubbard Hamiltonian.

Finally, we obtain the transfer matrix between the state of
the system at t + dt and t by averaging the time evolution over
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the gate parameters and the probabilities p = �dt of applying
measurement operators. For this, we only need to average over
the different sites in space � ∈ L for a single time t , i.e., just
the elements from a time step,

〈〈ρm(t + dt )||Ť||ρm(t )〉〉

= 〈〈ρm(t + dt )||
L∏
�′

〈M̌�′ 〉
L∏
�

Ǔ�||ρm(t )〉〉. (B17)

Considering terms up to the first order in dt , the transfer
matrix becomes

Ť =
L∏
�′

〈M̌�′ 〉
L∏
�

Ǔ�

=
L∏
�′

[
Ǐ − ��′dt

(
1 −

d∑
n

P̌�′,n

)]

×
L∏
�

[Ǐ − iǍ�dt] + O(dt2)

= Ǐ − dt
L∑
�′

��′

(
Ǐ −

d∑
n

P̌�′,n

)

− idt
L∑
�

Ǎ� + O(dt2)

= Ǐ − ȞMdt − iȞUdt + O(dt2)

�e−dt (ȞM+iȞU ), (B18)

from which we obtain the effective Hamiltonian, which is
given by

Ȟeff =
L∑
�

��

(
Ǐ −

d∑
n

P̌�,n

)

+ i

[
ωň� + J (ǎ†

� ǎ�+1 + ǎ�ǎ†
�+1) − 1

2
U ǔ�

]
. (B19)

Taking into account the expression of Eq. (B7), we deduce that
the state of the system in the long-time limit corresponds to
the ground state of this effective Hamiltonian. Therefore, the
main task will be to find the explicit expression for the ground
state as a function of the different parameters and use it to
obtain different quantities using the equations that we derive
below. Note that this state does not represent any physical
state but the ensemble of trajectories produced by the circuit
dynamics. Note also that we have obtained a non-Hermitian
Hamiltonian Ȟeff = ȞM + iȞU, where ȞU is Hermitian, and
the Hermiticity of ȞM will depend on the type of measure-
ment (i.e., standard or feedback).

3. Replicated observables

Using this formalism, we can compute different types of
quantities. Generally, we are going to be interested in ob-
taining the average k moment of an observable Ô over the

measurement results and gate parameters:

〈Ok〉 =
∑

n

pn[tr(Ôρ̂ ′
n)]k

=
∑
mi,θi

pmi,θi

[
tr
(
Ôρ̂mi,θi

)
tr
(
ρ̂mi,θi

)
]k

= lim
n→1

〈〈I(n)||Ǒ(n)
k ||ρ (n)〉〉

〈〈I(n)||ρ (n)〉〉
= lim

n→1
O(n)

k , (B20)

where · refers to the average over the set of gate parame-
ters (that should be understood as an integral in case of a
continuous variable distribution) and 〈·〉 to the average over
measurements outcomes. From now on, we refer to this av-
erage 〈·〉 as the trajectory average. For the expression of the
operator Ô, we need to consider its kth moment acting on
n replicas and therefore it is defined as Ǒ

(n)
k = [

⊗k
i=1(Ô ⊗

Î )] ⊗ (Î ⊗ Î )(n−k). Note that we have introduced the norm
of the replicated quantum state (i.e., the trace of the den-
sity matrix) by an inner product between ||ρ (n)

mi,θi
〉〉 and a

reference state ||I〉〉 such that 〈〈I(n)||ρ (n)
mi,θi

〉〉 = tr(ρ̂⊗n
mi,θi

) =
tr(ρ̂mi,θi )

n, where 〈〈μ||σ 〉〉 ≡ tr(μ̂†σ̂ ) for arbitrary states μ̂

and σ̂ in the replicated Hilbert space, and the reference state is
given by

〈〈I(n)|| =
∑
{α�}

〈〈α1α1, α2α2, . . . , αnαn||, (B21)

where the two copies of each α� refers to the ket and bra.
Using this framework, we can also express subsystems

purities by introducing the trajectory-averaged kth purity of
a subsystem A defined as

〈μk,A〉 =
∑

mi

pmi tr
(
ρ̂k

A,mi,θi

)/(
trρ̂mi,θi

)k

=
∑
mi,θi

pmi,θi tr
(
ρ̂k

A,mi,θi

)/(
trρ̂mi,θi

)k

in the form of (B20) by using the subsystem cyclic permuta-
tion operator

Č
(n)
k,l,A =

⎡
⎣∑

[αi]

k⊗
i=1

(|αi+1〉〈αi| ⊗ Î )

⎤
⎦⊗ (Î ⊗ Î )(n−k)

(where αk+1 ≡ α1 and |αi〉 runs over all basis states of subsys-
tem A). Note that the subscript l (left) refers to the fact that it
acts to the left of the density matrices by permuting the kets
of the subsystem A between replicas and acting as the identity
outside of it; we can define the analogous Č

(n)
k,r,A acting on bras.

In this way, the trajectory-averaged purity is given by

〈μk,A〉 = lim
n→1

μ
(n)
k,A = lim

n→1
〈〈I(n)||Č(n)

k,l/r,A||ρ̂ (n)〉〉〈〈I(n)||ρ̂ (n)〉〉.

Returning to the case we are considering of n = 2 replicas,
we have that the first k = 1 and second k = 2 moments of the
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observables are given, respectively, by

O(2)
1 = 〈〈I(2)||Ǒ(2)

1 ||ρ̂ (2)〉〉
〈〈I(2)||ρ̂ (2)〉〉 =

∑
mi,θi

p2
mi,θi

〈Ô〉mi,θi∑
mi,θi

p2
mi,θi

, (B22)

O(2)
2 = 〈〈I(2)||Ǒ(2)

2 ||ρ̂ (2)〉〉
〈〈I(2)||ρ̂ (2)〉〉 =

∑
mi,θi

p2
mi,θi

〈Ô〉2
mi,θi∑

mi,θi
p2

mi,θi

, (B23)

and the quantity related to the trajectory-averaged second
moment of the purity

μ
(2)
2,A =

∑
mi,θi

p2
mi,θi

tr
(
ρ̂ ′2

A,mi,θi

)
∑

mi,θi
p2

mi,θi

. (B24)

Therefore, working with two replicas implies that the
probability of the trajectories is weighted by a probabil-
ity distribution p(2)

mi,θi
= p2

mi,θi
/(
∑

mi,θi
p2

mi,θi
). Therefore, the

quantities that we are going to study to address the phase
transition are the objects O(n)

k , which corresponds to the exact
trajectory-averaged quantum-mechanical observables only in
the replica limit n → 1. It has been shown, at least for the
von Neumann entropy, that although they are not identical,
both share critical properties in the MIPT [11]. Thus, the
observables that we are going to be considering in the article
related to the replica method, in the sense explained above in
(B20), are

S(2)
A = − ln

〈〈I(2)||Č(2)
2,l/r,A||ρ (2)〉〉

〈〈I(2)||ρ (2)〉,〉 = − ln μ
(2)
2,A, (B25)

(NA)(2)
1 = 〈〈I(2)||Ň(2)

1 ||ρ (2)〉〉
〈〈I(2)||ρ (2)〉〉 = tr(ρ̂1N̂A)tr(ρ̂2)

tr(ρ̂1)tr(ρ̂2)
, (B26)

F
(2)

A = 〈〈I(2)||(Ň2)(2)
1 − Ň

(2)
2 ||ρ (2)〉〉

〈〈I(2)||ρ (2)〉〉

= tr
(
ρ̂1N̂2

A

)
tr(ρ̂2)

tr(ρ̂1)tr(ρ̂2)
− tr(ρ̂1N̂A)tr(ρ̂2N̂A)

tr(ρ̂1)tr(ρ̂2)
, (B27)

where all the quantities correspond to trajectory-averaged
quantities in the proper replica limit n → 1: Eq. (B25) is
the von Neumann entropy 〈SA〉, Eq. (B26) to the number of
bosons 〈(NA)1〉, Eq. (B27) to the fluctuation of the number
operator 〈FA〉; in all cases refer to a subsystem A. The quantity
S(2)

A is the 2-conditional Renyi entropy, and it is related to

the purity by e−S(2)
A = μ

(2)
2,A, taking into account Eq. (B1) and

considering the classical measurement device as a part of the
extended system [11,19].

4. Effective Hamiltonian in the enlarged space

As we discussed in the main text, one of the main problems
that arise when designing an experimental setup to simulate
an MIPT is related to postselection, which refers to the need
to monitor each trajectory (that is, the result of each mea-
surement performed during the dynamics and the values of
each parameter in each unitary gate), to obtain the expectation
values associated with them. Furthermore, this implies that for
less frequent trajectories, the expectation values are extremely
difficult to measure. As noted in Ref. [19], this issue is related
to the fact that the simplest observable for diagnosing an
MIPT needs to be associated, at least, with the second moment
k = 2 of the density matrix in Eq. (B20). But, as explained

above, we can also consider observables, Eq. (B26), involving
the first moment k = 1 of the density matrix and, therefore,
not requiring postselection, to gain some indirect insight into
the phase transition (Fig. 2).

As we discussed in the main text, the effective Hamiltonian
of Eq. (B19) can be interpreted as an effective Bose Hubbard
dynamics in an enlarged space of 4L sites, with interacting
terms arising from measurements (Fig. 3) as Ĥeff = ĤM +
iĤBH (10), where

ĤM = �

L∑
l

(
Î −

d−1∑
n=0

P̂l,nP̂l+L,nP̂l+2L,nP̂l+3L,n

)
, (B28)

ĤBH =
4L∑
l

Wl

[
ωn̂l + J (â†

l âl+1 + H.c.) − U

2
n̂l (n̂l − Î )

]
,

(B29)

and

Wl =
{+1, l ∈ [1, L] ∪ [2L + 1, 3L]
−1, l ∈ [L + 1, 2L] ∪ [3L + 1, 4L]. (B30)

For obtaining the effective Hamiltonian in the enlarged space
we have vectorized the replicated density matrices in the
sense described in Algorithm II in Ref. [92]. The density
matrices ||ρ (2)〉〉 ≡ ρ̂1 ⊗ ρ̂2 = |α1〉〈α2| ⊗ |β1〉〈β2| → |φ〉 =
|α1〉 ⊗ |α2〉 ⊗ |β1〉 ⊗ |β2〉, for which we consider that the
replicated operators in (B19) that act on the density matrices
as Ô1 ⊗ Ô†

2 ⊗ Ô3 ⊗ Ô†
4(ρ̂1 ⊗ ρ̂2) = Ô1ρ̂1Ô†

2 ⊗ Ô3ρ̂2Ô†
4, need

to be be understood as Ô1 ⊗ Ô2 ⊗ Ô3 ⊗ Ô4(|α1〉 ⊗ |α2〉 ⊗
|β1〉 ⊗ |β2〉) = Ô1|α1〉 ⊗ Ô2|α2〉 ⊗ Ô3|β1〉 ⊗ Ô4|α2〉. As dis-
cussed in Eq. (B20), for computing the different observables
will be crucial to use the reference state 〈〈I|| defined in
Eq. (B21). Upon vectorization, this reference state is given
by

〈〈I|| → 〈I| =
∑

α1...αL
β1...βL

〈α1 · · · αL, α1 . . . αL, β1 . . . βL, β1 . . . βL|,

where αi, β j = 0, 1, . . . , d − 1. This implies that when calcu-
lating the observables we only need to take into account states
that do not vanish in the inner product with 〈I|, therefore,
we must look for states with the same quantum numbers in
the first and second blocks, and the same for the third and
fourth blocks (i.e., |02, 02, 11, 11〉 or |20, 20, 02, 02〉 for a
L = 2 and d � 3 case). It is important to note that we are
not interested in calculating quantum-mechanical observables
in this enlarged space (i.e., 〈φ|Ô|φ〉), but rather a 2-replica
quantity that represents the observable averaging at the proper
replica limit in the original circuit

〈〈I(2)||Ǒ(2)||ρ (2)〉〉
〈〈I(2)||ρ (2)〉〉 → 〈I|Ô|φ〉

〈I|φ〉 , (B31)

where Ǒ(2) = ∑L
�1,�2,�3,�4

Ô�1,1 ⊗ Ô†
�2,2

⊗ Ô�3,3 ⊗ Ô†
�4,4

and

Ô = ∑4L
l Ôl . However, to find the ground state of Ĥeff we

calculate the expectation value of the energy in the usual way
Re〈φ̃|Ĥeff|φ〉, where we need to consider a biorthogonal basis
as explained in the next section.

214308-18



PHASE TRANSITIONS INDUCED BY STANDARD … PHYSICAL REVIEW B 109, 214308 (2024)

APPENDIX C: NON-HERMITIAN PERTURBATION
THEORY

In this Appendix, we describe in detail how to use per-
turbation theory in the case of a non-Hermitian Hamiltonian
following the work done by Sternheim and Walker [80]. Ad-
ditionally, we include our new result of the calculation of
wave renormalization for completeness, extending our anal-
ysis to the second order. When obtaining the eigenenergies
and eigenvectors of a non-Hermitian operator, we face sev-
eral issues that prevent us from applying standard techniques
in quantum mechanics, such as the non-orthogonality of
the eigenvectors. In this case, we can use the biorthogonal
quantum-mechanical formalism [80,81], in which we need to
obtain the eigenstates and eigenenergies for the operator and
its Hermitian conjugate. Let us focus on the simple case of
Ĥeff = ĤM + iĤBH, where ĤM and ĤBH are Hermitian and
following equations are satisfied:

Ĥeff|φm〉 = Em|φm〉, (Ĥeff )
†|ϕm〉 = εm|ϕm〉, (C1)

〈φm|(Ĥeff )
† = E∗

m〈φm|, 〈ϕm|Ĥeff = ε∗
m〈ϕm|. (C2)

Note that, in the case of [ĤM , ĤBH] �= 0, the orthogonality of
the eigenstates 〈φm|φn〉 = 0 for Em �= En no longer holds. But
if the condition εn = E∗

n is held, {ϕm, φm} forms a biorthog-
onal set such that 〈ϕm|φn〉 = δm,n and Î = ∑

m |φm〉〈ϕm|. As
shown below, we also consider non-Hermitian measurements,
for which Eqs. (C1) and (C2) do not necessarily hold. How-
ever, the non-Hermitian measurements considered are real
nonsymmetric, i.e., ĤM �= (ĤM )† and ĤM = (ĤM )∗, and we
can prove that any real nonsymmetric operator Ô can be
expressed as Ô = Ô1 + iÔ2, where Ô1 and Ô2 are Hermi-
tian. Therefore, we can use the same biorthogonal formalism
to obtain the basis for the real nonsymmetric measurement
operator ĤM .

We be particularly interested in obtaining the ground state
of Heff as a function of the measurement rate �, which allows
us to calculate how different quantities behave in different
cases. We can consider two regimes: �/J � 1 where ĤM

acts as a perturbation; and �/J � 1 where ĤBH acts as an
imaginary perturbation (where we have made Ĥeff/J ≡ Ĥeff).
As we explain below, we focus on the area-law phase, since
it is relatively easy to obtain the nondegenerate ground state
of ĤM and understand how the imaginary perturbation acts
on it. For � � 1 the situation is more complicated, since
the unperturbed term iĤBH is imaginary and, therefore, the
ground state is not well defined.

Let us consider the area-law phase regime, where the per-
turbation parameter is defined as λ = J/� � 1. Taking into
account (C1) and (C2), it is evident that we need to obtain
the perturbation analysis for both the Hamiltonian Ĥeff and
its Hermitian conjugate (Ĥeff )†. Therefore, we consider two
Schrödinger equations Ĥeff|φ〉 = (ĤM + iλĤBH)|φ〉 = E |φ〉
and Ĥ†

eff|ϕ〉 = [(ĤM )† − iλĤBH]|ϕ〉 = ε|ϕ〉. Then, expanding
the energies and states in power series of λ,

(ĤM + iλĤBH)
∑

r

λr |φ(r)〉 =
∑

r′
λr′

E (r′ )
∑

r

λr |φ(r)〉,

(C3)

[(ĤM )† − iλĤBH]
∑

r

λr |ϕ(r)〉 =
∑

r′
λr′

ε(r′ )
∑

r

λr |ϕ(r)〉.

(C4)
For normalization purposes of general states |φ〉 =∑

n cn|φ(0)
n 〉 and |ϕ〉 = ∑

n dn|ϕ(0)
n 〉, we define the associated

states |φ̃〉 = ∑
n cn|ϕ(0)

n 〉 and |ϕ̃〉 = ∑
n dn|φ(0)

n 〉, respectively
[81]. The normalization is then given by 〈φ̃|φ〉 = ∑

n c∗
ncn and

〈ϕ̃|ϕ〉 = ∑
n d∗

n dn, and the expectation values of an observable
Ô by 〈φ̃|Ô|φ〉 and 〈ϕ̃|Ô|ϕ〉. Then the renormalization of the
state in the second order of the perturbative analysis Z is
given by Z〈φ̃|φ〉 = 1 and Z〈ϕ̃|ϕ〉 = 1. We be interested in
studying how the ground state |φ0〉 is perturbed, therefore,
up to the second order in λ, we have the equations for the
Hamiltonian

[E (0) − ĤM]
∣∣φ(0)

0

〉 = 0, (C5)
[E (0) − ĤM]

∣∣φ(1)
0

〉+ [E (1) − iĤBH]
∣∣φ(0)

0

〉 = 0, (C6)

[E (0) − ĤM]
∣∣φ(2)

0

〉+ [E (1) − iĤBH]
∣∣φ(1)

0

〉+ E (2)
∣∣φ(0)

0

〉 = 0,

(C7)

and for its Hermitian conjugate

[ε(0) − (ĤM )†]
∣∣ϕ(0)

0

〉 = 0, (C8)

[ε(0) − (ĤM )†]
∣∣ϕ(1)

0

〉+ [ε(1) + iĤBH]
∣∣ϕ(0)

0

〉 = 0, (C9)

[ε(0) − (ĤM )†]
∣∣ϕ(2)

0

〉+ [ε(1) + iĤBH]
∣∣ϕ(1)

0

〉+ ε(2)
∣∣ϕ(0)

0

〉 = 0.

(C10)

Therefore, we need to obtain the biorthogonal basis of the
Hamiltonian ĤM . Note that in the case of a Hermitian ĤM , the
biorthogonal basis is given by the usual basis of the number
of bosons operator N̂ = ∑4L

l n̂l , while in the case of a non-
Hermitian ĤM , the biorthogonal basis needs to be found.

The normalized corrections for the nondegenerate state
|φα〉 up to second order in λ are given by

|φα〉 =
⎡
⎣1 − λ2

2

∑
n �=α

(
iVnα

E (0)
α − E (0)

n

)∗ iVnα(
E (0)

α − E (0)
n
)
⎤
⎦∣∣φ(0)

α

〉

+iλ
∑
n �=α

Vnα(
E (0)

α − E (0)
n
) ∣∣φ(0)

n

〉

−λ2
∑

n,m �=α

VnmVmα(
E (0)

α − E (0)
n
)(

E (0)
α − E (0)

m
) ∣∣φ(0)

n

〉

+λ2
∑
n �=α

VααVnα(
E (0)

α − E (0)
n
)2

∣∣φ(0)
n

〉
, (C11)

Eα = E (0)
α + iλVαα − λ2

∑
n �=α

VαnVnα(
E (0)

α − E (0)
n
) , (C12)

and for the nondegenerate state |ϕα〉 are given by

|ϕα〉 =
⎡
⎣1 − λ2

2

∑
n �=α

( −iVnα

ε
(0)
α − ε

(0)
n

)∗ −iVnα(
ε

(0)
α − ε

(0)
n
)
⎤
⎦∣∣ϕ(0)

α

〉

− iλ
∑
n �=α

Vnα(
ε

(0)
α − ε

(0)
n
) ∣∣ϕ(0)

n

〉
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− λ2
∑

n,m �=α

VnmVmα(
ε

(0)
α − ε

(0)
n
)(

ε
(0)
α − ε

(0)
m
) ∣∣ϕ(0)

n

〉

+ λ2
∑
n �=α

VααVnα(
ε

(0)
α − ε

(0)
n
)2

∣∣ϕ(0)
n

〉
(C13)

εα = ε(0)
α − iλVαα − λ2

∑
n �=α

VαnVnα(
ε

(0)
α − ε

(0)
n
) , (C14)

where the matrix elements are Vab = 〈ϕ(0)
a |ĤBH|φ(0)

b 〉, and
{ϕ(0)

m , φ(0)
m } is the biorthogonal basis of the unperturbed

Hamiltonian ĤM that defines the identity Î = ∑
m |φ(0)

m 〉〈ϕ(0)
m |.

Note that even-order perturbation terms are real, while
odd-order perturbation terms are imaginary. The imaginary
disturbance has a different effect on the energy correction
compared with the real case: the second-order correction to
the state exhibits a sign opposite to that in the standard
Hermitian case.

APPENDIX D: TRAJECTORY-AVERAGED OBSERVABLES
FOR n = 2 REPLICAS

In this Appendix, we describe how we calculate the
trajectory-averaged quantities of the original circuit for n =
2 replicas using the second-order perturbed ground state in
the enlarged space. Therefore, since we are going to use
the normalization given in Eq. (B20), we will not use here
the wave-renormalized state in Eq. (C11), for the sake of
simplicity.

1. Nonphysical measurement: Case |1111111 . . .〉 and d � 3

In the first case, and solely for clarification purposes,
we consider a nonrealistic model where, instead of proper
measurement, we just introduce a projective operator to a
particular subspace P̂np

l,n = |αl〉〈αl |, where αl can be any num-
ber of bosons dependent on the site. Note that it is not a
proper measurement since

∑d−1
n=0 P̂np†

l,n P̂np
l,n �= Î , although ĤM

is Hermitian and conserves the number of bosons (i.e., we
can use the boson number basis of N̂ = ∑4L

l n̂l as the unper-
turbed basis) and has a nondegenerate ground state given by
|φnp(0)

0 〉 = (|α1α2 . . . αL〉)⊗4 (note that in this case |φnp(0)
i 〉 ≡

|ϕnp(0)
i 〉). Nevertheless, this procedure could be related to stan-

dard measurement where unwanted measurement outcomes
are discarded [10].

For explanation purposes, we present the explicit result for
the L = 4 and d = 3 case, with projections to the n = 1 boson
subspace at each position, because it is illustrative and gives us
clear insight for understanding higher orders in perturbation
theory, which can be useful to tackle the size-dependent phase.
Therefore, the ground state is given by |φ(0)

0 〉 = |1〉⊗4L, and
“second-order” implies that there are two jumps resulting in
(1) two sites with n = 0 and two sites with n = 2 bosons,
and (2) two jumps within the same positions resulting in
the ground state. Although there can be a large number of
combinations we only need to consider those that do not
vanish in the inner product with 〈I| because we are inter-
ested in computing a very specific set of quantities (B31). As
we explain above, we consider just the hopping terms V̂ =∑16

l Wl (â
†
l âl+1 + H.c.) and study V̂ |φnp(0)

0 〉 and V̂ 2|φnp(0)
0 〉

where |φnp(0)
0 〉 = |1111, 1111, 1111, 1111〉 such that

V̂ |1111, 1111, 1111, 1111〉 =
√

2(|0211, 1111, 1111, 1111〉 + |1021, 1111, 1111, 1111〉 + |1102, 1111, 1111, 1111〉
+ |2011, 1111, 1111, 1111〉 + |1201, 1111, 1111, 1111〉 + |1120, 1111, 1111, 1111〉
− |1111, 0211, 1111, 1111〉 − |1111, 1021, 1111, 1111〉 − |1111, 1102, 1111, 1111〉
− |1111, 2011, 1111, 1111〉 − |1111, 1201, 1111, 1111〉 − |1111, 1120, 1111, 1111〉
+ |1111, 1111, 0211, 1111〉 + |1111, 1111, 1021, 1111〉 + |1111, 1111, 1102, 1111〉
+ |1111, 1111, 2011, 1111〉 + |1111, 1111, 1201, 1111〉 + |1111, 1111, 1120, 1111〉
− |1111, 1111, 1111, 0211〉 − |1111, 1111, 1111, 1021〉 − |1111, 1111, 1111, 1102〉
− |1111, 1111, 1111, 2011〉 − |1111, 1111, 1111, 1201〉 − |1111, 1111, 1111, 1120〉) (D1)

V̂ 2|1111, 1111, 1111, 1111〉 = − (
√

2)22(|0211, 0211, 1111, 1111〉 + |1021, 1021, 1111, 1111〉 + |1102, 1102, 1111, 1111〉
+ |2011, 2011, 1111, 1111〉 + |1201, 1201, 1111, 1111〉 + |1120, 1120, 1111, 1111〉
+ |1111, 1111, 0211, 0211〉 + |1111, 1111, 1021, 1021〉 + |1111, 1111, 1102, 1102〉
+ |1111, 1111, 2011, 2011〉 + |1111, 1111, 1201, 1201〉 + |1111, 1111, 1120, 1120〉)

− (
√

2)22(|0211, 1111, 1111, 0211〉 + |1021, 1111, 1111, 1021〉 + |1102, 1111, 1111, 1102〉
+ |2011, 1111, 1111, 2011〉 + |1201, 1111, 1111, 1201〉 + |1120, 1111, 1111, 1120〉
+ |1111, 0211, 0211, 1111〉 + |1111, 1021, 1021, 1111〉 + |1111, 1102, 1102, 1111〉
+ |1111, 2011, 2011, 1111〉 + |1111, 1201, 1201, 1111〉 + |1111, 1120, 1120, 1111〉)

+ (
√

2)224|1111, 1111, 1111, 1111〉 + |I〉
= − 4|�〉 − 4|�〉 + 48

∣∣φnp(0)
0

〉+ |I〉, (D2)
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where |I〉 includes all the terms that vanish in every inner
product with 〈I| (B3) that we compute (B31), i.e., 〈I|I〉 =
〈I|ĈA,l/r |I〉 = 0, where A ∈ [1, 2]. |�〉 includes all the terms
that do not vanish in the inner product, i.e., 〈I|�〉 = 12 and
will be used for computing observables, and 〈I|φnp(0)

0 〉 = 1.
|�〉 includes terms which do not vanish upon application of
permutation operator, i.e., 〈I|�〉 = 0 and 〈I|ĈA,l/r |�〉 = 4.
Note that there are also terms in |�〉 that do not vanish when
permuted, i.e., 〈I|ĈA,l/r |�〉 = 4. We can compute explicitly
how the permutation acts on |�〉:

ĈA,l |0211, 0211, 1111, 1111〉 = |1111, 0211, 0211, 1111〉,

ĈA,l |1021, 1021, 1111, 1111〉 = |1121, 1021, 1011, 1111〉,

ĈA,l |1102, 1102, 1111, 1111〉 = |1102, 1102, 1111, 1111〉,

ĈA,l |1111, 1111, 0211, 0211〉 = |0211, 1111, 1111, 0211〉,

ĈA,l |1111, 1111, 1021, 1021〉 = |1011, 1111, 1121, 1021〉,

ĈA,l |1111, 1111, 1102, 1102〉 = |1111, 1111, 1102, 1102〉,
(D3)

and on |�〉,
ĈA,l |0211, 1111, 1111, 0211〉 = |1111, 1111, 0211, 0211〉,

ĈA,l |1021, 1111, 1111, 1021〉 = |1121, 1111, 1011, 1021〉,

ĈA,l |1102, 1111, 1111, 1102〉 = |1102, 1111, 1111, 1102〉,

ĈA,l |1111, 0211, 0211, 1111〉 = |0211, 0211, 1111, 1111〉,

ĈA,l |1111, 1021, 1021, 1111〉 = |1011, 1021, 1121, 1111〉,

ĈA,l |1111, 1102, 1102, 1111〉 = |1111, 1102, 1102, 1111〉,
(D4)

where there are only four terms [the third and sixth equa-
tions in (D3), and first and third equations in (D4)] that do
not vanish in the inner product, and we have computed only
jumps to the right, therefore we need to multiply it by two.
Note that we have considered the left permutation ĈA,l that
originally permute the kets between the two replicas and anal-
ogous sites within the first and third blocks of the enlarged
space; we would have obtained the same result if we had
used the right permutation ĈA,r that originally permute the
bras between the two replicas and analogous sites within the
second and fourth blocks of the enlarged space. The unper-
turbed energies of the two types of states are computed as
E (0)

0 = 〈φnp(0)
0 |ĤM |φnp(0)

0 〉 = 0 for the ground state and E (0)
α =

〈φnp(0)
α |ĤM |φnp(0)

α 〉 = 2� for the rest of the states. Finally, we
obtain the normalized second-order correction to the ground
state: ∣∣φ(2)

0

〉 ≡ (1 − 6λ2)
∣∣φnp(0)

0

〉+ λ2(|�〉 + |�〉), (D5)

where we have included in the state only those terms that do
not vanish in the inner product defined in the replicated space,
as explained above. Although we have assumed that d = 3,
it is easy to notice that the dimension of the subsystem up to
the second order is not relevant, since it is necessary to have

similar states in blocks 1 and 2 on the one hand and blocks
3 and 4 on the other, and any state with a site with more
than 2 bosons vanishes in the inner product at second-order
perturbation theory since it involves only two jumps. For the
same reason, we know that odd-order terms also vanish.

Following the same procedure as for the L = 4 case, we
can obtain the expression of the second-order correction to
the ground state for an arbitrary number L of transmons,
for which we compute the averaged observables for n = 2
replicas, given by

S(2)
L/2 = − ln

[
1 − 4λ2

1 + 2(L − 1)λ2

]
≈ 4λ2, (D6)

F (2)
L/2 = 2λ2

1 + 2(L − 1)λ2
≈ 2λ2, (D7)

N (2)
L/2 = L

2
, (D8)

N (2)
L = L. (D9)

Note that S(2)
L/2 and F (2)

L/2 do not depend on the size and scale
similar regarding the perturbation parameter.

Understanding the size-dependent phase

Although we did not study the size-dependent phase by
the replica method we can make reasonable estimations in
this nonphysical case. First, we can expect the size-dependent
phase to appear at (J/�)r�4, for which we must take into
account that they are new states arising at order r in systems of
size L � r that are not present in systems of size L = r − 2,
whose inner product with 〈I| is not zero, but does not have
permutation symmetry. Thus, as the order increases in pertur-
bation theory, new states emerge for larger systems, leading to
higher entropy in ground states. Consequently, at the rth order
in perturbation theory, systems composed of L � r transmons
exhibit identical entropy, being larger than systems consisting
of L = r − 2 transmons.

We can see this more clearly by studying the case of mea-
surements that are projected to n = 1 at each position, whose
entropy is given by

S(2)
L/2(r) = − ln

{
1 + 2[(L − 1) − 2]λ2 +∑r

n=4 f ps
n (L)λn

1 + 2(L − 1)λ2 +∑r
n=4 fn(L)λn

}
,

(D10)

with f ps
n (L) < fn(L). We have computed this quantity explic-

itly up to the second order where in the denominator is the
function f2(L) = 2(L − 1) which accounts for the states that
do not vanish in the inner product with 〈I|φ〉 and in the nu-
merator the function f ps

2 (L) = 2(L − 1) − 4 which accounts
for those states that do not vanish when permuted 〈I|Ĉ(2)

L/2|φ〉.
Note that these results are the same for every system’s size.
The reason is that up to the second-order there can be two
different types of states no matter the size of the system:
the ground state and states produced by hoppings in different
blocks. But at the fourth order, new states appear, some of
them shared by every system size but others that are not
present in L = 2, and those are the states with two hoppings
in different positions in different blocks. We can see this
explicitly (without taking into account all the permutations
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within blocks and hoppings)

O(λ2) L = 2 |11, 11, 11, 11〉,
|02, 02, 11, 11〉, (D11)

L = 4 |1111, 1111, 1111, 1111〉,
|0211, 0211, 1111, 1111〉, (D12)

O(λ4) L = 2 |11, 11, 11, 11〉,
|02, 02, 11, 11〉,
|02, 02, 02, 02〉, (D13)

L = 4 |1111, 1111, 1111, 1111〉,
|0211, 0211, 1111, 1111〉,
|0211, 0211, 0211, 0211〉,
|0202, 0202, 1111, 1111〉, (D14)

where we can see that new states (D14) appear for L � 4. Note
that this new states has an unperturbed energy of E (0)

β = 4,
different to the E (0)

α = 2� of the previous states. This implies
that at the fourth order, the entropy of the system of L � 4
will include new terms in the numerator and denominator of
(D10) such that

f ps
4 (L = 2)

f4(L = 2)
>

f ps
4 (L � 4)

f4(L � 4)
. (D15)

Therefore, it is expected that the entropy for L = 2 will be
smaller than for other system sizes. We can infer inductively
that a similar phenomenon will occur at the sixth order be-
tween L = 4 and L � 6, and so forth. It is important to note
that this analysis pertains to a nonphysical measurement, as
the calculations for feedback measurements become consider-
ably more complex due to the need for a biorthogonal basis.

2. Feedback measurement

In the second case, we consider the feedback measurement
described in the main text. Because of the non-Hermiticity
of ĤM that does not conserve the total number of bosons,
we need to obtain explicitly its full biorthogonal basis as
described in Eqs. (19) and (20). As a proof of concept,
we obtain explicitly the biorthogonal basis for the sim-
plest case consisting of two two-dimensional transmons,
where we set the measurements as P̂fb

1,m = |1〉〈m| and P̂fb
2,m =

|0〉〈m|, i.e., we make projections to n = 1 and n = 0 at
sites � = 1 and � = 2, respectively, in the original cir-
cuit (i.e., l = 1, 3, 5, 7 and l = 2, 4, 6, 8 in the enlarged
space). Since we cannot use the basis of N̂ = ∑8

l n̂l ,
we obtain explicitly the eigenstates and eigenenergies the
Hamiltonian ĤM :∣∣�fb(0)

1

〉 = |1〉|0〉, E (0)
1 = 0, (D16)∣∣�fb(0)

2

〉 = (|0〉 − |1〉)|0〉, E (0)
2 = �, (D17)∣∣�fb(0)

3

〉 = |1〉(|1〉 − |0〉), E (0)
3 = �, (D18)∣∣�fb(0)

4−17

〉 = |1〉|i2 j2k2l2〉, E (0)
4−17 = �, (D19)∣∣�fb(0)

18−31

〉 = |i1 j1k1l1〉|0〉, E (0)
18−31 = �, (D20)∣∣�fb(0)

32

〉 = (|0〉 − |1〉)(|1〉 − |0〉), E (0)
32 = 2�, (D21)

∣∣�fb(0)
33−46

〉 = (|0〉 − |1〉)|i2 j2k2l2〉, E (0)
33−46 = 2� (D22)∣∣�fb(0)

47−60

〉 = |i1 j1k1l1〉(|1〉 − |0〉), E (0)
47−60 = 2�, (D23)∣∣�fb(0)

61−256

〉 = |i1 j1k1l1〉|i2 j2k2l2〉, E (0)
61−256 = 2�, (D24)

and its Hermitian conjugate (ĤM )†

∣∣�fb(0)
1

〉 = (|0〉 + |1〉)(|0〉 + |1〉), ε
(0)
1 = 0, (D25)∣∣�fb(0)

2

〉 = |0〉(|0〉 + |1〉), ε
(0)
2 = �, (D26)∣∣�fb(0)

3

〉 = (|0〉 + |1〉)|1〉, ε
(0)
3 = �, (D27)∣∣�fb(0)

4−17

〉 = (|0〉 + |1〉)|m2n2 p2q2〉, ε
(0)
4−17 = �, (D28)∣∣�fb(0)

18−31

〉 = |m1n1 p1q1〉(|0〉 + |1〉), ε
(0)
18−31 = �, (D29)∣∣�fb(0)

32

〉 = |0〉|1〉, ε
(0)
32 = 2�, (D30)∣∣�fb(0)

33−46

〉 = |0〉|m2n2 p2q2〉, ε
(0)
33−46 = 2�, (D31)∣∣�fb(0)

47−60

〉 = |m1n1 p1q1〉|1〉, ε
(0)
47−60 = 2�, (D32)∣∣�fb(0)

61−256

〉 = |m1n1 p1q1〉|m2n2 p2q2〉, ε
(0)
61−256 = 2�,

(D33)

where the subscript is an index for the basis’ number, the
eigenenergies are the same for both cases (i.e., Em = ε∗

m = εm)
and i�, j�, k�, l�, m�, n�, p�, q� = 0, 1. Once we have the full
biorthogonal unperturbed basis, we use perturbation theory
up to second order (as we did for the simple example of the
nonphysical measurement) to compute the different quantities
for half of the original system; using the same recipe, we can
generalize the biorthogonal basis for a general system size L,
such that

S(2)
L/2 = − ln

[
1 − λ2

1 + 1
2 (L − 1)λ2

]
≈ λ2, (D34)

F (2)
L/2 = 1

2

λ2

1 + 1
2 (L − 1)λ2

≈ λ2

2
, (D35)

N (2)
L = L

2
, (D36)

N (2)
l even =

1
2λ2

1 + 1
2 (L − 1)λ2

≈ 1

2
λ2, (D37)

N (2)
l odd = 1 −

1
2λ2

1 + 1
2 (L − 1)λ2

≈ 1 − 1

2
λ2, (D38)

where λ = J/�. Although not shown in the previous section,
we obtain the same results as in the nonphysical projective
measurement. As we discuss later, this is not expected to hold
to the fourth order or higher, where the nonconservation in
the total boson number will presumably affect the statistics.
Interestingly, up to the second order in λ, the average total
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number of bosons (D36) is constant even using a nonconserv-
ing measurement.

Understanding the nonconservation of the total number of bosons

The relevant aspect of this type of measurement is that
while it does not conserve the total number of bosons, for a
high measurement rate (i.e., deep in the area-law phase), the
steady-state behavior of the average of the ensemble of trajec-
tories has a constant total number of bosons. Therefore, if we
measure the total number of bosons and average the quantity
for a large number of experiments we obtain a constant num-
ber for different values of the measurement probability param-
eter p as long as we are deep in the area-law phase. It is im-
portant to note that this is not a symmetry, which implies that
if we initialize the system with a state with definite quantum
numbers with respect to the number of bosons, the dynamics
always produce states with the same total number of bosons.
This effect in the averaged value is dependent on the set of
single subspace projectors used in the feedback measurement
(i.e., the total number of bosons is N = ∑4L

l=1 αl for the set
of projectors P̂fb

l,m = |αl〉〈m|), regardless of the initial state,
which can even be in a superposition. We can understand this
phenomenon for L = 2 two-dimensional systems by consid-
ering that, up to the second order, starting the system from the
ground state |�fb(0)

1 〉 = |10101010〉 and applying the hopping
term twice, states of the form |�fb(0)

61−256〉 = |0i1 j〉|0k1l〉 may
appear, specifically the states |01011010〉 and |10100101〉,
which are the only ones that contribute to the number of
bosons (besides the ground state). Note, however, that this is
not a general case: the averaged total number of bosons can
change depending on the subsystem dimension and the spatial
pattern of the feedback measurement; the constant effect we
are studying is due to the symmetries we have considered.

Although we do not calculate corrections up to higher or-
ders, we can predict that for orders �4, states with a different
total number of bosons can appear in the dynamics, since at
order λr we need to consider terms like⎡

⎣∑
n �=1

∣∣�fb(0)
n

〉〈
�fb(0)

n

∣∣ĤBH

E (0)
1 − E (0)

n

⎤
⎦

r∣∣�fb(0)
1

〉
. (D39)

In this sense, we can consider, for example, that at the
fourth order, the system can perform four shopping, and
the state |0〉|1〉 ≡ |01010101〉, which is not an eigenstate
of ĤM , appears in the dynamics, which have nonva-
nishing inner products with the eigenstates of (ĤM )†:
|�fb(0)

2 〉, |�fb(0)
3 〉, and |�fb(0)

32 〉 (note that we cannot take
into account the ground state |�fb(0)

1 〉). Considering the
biorthogonal states, at fourth order, the perturbed state
will include |�fb(0)

2 〉 = |00000000〉 − |10101010〉, |�fb(0)
3 〉 =

−|10101010〉 + |11111111〉, and |�fb(0)
32 〉 = −|00000000〉 +

|01010101〉 − |10101010〉 − |11111111〉. The new states
|00000000〉 and |11111111〉 contain a different total num-
ber of bosons. Note that although for a general system, the
trajectory-averaged total number of bosons can now vary,
we can consider a symmetric case where this value remains
constant, as we verified numerically for the case of two-
dimensional systems with a measurement pattern defined by
filling factor N/L = 1/2. In the numerical simulations, we ob-

serve that, for a high measurement probability, only the state
|10〉 exists, where the total number of bosons is constant (N =
1). However, with a small probability, states |00〉, |01〉, and
|11〉 appear, resulting in a nonconstant total number of bosons.

APPENDIX E: NUMERICAL SIMULATION

In this Appendix, we describe the details of the numerical
simulation emphasizing the subtleties of the feedback mea-
surements protocol and how we compute relevant statistics.
The results were obtained using the Julia [93] programming
language. The simulated hybrid system, which represents the
circuit, is built by a series of time steps consisting of a unitary
evolution followed by probabilistic projective measurements
at each site for an initial state |ψ0〉 = |10〉⊗L/2. For each
time step, the system of L transmons is evolved unitarily
under the Hamiltonian of the Eq. (1) for a period of time
dt = 0.02J−1, using exact diagonalization for small systems
and the numerically exact Krylov subspace method [94] for
larger systems. After the unitary evolution, we evaluate in
each site the probability of performing a measurement or not
depending on the measurement probability p = �dt . Note
that the physical relevant parameter in the numerical simu-
lations is p, but this relation is useful for comparing with the
analytical results. We determine the measurements’ results by
evaluating the probabilities based on Born’s rule. Note that for
the feedback measurements, the resulting state is projected to
the predetermined state of each site, which corresponds to the
initial state |α〉 = |ψ0〉. Therefore, these two events define a
time step after which the state needs to be renormalized due
to the nonlinear effect of the measurements. For each set of
parameters, we repeat the simulation several times (104 for
L � 10 and 5 × 103 for L = 12), which we have defined as
iterations. The simulations are executed for a total time of
T = 20J−1 for the array of two-dimensional subsystems and
T = 30J−1 for the higher-dimensional subsystems array. In
each case, these times correspond to the steady state, defined
as the time when the iteration-averaged observables stabilize
across all system sizes and ranges of measured probabilities.

Regarding the circuit-averaged observables in the steady
state T , we differentiate two types: postselected and non-
postselected. It is also important to point out that in the
analytical results, the average is performed over all the tra-
jectories weighted by their probabilities, but in the numerical
simulations, the averaging is performed over iterations of the
circuit, each of them corresponding to a trajectory, which may
appear repeated or not appear at all, for frequent and infre-
quent trajectories, respectively (the incidence, in this case,
represents the weighting). For the postselected quantities, we
evaluate the complete state of the system |ψ i(T )〉, that is, the
pure state that is given generally by a superposition on the
basis of the number of bosons for a particular iteration of
the circuit i. We do this for each iteration and then calculate
the von Neumann entropy and the observables’ fluctuation
defined by the Hermitian operator’s expectation values. For
nonpostselected quantities, we obtain the value of the corre-
sponding observable using Born’s rule on the final state of
each iteration; that is, performing a probabilistic projection
on one of the basis vectors in the number of bosons that
constitutes the final state |ψ̃ i〉. Therefore, the circuit-averaged
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quantities are given by

〈SL/2〉 = − 1

M

M∑
i=1

Tr
(
ρ̂ i(T )[1, L

2 ] ln ρ̂ i(T )[1, L
2 ]

)
, (E1)

〈FL/2〉 = 1

M

M∑
i=1

[〈ψ i(T )|N̂2
[1, L

2 ]|ψ i(T )〉

−〈ψ i(T )|N̂[1, L
2 ]|ψ i(T )〉2

]
, (E2)

〈N〉 = 1

M

M∑
i=1

〈ψ̃ i|N̂A|ψ̃ i〉, (E3)

�NL/2 = 1

M

M∑
i=1

[
〈ψ̃ i|N̂[1, L

2 ]|ψ̃ i〉

−
⎛
⎝M−1

M∑
j=1

〈ψ̃ j |N̂[1, L
2 ]|ψ̃ j〉

⎞
⎠
⎤
⎦

2

, (E4)

where M is the total number of iterations, ρ̂[1, L
2 ] = Tr[ L

2 +1,L]ρ̂,

and |ψ̃ i〉 is obtained for each iteration and type of observable
from the pure state |ψ i(T )〉, after projecting the corresponding
final state at T following the Born’s rule in the subspace of
said observable, in such a way that we thus emulate a real
quantum measurement for the particular observable. For cal-
culating the distance between the distribution of the number of
bosons for all the iterations considered in Eq. (E4) and theo-
retical distributions, we used the simple metric d (obs, theo) =
(1/2)

∑NT
n=0 |obs(n) − theo(n)|. Similar results were obtained

for Kullback-Leibler divergence and Bhattacharyya distance;
data not shown.

For performing the collapse of the curves for the von
Neumann entropy and fluctuation in the number operator
we realized a finite-size scaling analysis. After assigning a
set of values for the parameters {pc, ν, ζ } for the scaling
law L−ζ/ν〈S/F〉 = f [L−1/ν (p − pc)], we quantify the quality
of the collapse following straightforwardly the method de-
rived by Houdayer and Hartmann [82] based on a work of
Kawashima and Ito [95], where we minimize the function

S = 1

N

∑
i, j

(yi j − Yi j )2

dy2
i j + dY 2

i j

, (E5)

where (xi j, yi j, dyi j ) are the data points after scaling, N is the
number of points, and Yi j and dYi j are the estimated position
and standard error of the master curve at xi j . Using standard
in-built functions in MATLAB, we minimize iteratively the
value of Eq. (E5), and the errors for the set of parameters
{pc, ν, ζ } were obtained individually for each parameter b by
max(δbl , δbu) where S(b) + 1 = S(b − δbl ) = S(b + δbu).

All the parameters of the numerical simulations are ex-
pressed in terms of the hopping rate J , which corresponds to
the mean value of a given distribution. Note that, although
we explicitly show the mean value of the on-site energy ω,
it could be ignored by switching to a rotating coordinate
system with Û = e−iωt

∑L
� n̂� since all transmons have the same

mean energy and it does not affect many-body dynamics. Note
also that during hybrid circuit dynamics, the total number of
bosons may change, but it is a conserved quantity during the

unitary evolutions. The interaction strength U arising from an-
harmonicity does not affect two-dimensional systems and for
that reason was omitted from the main text numerical simula-
tions, although it is explicitly included in higher-dimensional
systems from the Appendix.

Arrays of subsystems with higher dimensions

In the main text, we show the numerical simulations of
hybrid circuits implementing different types of measurements
of transmons modeled as two-dimensional systems; that is,
qubits. As described in Sec. II, the dynamics of interacting
transmons can be modeled by the attractive Bose-Hubbard
model where, in principle, each site can host an infinite num-
ber of excitations, constituting an infinite-dimensional system,
although as the number of excitations increases, higher-order
corrections must be considered. However, experimentally the
number of excitations per site is limited to ≈10 [62]. In
this section, we show the results of numerical simulations of
transmons of local dimension L/2 + 1 with standard mea-
surements, where we restrict the dynamics to a particular
sector of the total number of bosons, thus considerably re-
ducing the size of the Hilbert space. However, we do not
implement feedback measurements, since we would need to
consider all sectors, and the total dimension dL becomes quite
large and unmanageable with our numerical methods for the
minimum sizes required to calculate relevant quantities, i.e.,
L = 4, 6, 8, 10.

The numerical results are shown in Fig. 6 for the exper-
imental feasible parameter U/J = 5. We obtain essentially
the same result as in the two-dimensional case of Fig. 4,
although the critical parameters may depend on the value
of U/J . For the chosen value U/J = 5, we obtained the
critical parameters pS,st

c = 0.057 ± 0.007, νS,st = 7.7 ± 0.9,
ζ S,st = 0.6 ± 0.2, and pF,st

c = 0.057 ± 0.013, νF,st = 14 ±
3, ζ F,st = 1.3 ± 0.5, for entanglement entropy and the fluc-
tuation of the number operator, respectively. The dispersion
in the number of bosons and the mean value in the num-
ber of bosons show similar behavior to the two-dimensional
case. However, it is interesting to note that 〈N�′ 〉 ≈ 1/2, even
considering larger dimensions; this phenomenon could be in-
terpreted as the value of U/J is large enough for evolution
to remain in the same boson number manifold than the initial
state i.e., the one in which the bosons are not stacked in the
same location [96].

APPENDIX F: AVERAGE OVER CIRCUIT REALIZATIONS

In this Appendix, we explain in detail the new results
obtained in Sec. III on calculating trajectory-averaged
quantities in the area-law phase by using simple statistical
and combinatorial arguments. As previously discussed,
the observables described by Eq. (B20) are connected to
trajectory-averaged quantities in the proper replica limit.
However, to gain a clearer intuition about the averaging pro-
cess, it is helpful to comprehend each probability distribution
and its corresponding physical significance. First, note that
the average value of an observable 〈Ok〉 has four different
sources of randomness. The first is related to the probability of
performing a measurement p, and it is the critical parameter of
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FIG. 6. Numerical simulations for arrays of subsystems with local dimensions L/2 + 1 using standard measurements for different system
sizes L = 4, 6, 8, 10 using U/J = 5. (a) von Neumann entropy and (b) fluctuations of the number operator in the half of the chain of transmons
averaged over iterations as a function of the measurement probability p. The insets show the finite-size scaling analysis using the ansatz
L−ζ/ν〈S/F〉 = f [L−1/ν (p − pc )], where pc is the critical parameter, ζ and ν are the scaling exponents, and f [x] is an unknown function [82].
(c) Dispersion in the number of bosons of the half of the chain of transmons. (d) Number of bosons in the complete chain of transmons 〈NL〉
(colored dashed lines) and at one single site in the middle of the chain 〈N�′ 〉 (colored solid lines). For computing 〈S〉 and 〈F〉 we considered
postselection of trajectories, while for the computing 〈N〉 and �N we did not take into account any postselection. The results are computed for
104 circuit iterations.

the MIPT, such that it describes the probabilities for different
scenarios; there is a probability pb(1 − p)M−b of performing
b measurements, where M = LT is the maximum number of
possible measurements in the whole circuit space-time, and
0 � b � M. The other three sources of randomness arise from
probability distributions: quantum-mechanical uncertainty for
a superposition state in the last measurement for obtaining
the result of observables, the measurement outcomes of the
measurements performed during the dynamics, and the values
of the parameters of every unitary gate. The first arises from
the inevitable probabilistic nature of performing a particular
measurement of an observable, which will give us the
expectation value for the final state of the circuit. The second
source arises from the probabilistic result of each of the
measurements made during the time evolution, representing
the probability of each trajectory, given by Born’s rule;
therefore, there will be trajectories that are more frequent
than others. The last source of randomness refers to the fact
that each gate parameter can have different values from a
probability distribution. The variation of these values will
lead to the production of different unitary evolution operators.
Consequently, for each set of parameter values, distinct
states will emerge, thereby influencing the probabilities of
measurement outcomes according to Born’s rule.

For experimental purposes, we could think of schemes
of increasing complexity. Let us assume that the circuit has
fixed parameter values and that there are no measurements
during the evolution. If we measure an observable Ô at long
times, and we could repeat the experiment several times, we
would obtain a mean value corresponding to the expectation
value 〈Ô〉 = tr(Ôρ̂ ′) and a fluctuation corresponding to the
uncertainty F = 〈Ô2〉 − 〈Ô〉2

for only one trajectory. If
we include measurements during the time evolution and let
the unitary gates have different values, each time we run the
circuit we obtain a trajectory defined by the outcomes of
every time evolution measurement mi and a set of parameters
for unitary gates θi with an associated expectation value
〈Ô〉mi,θi

and variance Fmi,θi . Due to the randomness in the

measurements and circuit parameters during time evolution,
obtaining experimentally 〈Ô〉mi,θi

and Fmi,θi will require
to perform different experiments maintaining the same
measurement outcomes mi and circuit parameters θi. In this
sense, as we introduced in the main text, we can express the
trajectory-averaged observable as

〈Ok〉 =
M∑

b=0

pb(1 − p)M−b
〈
Ob

k

〉
m,θ

, (F1)

where

〈
Ob

k

〉
m,θ

=
∫

dθi

(M
b )∑
b

db∑
mb

pmb,θi

[
tr
(
Ôρ̂ ′

mb,θi

)]k
, (F2)

where pmb,θi ≡ pθi pmb (θ ) indicating the Born’s rule
dependency on the gate parameters, ( M

b ) = M!/[b!(M − b)!],
b are the arrays comprising all the possible ( M

b ) combinations
of arranging b measurements in the total M = LT positions
of space-time, and Ô can be any operator. All the probability
distributions are normalized in different ways. For the
probability p of performing a measurement at the sites of the
circuit, we have

1 =
M∑

b=0

pb(1 − p)M−b
(M

b )∑
b

≡
M∑

b=0

pb(1 − p)M−b

(
M

b

)

= pM + M pM−1(1 − p) + M(M − 1)

2
pM−2(1 − p)2

+ · · · + p(1 − p)M−1 + (1 − p)M, (F3)

where all the possibilities of performing and not performing
measurements (and in which specific location in space-time)
are represented. Second, we have that for a particular set of
performed measurements b and a set of gate parameters θi the
normalization of the measurement outcomes is

1 =
db∑
m

pmb (θ ). (F4)
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Third, the gate parameters are normalized such that

1 =
∫

dθi pθi . (F5)

As described in the main text in Sec. III B, we are interested in calculating the following quantities related to the number of
bosons under certain regimes:

〈Nk〉 =
M∑

b=0

pb(1 − p)M−b

⎧⎪⎨
⎪⎩

(M
b )∑
b

db∑
m

pmb

[
tr
(
N̂ ρ̂ ′

mb

)]k

⎫⎪⎬
⎪⎭, (F6)

〈F〉 =
M∑

b=0

pb(1 − p)M−b

⎧⎪⎨
⎪⎩

(M
b )∑
b

db∑
m

pmb

[
tr
(
N̂2ρ̂ ′

mb

)− [
tr
(
N̂ ρ̂ ′

mb

)]2]
⎫⎪⎬
⎪⎭, (F7)

�N ≡ 〈(N2)1〉 − 〈N1〉2 =
M∑

b=0

pb(1 − p)M−b

⎧⎪⎨
⎪⎩

(M
b )∑
b

db∑
m

pmb tr
(
N̂2ρ̂ ′

mb

)
⎫⎪⎬
⎪⎭−

⎛
⎜⎝ M∑

b=0

pb(1 − p)M−b

⎧⎪⎨
⎪⎩

(M
b )∑
b

db∑
m

pmb tr
(
N̂ ρ̂ ′

mb

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠

2

.

(F8)

Although the formula in Eq. (F1) is extremely complicated for
calculating trajectory-averaged quantities, we can obtain rele-
vant analytical results in the high measurement regime p ≈ 1,
i.e., deep in the area-law phase (and similarly in the measure-
ment regime under p ≈ 0, i.e., size-dependent phase). In a
first approximation, we only consider the cases in Eq. (F3) for
terms up to O(x2), where x = 1 − p is the probability of not
measuring a single event in space-time. Therefore, we con-
sider the unique possibility of performing M measurements,
the M possibilities of performing M − 1 measurements, and
the M(M − 1)/2 possibilities of performing M − 2 measure-
ments. This implies that we must keep terms scaling as pM ,
pM−1(1 − p), and pM−2(1 − p)2.

The second approximation is related to the state; since we
are going to study a highly measured system, we describe the
unitary evolution for a small dt (i.e., between measurements)
of a product state given by the results of the measurements in
the previous time step, paying attention to how the states are
in Ti and Tf (Fig. 7). Assuming that all measurements were
made just before (T − 1) f with the result β = {β1, . . . , βL},
we know that the state at (T − 1) f is given by the product
state

|ψβ (T − 1) f 〉 = |β1, . . . , βL〉, (F9)

so, expanding the time evolution operator for the Bose-
Hubbard Hamiltonian of Eq. (1)

e− iĤdt
h̄ =

∞∑
n=0

(−i)n

(
Ĥ

h̄

)n

dtn

= Î − i
Ĥ

h̄
dt − 1

2

(
Ĥ

h̄

)2

dt2 + · · · , (F10)

the state at Ti is given by

|ψβ〉 = |β〉 +
dL∑
γ

∞∑
p=1

(−i)pc[p]
γ dt p|γ 〉, (F11)

where c[p]
γ are real and include all the possible prefactors for

every Fock state of the basis. We are interested in calculating
observables Ô for which the Fock are eigenstates, up to a
certain order in dt . Therefore, we first obtain

〈ψβ |Ô|ψβ〉 = f (β ) +
dL∑
γ

∞∑
p,q=1

ip(−i)qc[p]
γ c[q]

γ f (γ )dt pdtq,

〈ψβ |ψβ〉 = 1 +
dL∑
γ

∞∑
p,q=1

ip(−i)qc[p]
γ c[q]

γ dt pdtq, (F12)

where f (γ ) is a function that depends on the Fock states
|γ 〉 = |γ1, γ2, . . . , γL〉. Therefore, the expectation values of

FIG. 7. Diagram followed to study the realizations of the circuit.
(left) Example for a circuit of L = 4 transmons with T = 5 time step
in which M − 2 = LT − 2 = 18 measurements (represented by an
X) were made. (right) Correspondence of the circuit with the states
of the system in different time steps (note that, at every t f , the state
is renormalized).
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the observables up to fourth order in dt is given by

〈ψβ |Ô|ψβ〉
〈ψβ |ψβ〉 = f (β ) + dt2

⎧⎨
⎩

dL∑
γ

∣∣c[1]
γ

∣∣2[ f (γ ) − f (β )]

⎫⎬
⎭

+ dt4

⎧⎨
⎩
⎛
⎝1 −

dL∑
γ

∣∣c[2]
γ

∣∣2
⎞
⎠
⎛
⎝ dL∑

γ

∣∣c[2]
γ

∣∣2[ f (γ ) − f (β )]

⎞
⎠
⎫⎬
⎭− dt4

⎧⎨
⎩2

dL∑
γ

∣∣c[1]
γ

∣∣2∣∣c[3]
γ

∣∣2 f (γ )

⎫⎬
⎭. (F13)

So far, we have shown that for a general system that conserves the total number of excitations, the trajectory-averaged expectation
values of the observables do not depend on the terms of the Hamiltonian for which the Fock states are eigenstates (i.e., the on-site
energy and auto-interaction) up to second order in dt because the summation term cancels. For the following sections, we keep
the terms up to the second order in dt .

1. Standard measurements

Although we are not going to be able to know the Born’s probabilities pmn in Eq. (F7), we can obtain the scaling of 〈FL
2
〉

taking into account that it vanishes for any state for which the first half of the chain can be expressed as a product state. From
all the possible cases representing the different arrangement of M, M − 1, and M − 2 measurements, only the case where there
were no measurements at the sites L/2 and L/2 + 1 at the last time step Tf does not vanish, contributing to the trajectory-average
such that

〈FL/2〉 ≈ x2
(L+NT −1

N )∑
β1+···+βL=NT

pmβ
[(βL/2 + 1)βL/2+1 + βL/2(βL/2+1 + 1)]

(
J

�

)2

, (F14)

where we do not know the probabilities for the different trajectories pmβ
and we have considered that p = �dt . Notice that the

summation is normalized so that
(L+NT −1

NT
)∑

β1+···+βL=NT

pmβ
= 1,

where we have explicitly included that the total number of bosons is conserved, thus limiting the possible results of the
measurements (considering that we have started from an initial state with a defined number of bosons NT ), therefore there
is no contribution of L to the total value but a dependency on the local dimension. We have proved that, for a large probability
of performing measurements [i.e., considering terms up to (1 − p)2], 〈FL/2〉 (and, therefore, also 〈SL/2〉) scales as (J/�)2 and is
independent of the size of the subsystem L/2 and dependent on the local dimension d .

2. Feedback measurements

The problem of not knowing the probabilities associated with each trajectory arising in the case of standard measurements
disappears in the case of feedback measurements, where the measurement outcomes are always the same following a predeter-
mined pattern α = {α1, α2, . . . , αL}. However, since for a feedback measurement, a standard measurement must first be carried
out before the conditional projection to the known states, the study is complicated by still having to take into account all possible
cases, where the total number of bosons can change for different states.

To calculate 〈FL/2〉 we again take advantage of the knowledge that all cases in which arranged measurements produce product
states for the first half vanishes, except for the same single case that for standard measurements. Explicitly, the Born probabilities
and possible states (with the number of bosons in the first half of the chain) for this particular case with probability pM−2(1 − p)2

are

psup = 1 − pN L
2
−1 − pN L

2
+1 − pN L

2
: (F15)

→ |ψsup〉 =
√

1 − ∣∣ε+−
L
2 , L

2 +1

∣∣2dt2 − ∣∣ε−+
L
2 , L

2 +1

∣∣2dt2 − pN L
2
−1 − pN L

2
+1 − pN L

2
|α1, . . . , αL〉

−i
∣∣ε+−

L
2 , L

2 +1

∣∣dt
∣∣α1, . . . , α L

2
+ 1, . . . , αL

〉− i
∣∣ε−+

L
2 , L

2 +1

∣∣dt
∣∣α1, . . . , α L

2
− 1, . . . , αL

〉
, (F16)

pN L
2

=
L
2 −2∑
�=1

|ε+−
�,�+1|2dt2 +

L−1∑
�= L

2 +1

|ε+−
�,�+1|2dt2 +

L
2 −2∑
�=1

|ε−+
�,�+1|2dt2 +

L−1∑
�= L

2 +1

|ε−+
�,�+1|2dt2 : |α1, . . . , αL〉, NL/2, (F17)

pN L
2
−1 = ∣∣ε+−

L
2 −1, L

2

∣∣2dt2 :
∣∣α1, . . . , α L

2
− 1, . . . , αL

〉
, NL/2 − 1, (F18)

pN L
2
+1 = ∣∣ε−+

L
2 −1, L

2

∣∣2dt2 :
∣∣α1, . . . , α L

2
+ 1, . . . , αL

〉
, NL/2 + 1, (F19)
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where ε+−
�,�+1 and ε−+

�,�+1 stand for J
√

(α� + 1)α�+1 and J
√

α�(α�+1 + 1), respectively; and 〈ψsup|ψsup〉 = psup. The states with a
different number of bosons [Eqs. (F18) and (F19)] are product states, therefore they will contribute to the fluctuation by lowering
the Born’s probability of the superposition state in Eq. (F16), such that the trajectory-averaged fluctuation is given by

〈F〉 ≈ x2 psup
[(

α L
2
+ 1

)
α L

2 +1 + α L
2

(
α L

2 +1 + 1
)]( J

�

)2

≈ x2[(α L
2
+ 1

)
α L

2 +1 + α L
2

(
α L

2 +1 + 1
)]( J

�

)2

, (F20)

where in the last step we have considered that psup = 1 + O[(J/�)4].
Calculating �NL/2 up to the second order in (1 − p) is a challenging task, but obtaining it up to the first order is

straightforward. Here, we can observe significant differences compared with the fluctuation. For the zeroth order, we have a
product state |α1, . . . , αL〉 with probability one, but we need to split the M possibilities of performing M − 1 measurements in
four different groups:

#L(T − 1), pNL/2 → 1 : |α1, . . . , αL〉, NL/2, (F21)

#L/2, pNL/2 = |ε+−/−+
�,�+1 |2dt2 → 1 : |α1, . . . , αL〉, NL/2, (F22)

#1, pNL/2 = 1 − pNL/2+1 − pNL/2−1 : |α1, . . . , αL〉, NL/2, (F23)

pNL/2+1 = |ε+−
1,2 |2dt2 : |α1 + 1, . . . , αL〉, NL/2 + 1, (F24)

pNL/2−1 = |ε−+
1,2 |2dt2 : |α1 − 1, . . . , αL〉, NL/2 − 1, (F25)

#L/2 − 1, pNL/2 = 1 − pNL/2+1 − pNL/2−1 : |α1, . . . , αL〉, NL/2, (F26){
� ∈

[
2,

L

2

]}
pNL/2+1 = (|ε−+

�−1,�|2 + |ε+−
�,�+1|2)dt2 : |α1, . . . , α�−1, α� + 1, α�+1, . . . , αL〉, NL/2 + 1, (F27)

pNL/2−1 = (|ε+−
�−1,�|2 + |ε−+

�,�+1|2)dt2 : |α1, . . . , α�−1, α� − 1, α�+1, . . . , αL〉, NL/2 − 1, (F28)

where # refers to the number of terms. Using Eq. (F8), we obtain

〈
N2

L
2

〉 = pMN2
L
2

+ pM−1(1 − p)L(T − 1)N2
L
2
+ pM−1(1 − p)

L

2
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L
2
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[
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L
2
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1,2 |2dt2
(
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2
+ 1
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N L

2
− 1

)2]
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2
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2
+ 1
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2
+ 1
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, (F29)

〈
N L

2

〉 = pMN L
2
+ pM−1(1 − p)L(T − 1)N L

2
+ pM−1(1 − p)

L

2
N L

2
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[
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1,2 |2 + |ε+−
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2
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�−1,�|2 + |ε−+
�,�+1|2)dt2)N L
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+ (|ε−+
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(
N L

2
+ 1
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, (F30)

such that the dispersion is given by

�NL/2 = 〈
N2

L
2

〉− 〈
N L

2

〉2 ≈ x

⎡
⎣|ε+−

1,2 |2 + |ε−+
1,2 |2 +

L/2∑
�=2

(|ε−+
�−1,�|2 + |ε+−

�,�+1|2 + |ε+−
�−1,�|2 + |ε−+

�,�+1|2)

⎤
⎦( J

�

)2

. (F31)

However, as it is easily seen in Eq. (F31), this effect is due to the nonconservation of the total number of bosons. If we separate
the final results by the total number of bosons (in this case splitting the results into three groups of Nα , Nα + 1, and Nα − 1) we
recover the same result as the fluctuation for the total number of bosons NT = Nα = ∑L

�=1 α�. We can calculate this quantity up
to the second order in (1 − p), taking into account the possible distributions of measurements in the same way as we did with
the standard measurement. Thus, all cases produce product states except one whose states follow the probabilities described
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in Eqs. (F16) and (F17), although discarding the probabilities from Eqs. (F19) and (F18). Calculating the trajectory-averaged
observables for the particular sector Nα we have

〈
N2

L/2

〉Nα = pMN2
L
2
+ M pM−1(1 − p)N2

L
2
+
[

M(M − 1)

2
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]
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{(
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2

)
× [
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L
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2 +1
|2 + |ε−+

L
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2 +1
|2)dt2 + 2N L

2
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L
2 , L

2 +1
|2 − |ε−+

L
2 , L

2 +1
|2)dt2

]+ pN L
2
N2

L
2

}
, (F32)

〈NL/2〉Nα = pMN L
2
+ M pM−1(1 − p)N L

2
+
[

M(M − 1)

2
− 1

]
pM−2(1 − p)2N L

2

+ pM−2(1 − p)2
{(

1 − pN L
2

)[
NL/2 + (∣∣ε+−

L
2 , L

2 +1

∣∣2 − ∣∣ε−+
L
2 , L

2 +1

∣∣2)dt2
]+ pN L

2
N L

2

}
, (F33)

such that the dispersion of the number of bosons in the Nα sector in half of the chain is given by

�NNα

L/2 = 〈
N2

L/2

〉Nα − (〈NL/2〉Nα )2

≈ x2
[(

1 − pN L
2

)(∣∣ε+−
L
2 , L

2 +1

∣∣2 + ∣∣ε−+
L
2 , L

2 +1

∣∣2)]( J

�

)2

≈ x2[(αL/2 + 1)αL/2+1 + αL/2(αL/2+1 + 1)]

(
J

�

)2

. (F34)

Note that, in these approximations, the dispersion of Eq. (F34) and the fluctuation of Eq. (F20) are equivalent. However, it is
worth noting that, for higher orders, the dispersion may overestimate the size-dependent phase since 1 − pNL/2 > psup. For an
experimental implementation, we should measure the number of bosons at the L sites, separate the results into different groups
depending on the total number of bosons, and then calculate the dispersion for half of the chain. Note that for comparing these re-
sults with the replica method, we should take the limit dt → 0, such that limdt→0 x2 = limdt→0(1 − �dt )2 = 1. In this sense, the
results obtained from the replica method are more general; however, in this case, the quantity has a clear physical interpretation.
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