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Non-Hermitian superfluid–Mott-insulator transition in the one-dimensional zigzag bosonic chains
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We investigated the behavior of non-Hermitian bosonic gases with Hubbard interactions in one-dimensional
(1D) zigzag optical lattices through the calculation of dynamic response functions. Our findings showed the
existence of a non-Hermitian quantum phase transition that is dependent on the pseudo-Hermitian symmetry. The
system tends to exhibit a superfluid phase when subjected to weak dissipation. While under strong dissipation,
the pseudo-Hermitian symmetry of the system is partially broken, leading to a transition toward a normal
liquid phase. As the dissipation increases beyond the critical threshold, the pseudo-Hermitian symmetry is
completely broken, resulting in a Mott-insulator phase. We propose an experimental setup using 1D zigzag
optical lattices containing two-electron atoms to realize this system. In this paper, we emphasize the key role of
non-Hermiticity in quantum phase transitions and offer a theoretical framework as well as experimental methods
for understanding the behavior of dissipative quantum systems, implicating significant development of quantum
devices and technologies.
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I. INTRODUCTION

The superfluid (SF)–Mott-insulator (MI) phase transition
in strongly correlated gases has been widely studied [1–4].
In recent years, zigzag bosonic chains have been mainly re-
searched for strongly correlated quantum phase transitions
and Majorana fermions [5]. This system contains various MI
phases and gapless SF phases, forming a rich phase diagram
[6–8]. At the same time, the system also helps us to under-
stand magnetic models and can be experimentally verified by
implementing ultracold atoms in optical lattices [9–12]. In
zigzag bosonic chains, the paired Bose-Hubbard model can be
realized. Unlike the Bose-Hubbard model, the paired Hubbard
model introduces a pairing contribution, which creates and
annihilates boson pairs on adjacent lattice sites. This pairing
contribution may lead to the appearance of the Z2 phase and
topological properties [6,13,14]. Therefore, this model pro-
vides rich resources for physical intuition and the connection
with magnetic models [15].

In recent years, significant advancements have been made
in the study of non-Hermitian systems [16]. Notably, key
characteristics of non-Hermitian phase transitions in specific
SF systems have been elucidated [17]. Concurrently, other
research has delved into the conditions under which period-
ically driven quantum systems manifest a stable subharmonic
response in the presence of dissipation [18]. Furthermore, in
the domain of atomic and optical systems, an experimental
realization of a non-Hermitian spin-orbit-coupled Fermionic
system has been successfully achieved [19].

However, research on one-dimensional (1D) zigzag
bosonic chains faces a number of challenges in non-Hermitian
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systems. Firstly, the eigenvalues and eigenvectors of the sys-
tem no longer have real properties, making the determination
of phase transitions more complex [20–22]. Secondly, the
properties of the SF and MI phases of the system may also
change. For example, the coherence of the SF phase may
be lost, while the localization of the MI phase may become
more pronounced [16,23]. Finally, in terms of experiments,
there are also challenges in the implementation and control
of the 1D zigzag bosonic chains in non-Hermitian systems.
For instance, different methods are required for the prepa-
ration and control of this model due to the nonreal energy
in non-Hermitian systems [24]. Additionally, dissipation in
non-Hermitian systems may have an impact on experimental
results, necessitating more sophisticated experimental design
and control.

In this paper, we propose and investigate non-Hermitian
1D zigzag bosonic chains in ultracold atoms. This paper was
inspired by a recent series of non-Hermitian transport discov-
eries [20–22,25–30]. We utilized the theory of non-Hermitian
linear response to calculate the Green’s function of our system
at zero temperature [31,32]. By applying Kubo’s formula,
we analyzed the evolution and phase transition of the non-
Hermitian system under external perturbation and discovered
that the non-Hermitian phase transition is accompanied by
symmetry breaking. We found that the SF-MI phase transition
can be effectively controlled by dissipation. These findings
provide important insights for understanding phase transitions
and critical phenomena in non-Hermitian many-body systems.

II. NON-HERMITIAN ZIGZAG BOSONIC CHAINS

Our experimental setup consists of two-level bosons with
internal states |g〉 and |e〉 situated in a 1D zigzag optical
lattice. A typical lattice scheme is illustrated in Fig. 1(a) for
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FIG. 1. Implementation of non-Hermitian paired Bose-Hubbard
model in the zigzag optical lattices. A stable (dissipative) optical
lattice is applied to the ground (excited) state |g〉 (|e〉). w is the
hopping term for the |g〉 chain, and the interchain interaction V
can induce the pair hopping via an energy-conserving process. The
on-site interaction strength is U (Ur ) for the |g〉 (|e〉) chain. A running
wave parallel to an optical lattice couples |g〉 to |e〉, which undergoes
rapid on-site loss, giving rise to the non-Hermitian pair-hopping
process.

174Yb, where the two levels are encoded in the atomic states
1S0 = |g〉 and 3P0 = |e〉. Utilizing specific laser wavelength
λL = 1120 nm of the optical lattice, for which the polariza-
tions of |g〉 and |e〉 are opposite [33,34], we can generate
internal-state-dependent potentials, and the potential minima
for the |g〉 chain locate in the middles of each of those for the
|e〉 chain. The excited state is assumed to be unstable with a
loss rate, and the chain loaded with |e〉 is treated as a reservoir
chain for concentrating on the |g〉 chain of interest, and it
can be described by the non-Hermitian paired Bose-Hubbard
Hamiltonian:

H = −
∑
〈i, j〉

(wb†
i b j + H.c.) + V b†

i b†
jbi j,Rbi j,R

+
∑

i

[
U

2
ni(ni − 1) − μ0ni

]
. (1)

Here, bi(b
†
i ) is the annihilation (creation) operator for atoms

in the |g〉 chain at site i with density operator ni = b†
i bi, and

bi j,R and bi j,R are for atoms in the reservoir chain at the site
between ground chain site i and j. Here, w is the hopping
magnitude, and U is the on-site interaction strength for the
|g〉 chain. Also, μ0 is the tunable chemical potential offset
between two chains, and the chemical potential of reser-
voir chain is shifted to zero. The pair hopping is introduced
by an energy-conserving process mediated by interchain
interaction V .

The basic idea behind the atomic implementation of pair-
ing terms can be engineered by applying a laser beam resonant
to the energy difference, which offsets the interaction energy
Ur of two bosons on the reservoir chain and the chemical
potential offset μ0 between the chains. Thus, single-particle
interchain tunneling is suppressed, and resonant pair tunneling
to or from a single site on the reservoir chain dominates,
contributing a nonnegligible quartic bosonic process and ef-
fectively giving a pairing term on the |g〉 chain. By employing
the mean-field approach to treat the interaction terms, we can
obtain the order parameters �i j,1 = V 〈bi j,Rbi j,R〉 ≈ �1 and
�i j,2 = V 〈b†

i j,Rb†
i j,R〉 ≈ �2. Since the effective term depends

on the expectation value of the pair annihilation or creation

process on the reservoir chain with an on-site loss rate, the
pairing parameters will be imbalanced, and we define them
as unequal real parameters which can be obtained by U (1)
transformation.

In the strongly interacting limit, the Hilbert space of
our system can be restricted to the number-basis states |n0〉
or |n0 + 1〉 at each sites. Such a hard-core bosonic model
can be transformed into a magnetic model using the op-
erator representation s = 1

2 , |n0 + 1〉 = | ↑〉, |n0〉 = | ↓〉 by
defining b†

i b j → (n0 + 1)s+
i s−

j , n → n0 + sz + 1
2 . Using de-

generate perturbation theory to second order of w/U , the
transverse field XY model can be derived, with complex
anisotropic spin-exchange integrals Jx and Jy, and Zee-
man magnetic field h, see the Appendixes [6]. Then it
can be transformed into the quasifermionic effective Ki-
taev model (EKM) by a Jordan-Wigner transformation s+

i =
c†

i exp(−iπ
∑

j<i c†
j c j ), see the Appendixes, in the t/U →

0 limit, i.e., H =∑〈i, j〉 −tc†
i c j + H.c. + �c†

i c†
j + γ cic j +∑

i μc†
i ci. Here, t = (n0 + 1)w is the nearest-neighbor hop-

ping amplitude, � = (n0 + 1)�1 and γ = (n0 + 1)�2 denote
the strength of pair parameters between the nearest-neighbor
sites, and μ is the on-site renormalized chemical potential.
Although the SF order parameters in this case are complex,
they can always be transformed into real values through a
unitary transformation, see the Appendixes. In the following,
we calculate the linear response of the EKM to investigate the
physical properties of our system near the MI regime.

III. PSEUDO-HERMITIAN SYMMETRY

Under periodic boundary conditions, the PT symmetry-
breaking Hamiltonian becomes H (k) = ξ (k)σz/2 + (� +
γ )σx/2 + i(� − γ )σy/2, with ξ (k) = μ − 2t cos k, and σx,y,z

are Pauli matrices on a unit-cell basis. However, in the regime
where the energy spectrum is real, the Hamiltonian pre-
serves pseudo-Hermitian symmetry [35]. The eigenvectors
|u+〉 and |u−〉 correspond to the two bands E±(k) = ±ε(k),
where ε(k) =

√
ξ (k)2/4 + �γ (see Fig. 2). The η-pseudo-

Hermitian symmetry of the system, where η = η+, has been
extensively studied in previous works [21,35–38]. For energy
values satisfying ε(k)2 > 0, the metric operator η+ is defined
by η−1

+ = |u+〉〈u+| + |u−〉〈u−| [35]. Upon substituting these
eigenvectors into the aforementioned formula and simplify-
ing, we obtain the explicit expression for the metric operator
η+, whose inverse is given as

η−1
+ =

⎡
⎣ (ξ 2(k)+2�2+2�γ )

ξ 2(k)+(�+γ )2
ξ (k)(γ−�)

ξ 2(k)+(�+γ )2

ξ (k)(γ−�)
ξ 2(k)+(�+γ )2

ξ 2(k)+2γ 2+2γ�

ξ 2(k)+(�+γ )2

⎤
⎦, (2)

where the pseudosymmetry matrix satisfies the relation
η+Hη−1

+ = H†, and its determinant can be expressed as

det(η+) = ξ 2(k)+(�+γ )2

ξ 2(k)+4�γ
. Since the energy spectrum of the sys-

tem is real, i.e., when the square of the energy satisfies ξ 2(k) +
4�γ > 0, it follows det(η+) > 0. This property allows for the
well-defined nature of the η+ inner product [36]. Specifically,
the η+ inner product can be expressed as 〈ψ |φ〉+ = 〈ψ |η+|φ〉,
where the set of states {|φ〉} form a Hilbert space H equipped
with the metric η+ [39].
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FIG. 2. (a) and (b) Energy spectrum diagram in k space with
γ > 0 in (a) and γ < 0 in (b). The full line denotes the real part of the
energy, and the dashed line denotes the imaginary part of the energy.
The fully real energy spectra in (a) imply there is a pseudo-Hermitian
symmetry when γ > 0, while that pseudo-Hermitian symmetry is
broken when γ < 0 in (b). Other parameters are set as t = 1,

� = 0.5, μ = 0.7. (c) and (d) Energy spectrum diagram in real
space as a function of γ . As γ decreases, purely imaginary eigen-
values appear, indicating a transition of the system from complete
pseudo-Hermitian symmetry to partial pseudo-Hermitian symmetry
breaking.

The Hamiltonian in the presence of a gap exhibits a
pseudo-Hermitian symmetric phase for �γ > 0 due to the
invariance of eigenvectors under the pseudo-Hermitian sym-
metry operator ηH†(k)η−1 = H (k) and the existence of two
real energy bands in the spectrum [40]. The spectrum be-
comes gapless with a linear dispersion ε(k) = t sin k0|k ±
k0| at γ� = 0, where k0 denotes an energy gapless point
(−kEP , kEP ). An exceptional point (EP) is marked at k =
k0, where biorthogonal Hilbert spaces lose their complete-
ness. In the region of real eigenvalues, the system is
in a pseudo-Hermitian symmetry phase if cos k < (μ −√−4�γ )/2 or cos k > (μ + √−4�γ )/2t , while it is in
a pseudo-Hermitian symmetry broken phase with conju-
gate pairs of imaginary eigenvalues if (u − √−4�γ )/2t <

cos k < (μ + √−4�γ )/2t for �γ < 0. The regions with real
spectra are separated by EPs occurring at ε(k0) = 0 (Fig. 2).

IV. QUANTUM TRANSPORT

On the non-Hermitian physics, the response function
does not possess time-translation invariance owing to the
varying density matrix ρ(t ) at various moments, which may
exhibit a nonunitary evolution even in the absence of external
perturbations. To address this issue, Sticlet et al. [32] and Pan
et al. [31] have introduced a generalized response function
for non-Hermitian systems, given by χA,B(t, t ′) = −iθ (t −
t ′)tr{[A(τ ), B] − 〈A(t )〉0[exp(iH†

0 τ ) exp(−iH0), B] ρ0(t ′ )
trρ0(t ) }.

Herein, [A, B] denotes the so-called generalized commutator
defined as [A, B] = AB − B†A. Also, τ = t − t ′ represents
the time interval between the initial and final states, and

ρ0 signifies the density matrix of the unperturbed system
Hamiltonian H0, which evolves with time. The formulation is
obtained using the right eigenvectors of H0.

In general, non-Hermitian dynamics may exhibit nonuni-
tary evolution, and the density matrix of the system is not
necessarily fixed at its initial value [ρ(t ) 
= ρ0]. Nonetheless,
certain physical systems possess pseudo-Hermitian symmetry,
which causes the non-Hermitian density matrix to remain un-
changed at its initial value, see the Appendixes. For instance,
in the pseudosymmetric phase of our system, the density ma-
trix becomes independent of time.

In the presence of an external potential Ṽ (t ), the pseudo-
Hermitian model exhibits a real eigenspectrum. The influence
of an external field on a neutral atomic system can be charac-
terized by the particle current density operator j = −δH/δṼ .
Despite the non-Hermitian nature of the Hamiltonian, the
particle current operator remains Hermitian. In this scenario,
which can be regarded as a time-independent perturbation, the
response function is given by

χ (τ ) =
∑
k∈PS

iθ (τ )〈[ j(k, τ ), j(k, 0)]〉0

−〈 j(k, 0)〉0〈[exp(iH†
0 τ )

× exp(−iH0τ ), j(k, 0)]〉0, (3)

where the current operator j is defined as j =
− 1

2

∑
k ∂ξ (k)/∂kσz. Herein, the sum over k can only

be evaluated in the real spectrum, and the thermal
expectation value is defined by 〈 j〉0 = tr(ρ0 j)/tr(ρ0).
The response function assumes a nonzero value solely in the
pseudo-Hermitian symmetry phase, while remaining zero in
the broken pseudo-Hermitian symmetry phase. This result
follows from an exact cancellation between the generalized
commutator contribution to the response [ j(k, τ ), j(k, 0)]
and the norm corrections, see the Appendixes. At zero
temperature, the system exhibits a half-filled Majorana zero
mode [14].

For generic real pairing order parameters, both the gener-
alized commutator and the norm correction terms contribute
to χ (k, τ ), which can be expressed as (see the Appendixes)

χ (k, τ ) = θ (τ ) sin2 k sin(2ε(k)τ )A[ε(k), ξ (k)],

A[ε(k), ξ (k)] = 128t2γ 2(2ε − ξ )2

{4γ 2 + [2ε(k) − ξ (k)]2}2
. (4)

Notably, the Hamiltonian H (γ = −�) = ξ (k)/2σz +
i�σy implies that [ j(k), H] = 0, thereby rendering the current
operator time independent. As a result, the first contribution to
χ (k, τ ) in Eq. (3), involving the commutator [ j(k, τ ), j(k)] =
0, is discarded. However, the second contribution cannot be
ignored. This effect is entirely non-Hermitian, a feature absent
from Hermitian systems.

V. SF VISCOSITY

The time-dependent response function χ (τ ) is obtained by
summation over all momentum states [Fig. 3(a)]. Our findings
show that, in the pseudo-Hermitian symmetry phase, the dis-
sipation parameter γ is positive, and χ (τ ) exhibits damped
oscillation with slow decay, while in the pseudo-Hermitian
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FIG. 3. (a) The spatiotemporal evolution of the response function
χ (τ ) is shown, where τ represents time and γ denotes the dissipa-
tion parameter. (b) The numerical solution of the viscosity of the
one-dimensional non-Hermitian zigzag bosonic chains in the fre-
quency domain is presented for varying levels of dissipation strength.
In the case of weak dissipation 0 < γ < �, the viscosity vanishes in
the low-frequency limit. In contrast, for strong dissipation γ < 0,
the viscosity in the low-frequency regime remains nonzero. The
numerical parameters for (a) and (b) are set as t = 1, � = 0.5, and
μ = 0.7.

symmetry broken phase, the γ is negative, and the response
function decays exponentially. The response in frequency
space χ (ω) is obtained by Fourier transforming Eq. (3) and
summing over momenta, i.e., χ (ω) = ∫k∈PS χ (k, ω), where
η = 0+. The real part of the viscosity is given by the imag-
inary part of the response function, i.e., 1/η′(ω) = χ ′′(ω)/ω,
where χ ′′(ω) = [χ (ω) − χ (−ω)]/2 [41]. After lengthy calcu-
lation, the real-part function of the viscosity can be expressed,
see the Appendixes. The viscosity curves of the EKM to an
external potential are shown in Fig. 3(b).

The effects of dissipation on the viscosity response can
be explained by the interplay between the SF and dissipation
[42–44]. In the limit of weak dissipation (0 < γ/� < 1), SFs
dominate, and the system retains its energy gap. When the
frequency of the external potential exceeds the energy gap,
Cooper pairs are destroyed, causing SFs to be unstable under
high-frequency external potential. In the case of strong dissi-
pation (γ /� � 0), the system is governed by the continuous
quantum Zeno effect (QZE) [45–49], suppressing neighboring
tunneling, leading to particle localization, and coherence of
Cooper pairs is suppressed by dissipation, ultimately destroy-
ing SF. When the system resides between these two scenarios,
the Cooper pairing is entirely disrupted, yet the localization
induced by the QZE is insufficient to form an insulator. Under
these circumstances, the system is more inclined to form a
normal fluid phase.

At the critical point γ = 0, the system viscosity diverges,
indicating a transition from a SF phase to a normal liquid
(NL) phase. In this case, the energy spectrum becomes a linear
dispersion relation ε(k) = |ξ (k)|/2  v|k − k0| (see Fig. 2)
near the EPs k0, where v = ∂ε(k)/∂k = t sin k0sgn(k − k0)
represents the group velocity. The Hamiltonian can be ex-
pressed as

H (k) =
(

v|k − k0| �

−v|k − k0|
)

. (5)

There are only two EPs. At EPs, the Hamiltonian eigenvec-
tors no longer constitute a complete Hilbert space, and there
is only one eigenvector |+〉 = (1, 0)T . The particle current
density is expressed as j = v〈+|σz|−〉 = t sin k0sgn(k − k0).

(a) (b)

FIG. 4. (a) Phase diagram of the system parameterized by dissi-
pation strength γ and chemical potential μ. As γ increases below
zero, the system undergoes a transition from the Mott-insulator (MI)
phase to the normal liquid (NL) phase. When γ exceeds zero, the sys-
tem undergoes a transition from the NL phase to the superfluid (SF)
phase. (b) Phase diagram of the system parameterized by dissipation
strength γ and tunneling t . When γ > 0, the SF phase appears, while
when γ < 0, the NL phase appears. When γ continues decreasing,
the positive pseudo-Hermitian symmetry is completely broken, and
the system turns into the MI phase. The numerical parameters for
(a) and (b) are set as t = 1, � = 0.5, and μ = 0.7.

Thus, in the case of |k| > |kEP |, the particle current density
is j = t sin kEP , while in the case of |k| < |kEP |, the particle
current density is j = t sin kEP . In momentum space, currents
in different regions cancel each other out.

In the non-Hermitian zigzag bosonic chains, when the dis-
sipation strength is sufficiently large, the quasifermions are
bound to the protocell due to the continuous QZE. Based
on our findings, we depict phase diagrams of our system in
Fig. 4. The purple region denotes the system remaining in
the SF phase under weak dissipation conditions. The green
region represents the SF phase being destroyed and replaced
by a NL phase under strong dissipation. In the red region, the
system has no real energy spectrum and no pseudo-Hermitian
symmetry, and the system enters into the MI phase.

VI. EXPERIMENTAL REALIZATION

Returning to a realistic experiment with concrete param-
eters, we choose lattice trap potential V0 = 5ER, with ER =
h2/(2mλ2

L ) ≈ 0.914 kHz being the recoil energy as the energy
unit. The intrachain hopping amplitude can be determined
as t ≈ 0.0192ER ≈ 17.55 Hz. Using the standard technique
of Feshbach resonance, we can tune the bare interaction
strength g = −2.0ER, which leads to the Hubbard interaction
strength U ≈ −8.14ER ≈ 7.44 kHz, satisfying the limit of
U � t [50–52]. On the other hand, the interaction strength
Ur for the reservoir chain can also be artificially tuned. We
can choose a fixed chemical potential offset μ0 between the
chains and apply a running laser with frequency matching the
energy difference Ur − μ0. This interaction-induced resonant
tunneling has been implemented in experiments to investigate
interacting dipoles [53,54]. At last, the imbalanced pairing
parameters are induced by applying an additional laser with
wavelength λ = 1285 nm to couple 3P0 to 1P1 resonantly, and
the complex part of the pairing term can be tuned by the loss
rate of excited state |e〉 [55–57]. The dynamical displacement
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of atoms can be measured by single-site-resolved quantum gas
microscopy [58], and the transport response can be revealed
by spectroscopic probes [50,59].

VII. DISCUSSION

In summary, we have investigated the non-Hermitian SF-
MI transition of zigzag bosonic chains with strong Hubbard
interaction. In this paper, we have revealed that the quantum
phase transition can be described by the transport behavior
of 1D non-Hermitian zigzag bosonic chains under an al-
ternating external potential. Our non-Hermitian systems are
constructed from dissipative open systems, and the dissipation
strength plays a crucial role in determining the impact of the
non-Hermitian response function. Specifically, in the weak
dissipation limit, the system retains its energy gap, with the
system approaching the SF phase, whereas in the strong dissi-
pation limit, with the QZE suppressing neighboring tunneling,
the system tends toward the NL phase. As the dissipation
increases further, Cooper pairs of quasifermions in the system
decomposed, leading to a NL-MI phase transition. The calcu-
lation of the non-Hermitian Green’s function has revealed that
the viscosity of our system is contingent upon the emergence
of pseudosymmetries, which is an unconventional quan-
tum phase transition characteristic of non-Hermitian zigzag
bosonic chains. Notably, these phase transitions are accompa-
nied by the appearance and disappearance of EPs. These char-
acteristics can be experimentally tested, and future work can
further extend 1D zigzag bosonic chains to higher dimension.
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APPENDIX A: NON-HERMITIAN
PAIRED-BOSE-HUBBARD MODEL

Considering the two-body loss in the optical lattice, the
non-Hermitian paired-Bose-Hubbard model (NHHM) Hamil-
tonian obtained can be written as [16,60]

H = −
∑
i, j

(wb†
i b j + H.c. + �1b†

i b†
j + �2b jbi )

+
∑

i

[
U

2
ni(ni − 1) − μni

]
, (A1)

where U is the repulsion interaction, w is the hopping
amplitude from site j to i, μ is the chemical potential,
and it is worth noting that t,U,�1,2 ∈ R. In the situ-
ation of a strong coupling limit of the Hubbard model
(U � w), this is then a model of hard-core bosons with
an infinite on-site repulsion energy. The only states with
a finite energy are those with |n0〉 or |n0 + 1〉 on every
site of the lattice. There are only two MIs with n = n0 or
n = n0 + 1 permitted. The hard-core paired Bose-Hubbard
model can also be written as a magnet model (s = 1

2 )

by taking transformation |n0 + 1〉 = |↑〉, |n0〉 = |↓〉, b†
i b j =

(n0 + 1)s+
i s−

j , and n = n0 + 1
2 + sz [61]. Thus, the transverse

field non-Hermitian XY model can be derived by applying
degenerate perturbation theory to the second order of t̃/U [6]:

H =
∑
〈i, j〉

[
Jxsx

i sx
j + Jysy

i sy
j − iJxy

(
sx

i sy
j + sy

i sx
j

)]− h
∑

i

sz
i ,

(A2)

where Jx = −(n0 + 1)(2w + �1 + �2), Jy = −(n0 +
1)(2w − �1 − �2) is the anisotropic spin-exchange
integral, Jxy = 2(�1 − �2) is the non-Hermitian term,
and h = μ − Un0 is the Zeeman magnetic field.

The non-Hermitian XY model possesses pseudo-Hermitian
symmetry η =∏i(−1)ni , H† = ηHη−1, which ensures the
possibility of a purely real energy spectrum. The transverse
field spin chain can be reformed to the fermionic Kitaev model
by Jordan-Wigner transformation s+

i = c†
i exp(iπ

∑
j<i c†

j c j )

and s−
i = exp(−iπ

∑
j<i c†

j c j )ci. In this way, the non-
Hermitian Hubbard interaction is transformed into the Kitaev
model in the t/U → 0 limit. By calculating the linear re-
sponse of the Kitaev model, the physical properties of the
NHHM near the MI phase can be obtained by

H =
∑
〈i, j〉

(−tc†
i c j + H.c. + �c†

i c†
j + γ cic j ) +

∑
i

μc†
i ci,

(A3)

where t = (n0 + 1)w is the hopping amplitude between the
nearest-neighbor site, � = (n0 + 1)�1 and γ = (n0 + 1)�2

denote the strength of the pair parameters between the nearest-
neighbor sites, and μ is on-site chemical potential.

APPENDIX B: U(1) TRANSFORMATION
AND APPROXIMATE

We considered the case where U � |�| and made
an approximation to transform into an equivalent bosonic
representation.

The Hamiltonian of the bosonic zigzag chain can be written
as

H =
∑

i

ψ†HBdGψ, (B1)

HBdG = σx ⊗ H0, (B2)

where ψ† = (b†
i bi b†

i+1 bi+1 ), H0 = [
w �

� w
].

We decompose H0 into two parts, where H0 = H1 + H2

and H1 = ( w Re�
Re� w ), H2 = ( 0 iIm�

iIm� 0 ). According to
the method of realizing complex matrices found in the
article by Ikramov [62], we can further perform a unitary
transformation:

W †H2W =
[

w Im�

−Im� w

]
, (B3)

where W = exp[iπ/2( 1
2 − σn)] and n̂ = (

√
2/2,

√
2/2). At

the same time, we can find that

W †H2W = exp

[
i
π

2

(
1

2
− σn

)]
H2 exp

[
−i

π

2

(
1

2
− σn

)]

= U †H2U, (B4)
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where U = exp(−i π
2 σn). Using the Baker-Campbell-

Hausdorff formula:

eABe−A = B + [A, B] + 1

2!
[A, [A, B]] + · · · , (B5)

we can calculate to obtain

W †H2W = H2 − iIm�

√
2π

2
σz + iIm�

π2

4
. (B6)

In the problem we are interested in, we are studying the
dynamic response in the large U limit. This means that
Im�/U → 0, so in this specific problem, we used the
approximation H2 ∼ W †H2W .

Under this approximation, the original Hamiltonian can be
transformed into an equivalent asymmetric pairing Hubbard
model:

H = −
∑
i, j

(wb†
i b j + H.c. + �1b†

i b†
j + �2b jbi )

+
∑

i

[
U

2
ni(ni − 1) − μni

]
, (B7)

where �1 = Re� + Im�, �2 = Re� − Im�, and ni = b†
i bi.

APPENDIX C: PSEUDOSYMMETRY SYSTEM

Since H is nonhermitic, it has a biorthogonal basis |u〉, |v〉,
which satisfies

H |ui〉 = Ei|ui〉, 〈ui|H† = E∗
i 〈ui|,

H |vi〉 = Ri|vi〉, 〈vi|H† = R∗
i 〈vi|, (C1)

〈vi|u j〉 = δi j, (C2)

The metric operators η =∑i |vi〉〈vi| and η−1 =∑i |ui〉〈ui|
related |ui〉 and |vi〉:

|vi〉 = η|ui〉, |ui〉 = η−1|vi〉. (C3)

Using this relation, we can define the η inner product between
the Hilbert space H corresponding to the eigenvector |ui〉 and
the Hilbert space H∗ corresponding to the eigenvector 〈vi|:

〈vi|u j〉 = 〈ui|η|u j〉 = 〈ui|u j〉η = δi j, (C4)

where 〈·|·〉η is called the η product.
It has been proven in Refs. [40,63,64] that the necessary

and sufficient conditions for a non-Hermitian but diagonal-
izable Hamiltonian to have real eigenvalues is the existence
of a linear positive-definite operator η(det η > 0) such that
ηHη−1 = H† is fulfilled.

The quasifermion EKM in lattice space is written as

H =
∑
〈i, j〉

−tc†
i c j + H.c. + �c†

i c†
j + γ cic j +

∑
i

μc†
i ci.

(C5)

Taking Fourier transformation cn = 1/
√

N
∑

k exp(ik · Rn)ck ,
the Hamiltonian in k space is described by

H =
∑

k

(c†
kc−k )

[
ξ (k)

2 �

γ − ξ (k)
2

](
ck

c†
−k

)
, (C6)

where ξ (k) = μ − 2t cos k and H (k) = ξ (k)σz/2 + (� +
γ )σx/2 + i(� − γ )σy/2. The lattice constant we defined is
the unit, and the lattice constant a and Planck constant h̄ we set
as the unit (a = h̄ = 1). The eigenvalue and the eigenvector of
H can be solved, respectively, to obtain

E±(k) = ±
√

ξ 2(k) + 4�γ

2
, |u±〉 =

{
−ξ (k)±

√
ξ 2(k)+4�γ√

4γ 2+[−ξ (k)±
√

ξ 2(k)+4�γ ]2

2γ√
4γ 2+[−ξ (k)±

√
ξ 2(k)+4�γ ]2

}
. (C7)

We calculate the value of η:

η = |u+〉〈u+| + |u−〉〈u−| =
{

[ξ 2(k)+2�2+2�γ ]
ξ 2(k)+(�+γ )2

ξ (k)(γ−�)
ξ 2(k)+(�+γ )2

ξ (k)(γ−�)
ξ 2(k)+(�+γ )2

ξ 2(k)+2γ 2+2γ�

ξ 2(k)+(�+γ )2

}
, (C8)

where ηHη−1 = H† is satisfied. The determinant of η is

det(η) = ξ 2(k) + 4�γ

ξ 2(k) + (� + γ )2
. (C9)

Systems with η pseudo-Hermitian symmetries have real en-
ergy spectra for det(η) > 0.

APPENDIX D: THE CALCULATION
OF THE RESPONSE FUNCTION

The non-Hermitian is written as

H = H0 + V (t ), V (t ) = B f (t ), (D1)

where V (t ) is perturbation, and H0 is the nonperturbation
Hamiltonian. There is no restriction here on the hermiticity
of perturbation B.

The generalized response function in a non-Hermitian sys-
tem is described by [31,32]

χA,B(t, t ′) = − iθ (t − t ′)tr

{
[A(τ ), B] − 〈A(t )〉0

× [exp(iH†
0 τ ) exp(−iH0), B]

ρ0(t ′)
trρ0(t )

}
, (D2)

where the commutator [A, B], which is called the generalized
commutator, is defined by [A, B] = AB − B†A, and τ = t − t ′
represents a time interval between the initial and final states
and the density matrix of the nonperturbation system Hamil-
tonian H0 denoted by ρ0 which is time dependent.

In the non-Hermitian model, the response function has no
time-transition invariant due to the appearance of the sys-
tem density matrix ρ(t ) at various times, which may have a
nonunitary evolution in the absence of perturbation.
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At the initial time, the nonnormalized density matrix can
be written in terms of the eigenstates (|ψk〉, 〈ψk|) of any Her-
mitian operator, defined in the Hilbert space of the subsystem,
and of their statistical weights wk:

ρ0 =
∑

i

wi|ψi〉〈ψi|, (D3)

where
∑

k wk = 1.
However, if we consider the system is in the pseudosym-

metry phase, there is a real energy spectrum in the system. In
this case, the density matrix ρ evolves over time in the form:

ρ0(τ ) =
∑

k

wk exp(−iH0τ )|ψi〉〈ψi| exp(iH†
0 τ ) = ρ0. (D4)

Thus, we get the conclusion that the density matrix is time
independent in the pseudosymmetry phase.

With a real eigenspectrum in a pseudo-Hermitian system,
under a time-dependent perturbation V (t ) = B f (t ), the corre-
lation function can be reduced as

χA,B(τ ) = − iθ (τ ){〈[A(τ ), B(0)]〉0 − 〈A(0)〉0

× 〈[exp(iH†
0 τ ) exp(−iH0τ ), B(0)]〉0}, (D5)

where χA,B(τ ) is the pseudo-Hermitian response of A, B. Note
that the above formula is in the interaction picture. The ther-
mal expectation is defined by 〈A〉0 = tr(ρ0A)/tr(ρ0). The
response function has a value only in the unbroken phase
of pseudo-Hermitian symmetry and is zero in the pseudo-
Hermitian symmetry-broken phase. This is due to exact can-
cellation between the generalized commutator contribution to
the response [ j(k, τ ), j(k, 0)] and the norm corrections.

For the EKM now, let j = − 1
2

∑
k ∂ξ (k)/∂kσz, and the

response function is written

χ (τ ) =
∑
k∈PS

iθ (τ )〈[ j(k, τ ), j(k, 0)]〉0

− 〈 j(k, 0)〉0〈[exp(iH†
0 τ ) exp(−iH0τ ), j(k, 0)]〉0,

(D6)

where the sum over k can only be calculated in the real
spectrum. At zero temperature, the system is half-full.

For generic real pairing order parameters �, γ , both the
generalized commutator and the norm correction terms con-
tribute. We choose the ground state |u−〉 of Hamiltonian H (k)
in Eq. (C7):

〈[ j(k, τ ), j(k, 0)]〉0 = 〈 j(k, τ ) j(k, 0) − j†(k, 0) j(k, τ )〉0 = −8it2γ (� + γ )[2ε(k) − ξ (k)] sin[2ε(k)t] sin2 k

ε(k){2γ 2 + 2γ� + ξ (k)[ξ (k) − 2ε(k)]} , (D7)

〈 j(k, 0)〉0 = −2t{2γ 2 − 2γ� + ξ (k)[2ε(k) − ξ (k)]} sin k

2γ 2 + 2γ� + ξ (k)[ξ (k) − 2ε(k)]
, (D8)

〈[exp(iH†
0 τ ) exp(−iH0τ ), j(k, 0)]〉0 = 4itγ (γ − �)(2ε − ξ ) sin[2ε(k)τ ] sin k

ε(k){2γ 2 + 2γ� + ξ (k)[ξ (k) − 2ε(k)]} . (D9)

Substituted into Eq. (D6), the result can be derived:

χ (k, τ ) = θ (τ ) sin2 k sin 2ε(k)τA[ε(k), ξ (k)], (D10)

A[ε(k), ξ (k)] = 128t2γ 2[2ε(k) − ξ (k)]2

{ε(k)[2ε(k) − ξ (k)] − γ (� − γ )}2
,

(D11)

where ξ (k) = μ − 2t cos k is the kinetic energy term, and
ε(k) =

√
ξ 2(k)/4 + �γ is the absolute value of the energy

eigenvalue.

APPENDIX E: VISCOSITY

The time-dependent χ (τ ) is obtained by summation over
all momentum states. The response function χ (τ ) of the sys-
tem exhibits a damped oscillating behavior with a slow decay
in the pseudosymmetry phase of γ > 0. The χ (τ ) response
function decays exponentially and vanishes rapidly in the
pseudosymmetry phase of γ < 0. The response in frequency
space χ (ω) follows by Fourier transforming. Putting θ (τ ) =
limη−>0+

∫ exp(iωτ )
ω−iη

dω
2π i into Eq. (D6), we can obtain

χ (k, ω) =
∫

dτχ (k, τ ) exp(iωτ ) = 1

2
sin2 kA[ε(k), ξ (k)]

×
[

1

ω + 2ε(k) + iη
− 1

ω − 2ε(k) + iη

]
. (E1)

Summing over all the real energy spectrum momenta,

χ (ω) =
∫

k∈PS
χ (k, ω). (E2)

The real part of the viscosity is given by the imaginary part
of the response function σ ′(ω) = χ ′′(ω)/ω, where χ ′′(ω) =
[χ (ω) − χ (−ω)]/2i [41],

χ ′′(ω) = −π

2

∫
k∈PS

dk sin2 kA(k)[δ(ω − 2ε) − δ(ω + 2ε)]

= −π

2

∫
k∈PS

dkδ[ω − 2ε(k)] sin2 kA(k)

= −π

2

∫
k∈PS

dkδ(k − ki )
ε(ki )

tξ (ki ) sin ki
sin2 kA(k),

× [ω > 0, ε(k) > 0, ki = k1, k2], (E3)

where ki satisfies ω = 2ε(ki ) and the above first line is used
1/(x + iη) = P(1/x) − iπδ(x):

k1 = arccos
μ +

√
ω2 − 4�γ

2t
,

k2 = arccos
μ −

√
ω2 − 4�γ

2t
, (E4)
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(1) μ+√−4�γ

2t < 1 and μ−√−4�γ

2t > −1:

χ ′′(ω) = −π

2

(
ε(k1)

ξ (k1)
sin k1

128tγ 2[2ε(k1) − ξ (k1)]2

{γ 2 + [2ε(k1) − ξ (k1)]2}2 + ε(k2)

ξ (k2)
sin k2

128tγ 2[2ε(k2) − ξ (k2)]2

{γ 2 + [2ε(k2) − ξ (k2)]2}2

)
. (E5)

(2) μ+√−4�γ

2t > 1 and μ−√−4�γ

2t > −1:

χ ′′(ω) = −π

2

(
ε(k2)

ξ (k2)
sin k2

128tγ 2[2ε(k2) − ξ (k2)]2

{γ 2 + [2ε(k2) − ξ (k2)]2}2

)
.

(E6)

(3) μ+√−4�γ

2t > 1 and μ−√−4�γ

2t < −1:

χ ′′(ω) = 0. (E7)

APPENDIX F: PHASE DIAGRAM

The pseudosymmetry operator can be written as

η =
⎧⎨
⎩

[ξ 2(k)+2�2+2�γ ]
ξ 2(k)+(�+γ )2

ξ (k)(γ−�)
ξ 2(k)+(�+γ )2

ξ (k)(γ−�)
ξ 2(k)+(�+γ )2

ξ 2(k)+2γ 2+2γ�

ξ 2(k)+(�+γ )2 ,

⎫⎬
⎭ (F1)

det(η) = ξ 2(k) + 4�γ

ξ 2(k) + (� + γ )2
. (F2)

If the system is in pseudo-Hermitian symmetric phase,
the system has a real energy spectrum. In the real spectrum,
the pseudo-Hermitian operator is positive definite, that is,
det(η) > 0:

(μ − 2t cos k)2 > −4�γ , cos k <
μ − 2

√−�γ

2t
,

cos k >
μ + 2

√−�γ

2t
. (F3)

For the case where pseudohermitic symmetry is completely
destroyed, the system is in the insulator phase. There are
conditions:

μ − 2
√−�γ

2t
< −1,

μ + 2
√−�γ

2t
> −1. (F4)

For the case where γ > 0, the low-frequency limit viscos-
ity approaches infinity, which means that the system is in the
superconducting phase (Fig. 5).

(a) (b)

FIG. 5. The phase diagram of our system. As γ gradually in-
creases, the system changes from an insulator phase to a normal
liquid (NL) phase and eventually to a superfluid (SF) phase. The
parameters are set to t = 1, � = 0.5.
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