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Continuous symmetry breaking in adaptive quantum dynamics
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Adaptive quantum circuits, in which unitary operations, measurements, and feedback are used to steer quan-
tum many-body systems, provide an exciting opportunity to generate interesting dynamical steady states. We
introduce an adaptive quantum dynamics with continuous symmetry where unitary operations, measurements,
and local unitary feedback are used to drive ordering. In this setting, we find a pure steady state hosting
symmetry-breaking order, which is the ground state of a gapless, local Hamiltonian. We explore the dynamical
properties of the approach to this steady state. We find that this steady-state order is fragile to perturbations, even
those that respect the continuous symmetry.
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I. INTRODUCTION

Characterizing the equilibrium phases and phase transi-
tions of quantum many-body systems has been a highly
successful program for understanding the important features
of these systems [1]. However, the ensembles of states avail-
able to quantum systems at thermal equilibrium are quite
special. Out of equilibrium, the possibilities are much broader
and an organizing principle is lacking.

Random quantum circuits composed of local unitary oper-
ators have proved a valuable model for studying the dynamics
of entanglement and conserved quantities far from equi-
librium [2–6]. More recently, monitored quantum circuits
have emerged as a rich setting for exploring nonequilibrium
physics. These quantum circuits may include projective mea-
surements and classical processing in addition to local unitary
operators. They comprise a broad family of models that can
be as minimally constrained as random unitary evolution or as
finely specified as particular quantum algorithms.

Random unitary circuits generally produce a featureless
ensemble of states. In contrast, monitored quantum circuits
can protect an area-law-entangled steady-state phase from this
infinite-temperature thermalizing phase [7–9] or give rise to
volume-law-entangled steady states that do not arise in ther-
mal equilibrium [10]. It has been found that area-law phases
arising in this context can host steady states equivalent to
ground states of gapped Hamiltonians, such as those with
broken discrete symmetries [11] or with discrete topological
order [12–14].

However, these interesting steady-state features are mani-
fest only in quantities that are nonlinear in the density matrix.
Therefore, unlike ordinary expectation values that are linear in
the density matrix, they cannot be observed without multiple
copies of the same state, which necessarily requires postselec-
tion. This fact, in combination with the no-cloning theorem
[15,16] and the generally uncontrollable random outcomes of
projective measurements, makes it exponentially difficult to
access these nonlinear features experimentally.

For special circuit architectures, aspects of this postselec-
tion problem can be avoided [17–22]. It is also possible to

tackle this postselection with brute force for sufficiently small
system sizes [23], but this is not a scalable solution. Another
path—which we take up here—is to use local unitary feedback
conditioned on local measurement results to target a pure state
with desired properties. The resulting dynamics of physical
observables thus takes the form of a local quantum channel.
More generally, feedback could be used to target mixed steady
states of interest. In all of these cases, one can further relax the
second locality constraint and utilize the power of classical
communication to strengthen this approach [24].

Recent literature has explored the possibility of using such
local feedback to target states of interest, and has studied
dynamical absorbing phase transitions that arise when the
strength of the feedback is varied [25–35]. In these works,
the target states have been trivial product states or area-law-
entangled states; they either do not break a symmetry or break
a discrete symmetry. These states can be related to ground
states of gapped Hamiltonians with finite-depth unitary cir-
cuits. Another body of work has focused on the preparation of
gapped, topologically ordered states [36–43] and mixed states
[44] with long-range quantum entanglement.

In this paper, we explore the possibility of using feedback
to target a steady state that is the ground state of a gap-
less Hamiltonian, with continuous symmetry breaking and/or
long-range entanglement. We illustrate that this is possible
with a simple example in which a pure steady state with fer-
romagnetic order and logarithmic scaling of the entanglement
entropy with subsystem size can be achieved in the presence
of U (1) symmetry.1 However, we find that the feedback in our
model is insufficient to stabilize the ordered steady state in the
presence of competing single-site Pauli channels, regardless
of whether the Kraus operators for the channel respect the
U (1) symmetry. In this case, we numerically observe the
emergence of short-ranged ferromagnetic correlations, with
a correlation length that diverges as the strength of the Pauli

1Intriguingly, the manifold of steady states has a higher SU (2)
symmetry, as we discuss further in Sec. III B 1.
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channel goes to zero. Viewing the Pauli channel as unrecorded
single-site projective Pauli measurements provides a natu-
ral way to unravel this mixed-state evolution into pure-state
quantum trajectories, which we numerically find to exhibit
area-law scaling of the entanglement entropy. Throughout this
paper, we discuss both the quantum channel dynamics, as
well as the evolution of pure-state trajectories which are an
unravelling of the channel.

The rest of this paper is organized as follows. In Sec. II, we
describe a baseline model of dynamics whose steady state is
our pure state of interest (Sec. II A), we describe a more gen-
eral perturbed model of dynamics (Sec. II B), and we explore
the symmetries present in these models (Sec. II C). We present
our results in Sec. III, beginning with a discussion of relevant
observables (Sec. III A). Then we explore the steady-state
properties and dynamical features approaching steady state
for each of three cases: The baseline dynamics (Sec. III B),
the perturbed dynamics with U (1) symmetry (Sec. III C), and
the perturbed dynamics without U (1) symmetry (Sec. III D).
Finally, we close in Sec. IV by summarizing our results,
discussing their limitations, and posing questions regarding
the capabilities of monitored circuits with feedback and what
we can learn from the quantum channel superoperator itself.

II. MODEL

A. Baseline dynamics

We consider a circuit architecture composed of SWAP
measurements and σ z unitary operators applied to a one-
dimensional chain of L qubits.

The SWAP operator has two eigenspaces: The three triplet
states |S = 1, Sz = m〉 (for m = −1, 0, 1) are even under
SWAP and the singlet state |S = 0, Sz = 0〉 is odd. Con-
sequently, measuring SWAP on two sites is equivalent to
measuring the total spin on these sites. The projectors cor-
responding to these eigenspaces are

�+ = |1, 1〉〈1, 1| + |1, 0〉〈1, 0|
+ |1,−1〉〈1,−1| (1)

�− = |0, 0〉〈0, 0| (2)

with �± = (1 ± SWAP)/2.
Our model consists of two-site conditional processes

wherein
(i) The SWAP operator is measured across two sites.
(ii) If the result is −1, a σ z gate is applied to the first site.

This pumps the local singlet into a triplet state:

|0, 0〉 �→ |1, 0〉. (3)

Otherwise, no feedback is applied.
One circuit time step in our model corresponds to L such

elementary steps. In each elementary step, one of these mea-
surements with feedback is applied to a randomly selected
bond. We assume open boundary conditions. This circuit ar-
chitecture is illustrated in Fig. 1(a).

We consider both the quantum trajectory dynamics,
where the SWAP measurement results are recorded, and the
trajectory-averaged quantum channel dynamics. The corre-
sponding quantum channel is obtained by averaging over the

(a) (b)

FIG. 1. The baseline and perturbed circuit models we consider.
In both cases, orange blocks indicate circuit time steps containing
L elementary steps. (a) The baseline model consists only of SWAP
measurements and, following −1 parity results, σ z unitary feedback.
The SWAP measurements occur at random bonds with open bound-
ary conditions. (b) The perturbed model adds in the possibility of
Pauli measurements. These are applied at random sites with proba-
bilities px , py, and pz, respectively [and SWAP measurements occur
at random bonds with probability ps = 1 − (px + py + pz )].

possible measurement outcomes, so one elementary time step
is given by

C(ρ) = 1

L − 1

L−1∑
i=1

[
�+

i,i+1ρ�+
i,i+1 + σ z

i �−
i,i+1ρ�−

i,i+1σ
z
i

]
,

(4)

and CL(ρ) advances ρ by one circuit time step. Conversely,
the circuit quantum trajectories define a particular unravelling
of the channel.

The quantum channel perspective is natural for considering
the dynamics of observables which are linear in the density
matrix of a state. Each quantum trajectory depends both on
the sequence of randomly selected measurement locations
(denoted x) and on the history of measurement results (de-
noted m). Thus, when we average the expectation value of an
observable O over all possible trajectories |ψx,m〉, we find that

〈O〉 =
∑
x,m

px pm 〈ψx,m|O|ψx,m〉 (5)
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=
∑
x,m

px pmTr[O|ψx,m〉〈ψx,m|] (6)

= Tr[Oρ], (7)

where

ρ =
∑
x,m

px pm|ψx,m〉〈ψx,m| (8)

is a mixed state corresponding to the ensemble of trajectories,
and its dynamics is given by Eq. (4). Here pm is determined
by the Born rule, and px = (L − 1)−tL for a circuit with t
time steps since each elementary step selects randomly among
L − 1 bonds.2

Since this quantum channel is linear, we can also view it as
a matrix acting on a doubled Hilbert space (see Appendix A
for more information), where

ρ → |ρ〉〉, (9)

KρK† → (K ⊗ K∗)|ρ〉〉. (10)

Performing this transformation, we arrive at

C = 1

L − 1

L−1∑
i=1

[
(�+

i,i+1)⊗2 + (
σ z

i �−
i,i+1

)⊗2]
. (11)

This matrix determines two important properties of the dy-
namics: The steady-state order and the saturation time.

B. Perturbed dynamics

We also study the impact of perturbing these dynamics
with single-site Pauli measurements. Now, in each elementary
time step, one of the following occurs:

(i) A SWAP measurement with σ z feedback is applied to
a random bond with probability ps.

(ii) A single-site Pauli measurement occurs at a random
site wherein

(1) σ x is measured with probability px,
(2) σ y is measured with probability py, and
(3) σ z is measured with probability pz,

with ps + px + py + pz = 1.
As in the unperturbed dynamics, a circuit time step com-

prises L of these elementary steps. This circuit architecture is
illustrated in Fig. 1(b).

The corresponding perturbed quantum channel matrix is
given by

C ′ = 1

L − 1

L−1∑
i=1

ps
[
(�+

i,i+1)⊗2 + (
σ z

i �−
i,i+1

)⊗2]

+ 1

2L

L∑
i=1

⎡
⎣(1 − ps)1⊗2 +

∑
μ=x,y,z

pμ

(
σ

μ
i

)⊗2

⎤
⎦. (12)

2In the perturbed model introduced in Sec. II B, px also depends on
which perturbing measurements occur in the circuit x and the various
probabilities of these perturbations.

C. Symmetries of our models

Since both SWAP and σ z commute with Q = ∑
i Sz

i , the
baseline model has a strong U (1) symmetry where Sz

tot is
the corresponding conserved charge. We use the notion of
strong symmetry in the sense that all Kraus operators of the
channel commute with the symmetry generator, following
Refs. [45,46]. Thus, this symmetry remains when σ z mea-
surements are introduced. As a result, the perturbed dynamics
continues to have this U (1) symmetry when px = py = 0.
However, it is broken when px > 0 or py > 0 since σ x and
σ y do not commute with Q.

III. RESULTS

A. Quantities of interest

Given our model’s U (1) symmetry when px = py = 0,
quantities that diagnose spontaneous breaking of this sym-
metry are of particular interest. For this purpose, it is useful
to consider the spin-spin correlation function 〈ψ | Si · S j |ψ〉.
Then we can diagnose symmetry breaking using the ferromag-
netic susceptibility:

χ = 1

L

∑
i j

〈ψ | Si · S j |ψ〉. (13)

We can also look for signatures of long-range order using the
quantity 〈ψ | S1 · SL|ψ〉. In both cases, we are interested in the
behavior as L → ∞. Since both χ and 〈S1 · SL〉 are linear
in the density matrix, these quantities are accessible both in
the quantum trajectory dynamics and in the quantum channel
dynamics.

Additionally, we are interested in the entanglement dynam-
ics of the baseline and perturbed models. Since entanglement
entropies are nonlinear in the density matrix, their dynamics
are visible only at the quantum trajectory level. Here, we focus
on the half-chain von Neumann entropy,

S(ρA) = −Tr[ρA ln ρA], (14)

where ρA = TrB[ρ] with A and B indicating the left and right
halves of the system, respectively.

When simulating quantum trajectories, it is necessary to
pick an initial state. Unless otherwise stated, we use a half-
filled Néel state:

|ψ0〉 = |↑↓↑↓ · · · ↑↓〉. (15)

B. Baseline dynamics

1. Steady-state properties

To study U (1) symmetry breaking and entanglement dy-
namics in the baseline model, we first need to understand what
steady states are present in this model.

We recall that the baseline dynamics is composed en-
tirely of SWAP measurements with feedback. Consequently,
a state |ψ〉 can be a steady state of the dynamics only if
SWAPi,i+1|ψ〉 = |ψ〉 for all i < L. In this case, the state is
unaffected by the SWAP measurement and no feedback is
applied to change the state. We can actually make a stronger
statement about |ψ〉: Since the set of adjacent transpositions
(operators like SWAPi,i+1) generate the entire space of permu-
tations, it follows that SWAPi j |ψ〉 = |ψ〉 for any i and j.
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Expressing the SWAP measurement in terms of total spin
provides helpful physical intuition. We can write the SWAP
operator on sites i and j as SWAPi j = 1

2 (1i1 j + σ i · σ j ),
where

σ i · σ j = σ x
i σ x

j + σ
y
i σ

y
j + σ z

i σ z
j = 4(Si · S j ), (16)

with h̄ = 1. Therefore, the state with even parity along each
bond (and, consequently, between any two sites) will also
maximize total spin. It follows that pure steady states along
quantum trajectories are those states with maximal total spin.
There are L + 1 such states, labeled | L

2 , m〉 with |m| � L
2 . Be-

cause the space of states with maximal total spin is invariant
under SU (2) rotations, the emergent symmetry of the mani-
fold of steady states is higher than the microscopic dynamical
U (1) symmetry of the model. Since there is one such steady
state in each charge sector, the U (1) symmetry dictates that
there is a unique steady state if the initial state has fixed
charge.

One could worry that the quantum channel dynamics has
additional mixed steady states that prevent the states | L

2 , m〉
from being attractive fixed points of the dynamics. However,
we anticipate that these pure states are the unique steady states
of both the trajectory and channel dynamics, and we find that
this is consistent with our numerics.

We can immediately calculate the ferromagnetic suscepti-
bility and long-range order for these steady states. Rewriting
the susceptibility in Eq. (13) in terms of SWAP operators, we
find that

χ = 1

L

∑
i �= j

〈
L

2
, m

∣∣∣∣Si · S j

∣∣∣∣L2 , m

〉
+ 3

4
(17)

= 1

4L

∑
i �= j

〈
L

2
, m

∣∣∣∣ (2SWAPi j − 1)

∣∣∣∣L2 , m

〉
+ 3

4
(18)

in the steady states. Since any | L
2 , m〉 is totally symmetric,

〈 L
2 , m| SWAPi j | L

2 , m〉 = 1 for all i, j and

χ = L(L − 1)

4L
+ 3

4
= L + 2

4
. (19)

We conclude that the ferromagnetic susceptibility diverges in
the thermodynamic limit for these steady states. Similarly, we
find that 〈S1 · SL〉 = 1

4 for these steady states.
In Appendix D, we show that, given an initial state with

fixed charge Q, the steady-state bipartite entanglement en-
tropy grows as

S(ρA) = 1

2
ln L + 1

2
(ln(2πabn(1 − n)) + 1) + O

(
ln L

L

)

(20)

in the baseline model as L → ∞ with q = Q
L held constant,

and with q satisfying − 1
2 < q < 1

2 . In Eq. (20), a = |A|
L and

b = 1 − a are the fraction of spins in the two bipartitions,
respectively, and n = q + 1

2 is the number of spins pointed

(a)

(b)

FIG. 2. (a) Channel gap in a single charge sector over a range
of system sizes for the baseline model (see Sec. III B). We find that
the gap shrinks with L−z, where z = 2.02(1). (b) Growth of 〈S1 · SL〉
over time for a range of system sizes in the baseline model. For
each system size, the data are the average of 100 quantum trajec-
tories simulated using MPS tensor networks. We find that 〈S1 · SL〉
saturates in O(L2) time steps in the quantum trajectory approach,
which is consistent with the gap scaling seen in the quantum channel
approach.

up (in the z direction).3 This result agrees with our MPS
simulations, as shown in Fig. 3.

2. Approach to steady state

Observables that are linear in the density matrix—like
the ferromagnetic susceptibility and long-range order—are
accessible in the quantum channel dynamics. Consequently,
no such quantity can saturate more slowly than the rate at
which the quantum channel reaches its steady state. In this

3The leading order contribution agrees with results for the ideal
Bose gas [47]. This is a sensible comparison since the spins in our
one-dimensional model, although hard-core bosons, have a steady
state which resembles that of a 1D ferromagnet, which has long-
ranged order like the ground state of an ideal Bose gas.
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ln

ln ln

FIG. 3. Half-chain entanglement growth with time over a range
of system sizes for the baseline model (see Sec. III B) starting from
an initially unentangled Néel state. The data collapse that arises
suggests that entanglement saturates in O(L) time to a steady-state
value that is logarithmic in system size. This logarithmic growth
is visualized in the inset plot, where the steady-state entanglement
is compared against the leading order analytical prediction given in
Eq. (20) (with a = b = n = 1

2 ). For each system size in the main plot,
the data are the average of 100 quantum trajectories. Each point in the
inset is the average of 1200 samples, composed of 12 measurements
between t = 5L and t = 8L for each of the 100 trajectories.

way, the lifetime of the channel’s longest-lasting nonsteady
mode sets a fundamental timescale for linear observables in
both the quantum trajectory and quantum channel dynamics.

As described in Appendix B, the lifetime of the longest-
lasting nonsteady mode of a channel E is set by the gap
� in the corresponding non-Hermitian “Hamiltonian” H =
1 − E .4 In particular, the channel’s saturation time is propor-
tional to �−1. For the case of our baseline model, E = CL. In
Fig. 2(a), we plot the scaling of � with system size, calculated
using exact diagonalization on the baseline channel matrix.
We find results consistent with �(L) ∝ L−2, meaning that
O(L2) circuit time steps are required for linear observables
to saturate. This is consistent with the intuition that conserved
charges spread diffusively under random dynamics.

We can check this diffusive behavior for larger system sizes
by studying the saturation of 〈S1 · SL〉 in quantum trajectories
using MPS simulations. These data are plotted for a range of
system sizes in Fig. 2(b), and are consistent with the scaling
suggested by the channel gap.

Of course, the channel gap has no implications for the
dynamics of quantities like entanglement entropy that are
nonlinear in the density matrix. Nevertheless, we can probe
entanglement dynamics through MPS simulations of quantum

4There may be exceptional cases where this does not apply. Be-
cause the channel matrix is not generally Hermitian, its eigenvectors
are generally not mutually orthogonal. This allows initial states to
have extensively large weight on nonsteady modes that therefore take
longer to decay. This is discussed in the context of Lindblad evolution
in Ref. [48], for example. Having said all this, our MPS simulations
of quantum trajectories suggest that the channel gap is representative
of the timescales in our models.

FIG. 4. Steady-state purity P = Tr[ρ2] of the quantum channel
(at half filling) as a function of L1/νP pz in the perturbed model with
U (1) symmetry (see Sec. III C). We find that the data collapse as
P(L, pz ) = FP(L1/νP pz ) when νP ≈ 0.35. When pz > 0, the purity
decays exponentially with system size, as illustrated for pz = 0.1 in
the inset.

trajectories. As illustrated in Fig. 3, we find that entanglement
entropy saturates in O(L) time in our baseline model.

C. Perturbed dynamics with U (1) symmetry

As discussed in Sec. II C, the perturbed model retains U (1)
symmetry when px = py = 0. We address this case in this
Sec. III C, before taking up the general perturbed model in
Sec. III D.

1. Steady-state properties

When any single-site Pauli measurements are present in the
perturbed model, the pure states | L

2 , m〉 are generally no longer
steady states. In particular, when px = py = 0, these states are
only steady states for m = ± L

2 . In other words, only |↑↑ · · · ↑〉
and |↓↓ · · · ↓〉 are steady states along trajectories. Since Q is
conserved in this case, quantum trajectories beginning with an
initial state in a nonextremal charge sector will have no pure
steady states.

Correspondingly, the quantum channel steady state is
mixed in nonextremal charge sectors when both ps and pz are
nonzero. In Fig. 4, we illustrate the decay of the purity

P = Tr[ρ2] (21)

as pz is increased. In particular, when we plot P(L, pz ) against
the scaling variable L1/νP pz, we find that the data collapse to
the scaling form

P(L, pz ) = FP(L1/νP pz ) (22)

when νP ≈ 0.35. At this stage, we do not have an understand-
ing of this scaling.

Using exact diagonalization on the quantum channel ma-
trix, we find that these mixed steady states are not ordered.
Using MPS simulations of quantum trajectories, we confirm
this and also find that the trajectories have area-law entangle-
ment at late times. In contrast, the mixture of all steady-state
trajectories accessed in the quantum channel approach has a
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FIG. 5. Steady state 〈Sx
1Sx

L + Sy
1Sy

L〉 of the quantum channel (at
half filling) as a function of L1/ν pz in the perturbed model with
U (1) symmetry (see Sec. III C). We find that the data collapse
as L−1

L Tr[(Sx
1Sx

L + Sy
1Sy

L )ρ(L, pz )] = FSS (L1/ν pz ) when ν ≈ 0.5. The
factor of L−1

L corrects for the system-size dependence of 〈Sz
1Sz

L〉
given in Eq. (23) when Q = 0, and can be ignored in the ther-
modynamic limit. When pz > 0, the value of 〈Sx

1Sx
L + Sy

1Sy
L〉 decays

exponentially with system size as illustrated for pz = 0.1 in the inset.
〈Sx

1Sx
L + Sy

1Sy
L〉 is a more suitable correlation function than 〈S1 · SL〉

for identifying a scaling form and diagnosing exponential decay
because the latter has perturbation-independent 〈Sz

1Sz
L〉 correlations

protected by the U (1) symmetry.

volume-law entropy, corresponding to the exponentially small
purity illustrated in the inset of Fig. 4.

Although the dynamics has an ordered steady state only
when no perturbation is actually applied (that is, when
pz = 0), we can look for a scaling form like that of the purity.
For this purpose, it is desirable to consider the scaling of
〈Sx

1Sx
L + Sy

1Sy
L〉 instead of 〈S1 · SL〉 because the model’s U (1)

symmetry protects 〈Sz
1Sz

L〉 correlations that are unrelated to
breaking of the symmetry and are independent of pz. In par-
ticular, we show in Appendix C that, for any i �= j,

Tr
[
Sz

i Sz
jρ(L, pz )

] = 4Q2 − L

4L(L − 1)
, (23)

where ρ(L, pz ) denotes the mixed steady state in a given
charge sector. As L → ∞, we can organize this as 〈Sz

i Sz
j〉 =

〈Sz
i 〉〈Sz

j〉 + O(L−1).
Considering the Sx

1Sx
L + Sy

1Sy
L correlations, we find that the

data collapse to the scaling form

Tr
[(

Sx
1Sx

L + Sy
1Sy

L

)
ρ(L, pz )

] = FSS (L1/ν pz ), (24)

with ν ≈ 0.5. This collapse is illustrated in Fig. 5. To make
the collapse manifest at small system sizes, we scale (Sx

1Sx
L +

Sy
1Sy

L ) by a factor of L−1
L , which approaches unity in the

thermodynamic limit. In the inset of this figure, we give an
example of the exponential decay of 〈Sx

1Sx
L + Sy

1Sy
L〉 that arises

when pz is nonzero.

2. Approach to steady state

As in the baseline model, we can study the channel matrix
gap to understand the saturation dynamics of linear observ-
ables. As in Sec. III B 2, we find gap scaling consistent with

FIG. 6. Channel-gap scaling with system size for a range of pz

values in the perturbed model with U (1) symmetry (see Sec. III C).
The data are arranged between guide lines �(L) = c1L−2 and
�(L) = c2L−2, where c1 = 0.4 and c2 = 7.0. We consequently ob-
serve that gap scaling for each value of pz is consistent with diffusive
dynamics.

� ∝ L−2 and diffusive dynamics. These results are plotted in
Fig. 6.

Despite this, we observe constant-time saturation of 〈S1 ·
SL〉 and entanglement entropy to their steady-state values
(〈S1 · SL〉 = 0 and area-law entanglement in the thermody-
namic limit). The numerical results are not shown here. But
it is not surprising that the channel gap indicates O(L2) sat-
uration time even when the quantities we have focused on
saturate more quickly. The channel gap needs to account for
the slowest dynamics of linear observables, and there are
slower processes in these dynamics: For example, the diffu-
sion of a localized charge requires O(L2) time steps.

D. Perturbed dynamics without U (1) symmetry

1. Steady-state properties

If one or both of px and py is greater than zero, then the
U (1) symmetry is no longer present. In this case, we find that
the steady states lack order and have area-law entanglement
as long as multiple species of Pauli measurements are present.
As in Sec. III C 1, we can perform a finite-size scaling analysis
to understand how order arises as we approach ps = 1 from a
direction in theory space that does not have U (1) symmetry.
The results of this analysis are depicted in Fig. 7, where
ps = 1 is approached along the line p = px = py. We find that
the data collapse to the scaling form

Tr[(S1 · SL )ρ(L, p)] = F̃SS (L1/ν̃ p), (25)

with ν̃ ≈ 0.5.

2. Approach to steady state

In the presence of symmetry-breaking perturbations, we
find that the channel gap is generally independent of system
size (data not shown). This is unsurprising: In the absence
of U (1) symmetry, there are no longer conserved charges to
diffuse throughout the system. Also, since the system only
ever has area-law entanglement, entanglement saturation can
occur in constant time.
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FIG. 7. Steady state 〈S1 · SL〉 of the quantum channel (at half
filling) as a function of L1/ν̃ p in the perturbed model without
U (1) symmetry (see Sec. III D). Here, p = px = py controls the
symmetry-violating perturbation. We find that the data collapse as
Tr[(S1 · SL )ρ(L, p)] = F̃SS (L1/ν̃ p) when ν̃ ≈ 0.5. When p > 0, the
steady-state value of 〈S1 · SL〉 decays exponentially with system size,
as illustrated for p = 0.05 in the inset. The linear fit in the inset
results from a linear regression on the four data points with L � 7.

3. Exceptional cases

A special situation arises when only one type of Pauli
measurement is present. In Sec. III C, we found that two pure
steady states arose in the perturbed dynamics with U (1) sym-
metry: the states |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉. However, charge
conservation prevented these states from being accessible to
initial states in nonextremal charge sectors, so most initial
states led to mixed steady states.

When only σ x perturbations are present, the product state
entirely pointed in +x and the product state entirely pointed
in −x are both pure steady states (and likewise with states
in ±y when only σ y perturbations are present). But since
there is no symmetry to enforce charge conservation of any
kind, these pure steady states are generally accessible to the
dynamics regardless of initial state. Consequently, when only
px is nonzero or only py is nonzero, the steady state is pure
and ferromagnetically ordered.

These steady states may correspond to channels with
exceptional gap scaling (in comparison to the system-size-
independent gap in Sec. III D 2). Even though there is no
symmetry-breaking order being developed over time, we ob-
serve gapless modes in the channel matrix and slow saturation
in the quantum trajectory data. Both indicate that the approach
to these ordered steady states occurs on a timescale that grows
with system size (data not shown). This is in stark contrast
with the generic situation, when multiple species of Pauli
measurements are present and the gapped channel matrix en-
sures that the steady state is quickly reached. We leave further
exploration of these slow dynamics for future work.

IV. DISCUSSION

A. Experimental protocol

Our protocol is composed of single-site unitaries and mea-
surements, and of local two-site SWAP measurements. These

SWAP measurements can be implemented in a straightfor-
ward way using an ancilla qubit for each bond and Fredkin
(CSWAP) gates controlled by these ancillae.

Suppose that our system is in state |ψ〉 and we wish to
measure SWAP between sites i and i + 1. The projectors cor-
responding to the two possible outcomes are denoted �±

i,i+1.
We can always write |ψ〉 = |ψ+〉 + |ψ−〉 where |ψ±〉 =
�±

i,i+1|ψ〉 are unnormalized states and SWAPi,i+1|ψ±〉 =
±|ψ±〉. It is convenient to denote the x-basis states as |±〉 =

1√
2
(|↑〉 ± |↓〉).
Initially, the ancilla qubit for the ith bond is in the state |+〉

so the system and this ancilla together are in the state

|+〉|ψ〉 = 1√
2

(|↑〉 + |↓〉)(|ψ+〉 + |ψ−〉). (26)

Next, let U denote a CSWAP gate that is controlled by the
ancilla and that swaps the sites i and i + 1. When we apply U
to this system, we get

U |+〉|ψ〉 = 1√
2

[|↑〉(|ψ+〉 + |ψ−〉) + |↓〉(|ψ+〉 − |ψ−〉)]

(27)

= |+〉|ψ+〉 + |−〉|ψ−〉. (28)

The SWAP measurement is performed on |ψ〉 when we mea-
sure the ancilla in the x basis. We get the even-parity result
with probability 〈ψ+|ψ+〉 = 〈ψ | �+

i,i+1|ψ〉 and the odd-parity
result with probability 〈ψ−|ψ−〉 = 〈ψ | �−

i,i+1|ψ〉. These are
the same probabilities one would find for a direct measure-
ment of SWAP, so this process precisely implements a SWAP
measurement. The ancilla can be reset and used for subse-
quent measurements across this bond.

Since the feedback in our baseline model produces
long-range order that is linear in the density matrix, a
decoherence-free quantum computer could observe this or-
der without a postselection problem. We found that this
order can be probed by 〈ψ | S1 · SL|ψ〉. Since S1 · SL =
1
4 (2SWAP1L − 1), this is equivalent to measuring SWAP be-
tween the first and last sites of the system. If the L qubits
comprising our system are arranged in a loop, then this
long-range order is locally accessible experimentally using an
ancilla between the first and last sites. Such a setup is depicted
in Fig. 8.

B. Outlook

In this paper, we explored how adaptive quantum dy-
namics can be used to target pure steady states that break
continuous symmetries and host long-range entanglement. In
particular, we introduced a baseline model where the steady
state breaks a continuous U (1) symmetry and has logarithmic
entanglement. But instead of finding a stable phase with these
properties, we determined that any nonzero density of Pauli
measurements leads to a mixed steady state without order and
with area-law entanglement in the quantum trajectories.

This prompts the question: Is it possible to have a robust
phase that spontaneously breaks a continuous symmetry in
adaptive quantum circuits? This could arise from a stable
absorbing phase with a symmetry-breaking pure steady state.
Alternatively, perhaps a mixed steady state could arise that
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FIG. 8. Schematic diagram depicting a simple implementation
of the dynamics studied in this paper. Physical qubits are marked
with blue circles and grey ancilla qubits lie along each bond. These
ancillae enable local SWAP measurements. The red ancilla qubit lies
between the first and last physical qubits. These physical qubits do
not interact directly in our models (which have open boundary condi-
tions) but a SWAP measurement between them diagnoses long-range
order.

breaks a continuous symmetry. Whether such an absorbing
phase or such a mixed state are possible could be interesting
future directions.

Also, it is notable that the symmetry-breaking steady state
of our baseline model is also a ground state of a frustration-
free Hamiltonian (the ferromagnetic Heisenberg model). And
this is recapitulated in the dynamics we consider: The steady
state is simultaneously stabilized by SWAP measurements
with feedback at every bond. This is an appealing feature of
the dynamics because it ensures that, at least in the absence of
perturbations, there exist pure steady states. In contrast, there
is no nontrivial state that is stabilized by a measurement like
XiXi+1 + YiYi+1 at all bonds (i, i + 1). It would be interesting
to understand whether or not there is a fundamental obstruc-
tion to stabilizing ground states of quantum Hamiltonians
for which the ground state does not simultaneously minimize
each term (like the quantum XY model).

Lastly, we identified a non-Hermitian “Hamiltonian”
whose ground states encode the steady state properties of
a quantum channel and whose gap determines how quickly
the steady state is reached. Since the quantum channel has
full information about linear observables, this amounts to the
quantities that can be generally observed experimentally. Con-
sequently, it could be interesting to explore whether properties
of these non-Hermitian operators can be used to organize
experimentally accessible properties of quantum channels.
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APPENDIX A: THE DOUBLED HILBERT SPACE

The key elements of translating expressions in the standard
Hilbert space to a doubled Hilbert space are contained in the
following rearrangement. Given a basis {|bi〉}2L

i=1, we can write

ρ =
∑

i j

ρi j |bi〉〈b j |, (A1)

K =
∑

i j

Ki j |bi〉〈b j |, and (A2)

K† =
∑

i j

(K†)i j |bi〉〈b j |, (A3)

and note that

(KρK†)i j =
∑
mn

Kimρmn(K†)n j (A4)

=
∑
mn

Kim(K∗) jnρmn (A5)

= 〈〈bib j |(K ⊗ K∗)|ρ〉〉, (A6)

where

|ρ〉〉 =
∑

i j

ρi j |bib j〉〉, (A7)

with |bib j〉〉 = |bi〉 ⊗ |b j〉 and 〈〈bib j | = 〈bi| ⊗ 〈b j |.
But there is a noteworthy subtlety: in doing this trans-

formation, we took a fixed basis (the computational basis),
so the process of vectorizing ρ and transposing K† is basis
dependent.

In the doubled Hilbert space, we note that

Tr[A†B] =
∑

i j

(A†) jiBi j (A8)

=
∑

i j

A∗
i jBi j (A9)

= 〈〈A|B〉〉. (A10)

Also,

〈〈bib j |ρ†〉〉 = (ρ†)i j (A11)

= ρ∗
ji (A12)

= 〈〈b jbi|ρ〉〉∗, (A13)

so

|ρ†〉〉 = (T |ρ〉〉)∗, (A14)

where T swaps bitstrings between the two copies of the
Hilbert space. When ρ is a physical Hermitian state, Eq. (A14)
provides a condition on the vectorized form of the state.
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APPENDIX B: CHANNEL GAPS

A monitored quantum circuit’s saturation time scaling is
particularly transparent in the quantum channel picture. The
entire spectrum of any quantum channel E is contained in the
unit disk of C [49]. If {Vk} is a (generally nonorthonormal)
eigenbasis for E with corresponding eigenvalues {λk}, then
any initial state ρ0 can be written as

ρ0 =
∑

k

akVk, (B1)

and after M time steps:

EM (ρ0) =
∑

k

λM
k akVk. (B2)

One or more λk will satisfy |λk| = 1, so as M → ∞ the steady
state is given by

EM (ρ0) =
∑

k:|λk |=1

λM
k akVk, (B3)

and the remaining unsteady contributions to the state will
shrink as ∑

k:|λk |<1

λM
k akVk = |λ|M

∑
k:|λk |<1

(
λk

|λ|
)M

akVk, (B4)

where λ is the largest eigenvalue satisfying |λ| < 1. Since
|λ| < 1, there is a gap � between |λ| and the largest eigen-
value 1. Generically, this gap could depend on system size, so
the unsteady parts of the initial state fall off with

|λ|M = (1 − �(L))M, (B5)

meaning that M = O(�(L)−1) time steps are required to en-
sure that these unsteady parts become arbitrarily small.

In other words, the saturation time for a channel E scales
with the inverse of the gap between 1 and the next largest
eigenvalue of E , or with the inverse of the gap in the non-
Hermitian “Hamiltonian”:

H = 1 − E . (B6)

As noted in Sec. III B 2, there exist exceptions to this analysis
(like that explored in the context of Lindblad evolution in
Ref. [48]) that arise from the non-Hermiticity of H .

APPENDIX C: ZiZj CORRELATIONS IN PERTURBED
DYNAMICS WITH U (1) SYMMETRY

In this Appendix C, we calculate Tr[Sz
i Sz

jρ(L, pz )] for i �=
j, where ρ(L, pz ) is the steady state of the perturbed dynamics
with U (1) symmetry in a given charge sector. We will first
show that this expectation value is independent of i and j, and
then we will use this to derive the value for all i �= j.

Using the doubled Hilbert space formalism of Appendix A,
we can write

Tr
[
Sz

i Sz
jρ(L, pz )

] = 〈〈
Sz

i Sz
j

∣∣ρ(L, pz )
〉〉
, (C1)

where, taking {|bi〉}2L

i=1 to be the set of computational basis
states, 〈〈

Sz
i Sz

j

∣∣ =
∑
m,n

〈〈
bmbn

∣∣(Sz
i Sz

j

)∗
mn (C2)

=
∑

m

〈〈bmbm| 〈bm| Sz
i Sz

j |bm〉, (C3)

since Sz
i Sz

j is diagonal in the computational basis.

When we set px = py = 0, the perturbed channel is given
by

C ′ = 1

L − 1

L−1∑
i=1

ps
[
(�+

i,i+1)⊗2 + (
σ z

i �−
i,i+1

)⊗2]

+ 1

2L

L∑
i=1

pz
[
1⊗2 + (

σ z
i

)⊗2]
. (C4)

Defining �Z⊗Z±
i = (1 ± (σ z

i )⊗2)/2, we can rewrite this chan-
nel as

C ′ = 1

2

1

L − 1

L−1∑
i=1

ps
[
�Z⊗Z+

i

(
1⊗2 + SWAP⊗2

i,i+1

)
+ �Z⊗Z−

i (SWAPi,i+1 ⊗ 1

+ 1 ⊗ SWAPi,i+1)] + 1

L

L∑
i=1

pz�
Z⊗Z+
i . (C5)

Given an initial state |ρ0〉〉 with charge Q, the repeated appli-
cation of C ′ will yield the steady state of the channel in that
charge sector:

|ρ(L, pz )〉〉 = lim
T →∞

(C ′)T |ρ0〉〉. (C6)

Therefore,〈〈
Sz

i Sz
j

∣∣ρ(L, pz )
〉〉 = lim

T →∞
〈〈

Sz
i Sz

j

∣∣(C ′)T |ρ0〉
〉
. (C7)

To calculate this, we can consider the action of C ′ to the
left on 〈〈Sz

i Sz
j |. This is vastly simplified by noting that

〈〈bmbm|(σ z
i )⊗2 = 〈〈bmbm| for all computational basis states

|bm〉, so

〈〈bmbm|�Z⊗Z+
i = 〈〈bmbm| (C8)

and

〈〈bmbm|�Z⊗Z−
i = 0. (C9)

Consequently,

〈〈bmbm|C ′ = 〈〈bmbm|C̃ ′ (C10)

for all bm, where

C̃ ′ = 1 + pz

2
+ 1 − pz

2

1

L − 1

L−1∑
i=1

SWAP⊗2
i,i+1. (C11)

Also, since 〈〈bmbm|SWAP⊗2
i,i+1 = 〈〈bnbn| for some n [where

bn is obtained from bm by swapping its ith and (i + 1)th
bits], it follows that 〈〈bmbm| remains in the subspace spanned
by {〈〈bibi|}2L

i=1 when multiplied by C ′. Therefore, the same
simplification holds for repeated application of C ′, so

〈〈bmbm|(C ′)T = 〈〈bmbm|(C̃ ′)T (C12)

and, consequently,〈〈
Sz

i Sz
j

∣∣(C ′)T = 〈〈
Sz

i Sz
j

∣∣(C̃ ′)T . (C13)

The matrix C̃ ′ is Hermitian (even though the original channel
matrix C ′ was not) so its left eigenvectors and right eigenvec-
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tors are equal. Furthermore, it is the matrix corresponding to
a quantum channel,5 so it must have at least one steady state.

In fact, in the subspace spanned by {〈〈bibi|}2L

i=1, there is ex-
actly one steady state of C̃ ′ in each charge sector. This steady
state should be an eigenvector of SWAP⊗2

i,i+1 with eigenvalue
+1 for all i. Since 〈bn| SWAPi j |bm〉 is always 0 or 1, it follows
that

〈〈bnbn|SWAP⊗2
i j |bmbm〉〉 = 〈bn| SWAPi j |bm〉2 (C14)

= 〈bn| SWAPi j |bm〉. (C15)

Therefore, SWAP⊗2
i j has the same matrix elements in the

space spanned by {〈〈bibi|}2L

i=1 as SWAPi j does in the original
single-copy Hilbert space, of which the space spanned by
{〈〈bibi|}2L

i=1 is a repetition code. Considering the single-copy
Hilbert space, we saw in Sec. III B 1 that only states with
maximal total spin are even under SWAPi,i+1 for all i. It
follows that in the repetition code, the steady states are〈〈

L

2
, Q

∣∣∣∣ ∝
∑

m:w(bm )=N

〈〈bmbm|, (C16)

where N = Q + L
2 is the total number of spins pointing up (in

the +z direction) and w(bm) counts the number of up spins in
the computational basis state |bm〉. It follows that〈〈

Sz
i Sz

j

∣∣ρ(L, pz )
〉〉 = lim

T →∞
〈〈

Sz
i Sz

j

∣∣(C ′)T |ρ0〉
〉

(C17)

= lim
T →∞

〈〈
Sz

i Sz
j

∣∣(C̃ ′)T |ρ0〉
〉

(C18)

∝
〈〈

L

2
, Q

∣∣∣∣ρ0

〉〉
. (C19)

As a result, we conclude that this expectation value is inde-
pendent of i and j.

Now we are ready to finish our calculation. Since
(
∑L

i=1 Sz
i )ρ(L, pz ) = Qρ(L, pz ), it follows that

Q2 = Tr

⎡
⎣( L∑

i=1

Sz
i

)2

ρ(L, pz )

⎤
⎦ (C20)

= L

4
+ L(L − 1)Tr

[
Sz

i Sz
jρ(L, pz )

]
, (C21)

using our result that Tr[Sz
i Sz

jρ(L, pz )] is independent of i and
j. Rearranging this, we find that

Tr
[
Sz

i Sz
jρ(L, pz )

] = 4Q2 − L

4L(L − 1)
. (C22)

We note that this result is independent of pz.

APPENDIX D: STEADY STATE ENTANGLEMENT

As stated in Sec. III B 1, we find that the steady state of
the baseline model has logarithmic entanglement when the
initial state lies in a single charge sector with Q = qL and

5More specifically, the channel matrix in Eq. (C11) corresponds to
a model where SWAP is measured at a random bond with probability
1 − pz and nothing occurs with probability pz.

q satisfying − 1
2 < q < 1

2 . When Q is held fixed with respect
to system size, the steady state has area-law entanglement.
In this Appendix D, we derive these results for bipartitions
of the system into regions A and B, where A contains the
first |A| spins and B contains the remaining |B| spins with
|A| + |B| = L.

1. Determining the reduced density matrix

Let N = Q + L
2 be the number of spins pointing up (in the

z direction). Then the steady state is

|ψ〉 = 1√
N

∑
b:w(b)=N

|b〉, (D1)

where the sum is over bitstrings denoting up and down spins,
with w(b) counting the number of up spins. There are

(L
N

)
such bitstrings, so N = (L

N

)
. Since the state’s entanglement is

unchanged if we flip each bit, we need only consider N � L
2 .

Focusing on the left part of the system, we have

〈bA| ρA|b′
A〉 =

∑
b′′

〈bAb′′
B| ρ|b′

Ab′′
B〉 (D2)

= 1

N
∑
c,c′

w(c)=w(c′ )=N

∑
b′′

〈bAb′′
B|c〉〈c′|b′

Ab′′
B〉 (D3)

= 1

N
∑
cA,c′

A
w(cA )=w(c′

A )

( |B|
N − w(cA)

)
〈bA|cA〉〈c′

A|b′
A〉

(D4)

= δw(bA ),w(b′
A )

( |B|
N−K

)
(L

N

) , (D5)

where K = w(bA). The final line follows since w(cA) =
w(c′

A) forces w(bA) = w(b′
A) for nonzero terms. It follows

that

ρA =
min(|A|,N )⊕

K=0

ρ
(K )
A (D6)

=
min(|A|,N )⊕

K=0

( |B|
N−K

)
(L

M

)
⎛
⎜⎝1 . . . 1

...
. . .

...

1 . . . 1

⎞
⎟⎠

(|A|
K )×(|A|

K )

. (D7)

The sum over sectors is from the minimum possible number
of up spins in A [which is max(0, N − |B|)] to the maximum
possible number [min(|A|, N )]. But since we can calculate the
entanglement entropy equivalently from ρA or ρB, we can pick
|A| � L

2 and |B| � L
2 which, having already chosen N � L

2 ,
reduces the lower bound to 0 without loss of generality.

The n × n all-ones matrix has spectrum {n, 0, . . . , 0}, so
the nonzero elements of the spectrum of ρA are

pK =
(|A|

K

)( |B|
N−K

)
(L

N

) (D8)
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for K from 0 to min(|A|, N ). It follows that

S(ρA) = −
min(|A|,N )∑

K=0

pK ln pK . (D9)

2. Simplifying and bounding the entanglement

If we define intensive quantities such that |A| = aL, |B| =
bL, N = nL, and K = kL, and define �k = 1

L , then we arrive
at

S(ρA) = −L
L min(a,n)∑

K=0

(�k) pk ln pk, (D10)

where

pk =
(aL

kL

)( bL
(n−k)L

)
( L

nL

) . (D11)

According to Stirling’s formula, the following asymptotic re-
lation holds:

x! ∼
√

2πx
(x

e

)x
. (D12)

Applying this formula to the combinatorial factors in pk

yields, after a straightforward calculation,

ln pk ∼ f (k)L − 1
2 ln 2πL + 1

2 g(k) + O(L−1), (D13)

where

f (k) = a ln a + b ln b + n ln n + (1 − n) ln(1 − n)

− k ln k − (a − k) ln(a − k)

− (n − k) ln(n − k) − (b − n + k) ln(b − n + k)
(D14)

and

g(k) = ln a + ln b + ln n + ln(1 − n) − ln k

− ln(a − k) − ln(n − k) − ln(b − n + k). (D15)

If we define the additional shorthand

h(k) = e
1
2 g(k)( f (k)L − 1

2 ln 2πL + 1
2 g(k)

)
, (D16)

then

pk ln pk ∼
√

1

2πL
eL f (k)h(k). (D17)

We note that f (k) is always nonpositive, which prevents
Eq. (D17) from diverging exponentially with L. We verify this
below when we find [in Eq. (D32)] that the maximum value
of f (k) is 0.

ln

FIG. 9. Values of −pK ln pK [summands in Eq. (D9)] for a sys-
tem with L = 100, partitioned in two equal halves (|A| = |B| = L/2),
over a range of fillings. The maximum value of this function, which
is e−1, is plotted for reference. It turns out that pK is invariant under
|A| ↔ N , so this plot can also be viewed as depicting −pK ln pK for
a system at half filling over a range of partition sizes.

In what follows, we seek to apply this approximation
to Eq. (D10) and to approximate that sum as an integral,
in order to analytically extract leading order behavior in
L. Doing this rigorously requires some care: we will sand-
wich the entanglement between two Riemann sums related to
Stirling’s approximation and show that each converges to a
well-behaved integral in the thermodynamic limit.

But it is not surprising that the integrals we encounter
converge and are well-behaved. The entanglement density
σ (ρA) = S(ρA)/L must satisfy 0 � σ (ρA) � a ln 2 because
the entanglement is non-negative and the maximally mixed
reduced density matrix on |A| sites has entropy |A| ln 2. Fur-
thermore, −p ln p always lies within [0, e−1] for p ∈ [0, 1], so
when we view Eq. (D10) as a Riemann sum, its integrand is
always well-behaved. Values of this integrand are depicted in
Fig. 9 for a range of fillings (or, as is explained in the caption,
for a range of partition sizes).

There is a statement related to Stirling’s approximation
which holds that

√
2πx

(x

e

)x
e

1
12x+1 < x! <

√
2πx

(x

e

)x
e

1
12x (D18)

is true for all x � 1 [50]. Consequently,√
1

2πL
e f (k)L+ 1

2 g(k)+r1(k) < pk <

√
1

2πL
e f (k)L+ 1

2 g(k)+r2(k),

(D19)

where

r1(k) = 1

1 + 12aL
+ 1

1 + 12bL
+ 1

1 + 12nL
+ 1

1 + 12(1 − n)L
− 1

12L

(
1

k
+ 1

a − k
+ 1

n − k
+ 1

b − n + k
+ 1

)
, (D20)

r2(k) = 1

12L

(
1

a
+ 1

b
+ 1

n
+ 1

1 − n

)
−
(

1

1 + 12kL
+ 1

1 + 12(a − k)L
+ 1

1 + 12(n − k)L
+ 1

1 + 12(b − n + k)L
+ 1

1 + 12L

)
,

(D21)
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so

pk ln pk >

√
1

2πL
eL f (k)er1(k)(h(k) + e

1
2 g(k)r1(k)), (D22)

pk ln pk <

√
1

2πL
eL f (k)er2(k)(h(k) + e

1
2 g(k)r2(k)). (D23)

We further define

h̃i(k) = h(k) + e
1
2 g(k)ri(k), (D24)

Si(ρA) = −
√

L

2π

L min(a,n)∑
K=0

(�k)e f (k)Lh̃i(k)eri (k), (D25)

so

S1(ρA) < S(ρA) < S2(ρA). (D26)

For fixed L, each Si(ρA) is a Riemann sum, whose distance
from the corresponding integral is given by∣∣∣∣∣ −

√
L

2π

∫ min(a,n)

k=0
dke f (k)Lh̃i(k)eri (k) − Si(ρA)

∣∣∣∣∣ (D27)

� Mi min(a, n)

2L
(D28)

where Mi is the maximum value of

d

dk
(e f (k)Lh̃i(k)eri (k)) (D29)

over the interval. If we can show that limL→∞ Mi
L = 0, then we

will have proven that the sums for Si(ρA) can be replaced by
integrals. To do this, we first note that

d

dk
(e f (k)Lh̃i(k)eri (k)) = e f (k)L(L f ′(k)h̃i(k)eri (k) (D30)

+ h̃′
i(k)eri (k) + h̃i(k)r′

i (k)eri (k) ). (D31)

Focusing on f (k), we find that it is maximized at k∗ = an,
which always lies in the interval because a, n < 1, so an <

min(a, n). At this maximum, we find that f (k∗) = 0. There-
fore, if k �= k∗ then Mi will have a negative exponential in L
that will dominate, for large L, over the subexponential orders
in L coming from the other factors. We conclude that Mi must
occur at k = k∗. It will be useful for what follows to find the
leading order values of several functions at this point. First,
we have

f (k∗) = 0, (D32)

f ′(k∗) = 0, (D33)

f ′′(k∗) = −[abn(1 − n)]−1, (D34)

and

g(k∗) = − ln (abn(1 − n)), (D35)

g′(k∗) = (2n − 1)(b − a)

abn(1 − n)
, (D36)

g′′(k∗) = (1 − 2ab)(1 − 2n(1 − n))

[abn(1 − n)]2
. (D37)

Also, ri(k∗), r′
i (k∗), and r′′

i (k∗) are all O(L−1). Building the
more complicated functions from these, we find that

h(k∗) = 1√
abn(1 − n)

(
−1

2
ln 2πL − 1

2
ln(abn(1 − n))

)
(D38)

= − ln L

2
√

abn(1 − n)
− ln (2πabn(1 − n))

2
√

abn(1 − n)
, (D39)

h′(k∗) = 1

2
g′(k∗)(h(k∗) + e

1
2 g(k∗ )) (D40)

= (2n − 1)(2a − 1) ln L

4(abn(1 − n))3/2 + O(1), (D41)

h′′(k∗) = e
1
2 g(k∗ )

[
f ′′(k∗)L − 1

2
g′′(k∗) − 1

4
g′(k∗)2

]

+ 1

2
g′′(k∗)h(k∗) + 1

2
g′(k∗)h′(k∗) (D42)

= − L

(abn(1 − n))3/2 + O(ln L), (D43)

and that h̃i(k∗), h̃′
i(k∗), and h̃′′

i (k∗) match these values at the
orders given in Eqs. (D39), (D41), and (D43).

Having laid this groundwork, we conclude that

Mi =
[

h′(k∗) + e
1
2 g(k∗ )

(
1

2
g′(k∗)ri(k∗) + r′

i (k∗)
)

+ (h(k∗) + e
1
2 g(k∗ )ri(k∗))r′

i (k∗)

]
eri (k∗ ) (D44)

= (2n − 1)(2a − 1) ln L

4(abn(1 − n))3/2 + O(1). (D45)

It follows that

lim
L→∞

Mi min(a, n)

2L
= 0, (D46)

so

Si(ρA) = −
√

L

2π

∫ min(a,n)

k=0
dke f (k)Lh̃i(k)eri (k). (D47)

Using Laplace’s method, we will show that S1(ρA) = S2(ρA)
to leading order and next-to-leading order, allowing us to
uniquely determine S(ρA) at these orders.

3. Laplace’s method: Leading order

In the thermodynamic limit, the integral is dominated by
the neighborhood of k = k∗, allowing us to approximate the
integral using Laplace’s method. We change variables to x =
k − k∗ and note that the integral bounds are irrelevant at lead-
ing order as L → ∞ as long as x = 0 remains within them.
Then, to leading order, Laplace’s method yields

Si(ρA) ∼ −
√

L

2π
eL f (k∗ )h̃i(k∗)eri (k∗ )

∫
dxeL( 1

2 f ′′(k∗ )x2 )

(D48)

∼
√

−1

f ′′(k∗)
eL f (k∗ )h̃i(k∗)eri (k∗ ). (D49)
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Applying Eqs. (D32), (D34), and (D39), we find that

Si(ρA) = 1
2 ln L + O(1). (D50)

Consequently, at leading order S1(ρA) = S2(ρA), so we con-
clude that

S(ρA) = 1
2 ln L + O(1). (D51)

This demonstrates the logarithmic scaling of entanglement
entropy for fixed nonextremal charge density.

When N = nL is held fixed instead of n in the thermo-
dynamic limit, this does not apply. In this case, we can
return to the original sum form of the entanglement entropy
given in Eq. (D9). Through our analysis in Appendix D 2,

we learned that pk ln pk ∼
√

1
2πL eL f (k)h(k) is maximized at

k∗ = an. There, it takes the value

pk ln pk ∼ − ln(2πabN )

2
√

2πabN
+ O(L−1) (D52)

when N is held constant in the thermodynamic limit. Since pK

and pk describe the same quantity, just in terms of a different
variable, it follows that

S(ρA) = −
min(|A|,N )∑

K=0

pK ln pK (D53)

� −N max(pK ln pK ) (D54)

�
√

N ln(2πabN )

2
√

2πab
+ O(L−1) (D55)

once L is sufficiently large that min(|A|, N ) = N . As dis-
cussed in Appendix D 1, this same conclusion also applies for
charges L − N , so we conclude that the entanglement grows
as an area law for extremal charges.

4. Laplace’s method: Next-to-leading order

To illustrate numerical agreement at computationally
accessible system sizes, we seek to determine S(ρA) to next-
to-leading order. There is already an O(1) contribution in
Eq. (D39), but there is an additional O(1) contribution that
comes from working to next-to-leading order in Laplace’s
approximation. We do so following Ref. [51]. In general,
Laplace’s method gives the following asymptotic expansion
for any integral bounds containing k∗:∫

dkeL f (k)h̃i(k)eri (k) ∼
√

π

L
eL f (k∗ )

∞∑
j=0

φ(2 j)(0)

22 j j!L j
, (D56)

where

φi(s) = h̃i(k∗ + sv(s))eri (k∗+sv(s))(sv(s))′, (D57)

with v(s) defined such that

f (k∗ + sv(s))

s2
= −1. (D58)

This machinery is set up to transform the exponential in the
integrand into a proper Gaussian so arguments in Eqs. (D48)
and (D49) are made precise. We can determine v(s) order by
order by expanding f (k∗ + sv(s)) about k∗. Determining v(s)

to zeroth order in s is straightforward:

f (k∗ + sv(s)) = 1

2
f ′′(k∗)(sv)2 + O((sv)3), (D59)

so

1

2
f ′′(k∗)v(s)2 = −1 + O(sv3), (D60)

v(0) =
√

−2

f ′′(k∗)
. (D61)

Therefore, we find

φ
(0)
i (0) = h̃i(k∗)eri (k∗ )

√
−2

f ′′(k∗)
, (D62)

which matches our leading order term from Appendix D 3. For
our next-to-leading order calculation, we need to find φ(2)(s).
First, we note that

φ
(1)
i (s) = h̃ie

ri (sv)′′ + (h̃ie
ri )′[(sv)′]2, (D63)

where h̃i and ri are evaluated at k = k∗ + sv(s). It follows that

φ(2)(s) = (h̃ie
ri )(sv)′′′ + 3(h̃ie

ri )′(sv)′(sv)′′

+ (h̃ie
ri )′′[(sv)′]3, (D64)

φ(2)(s) = (h̃ie
ri )(3v′′ + sv′′′) + 3(h̃ie

ri )′(v′ + sv)(2v′ + sv′′)

+ (h̃ie
ri )′′[v + sv′]3, (D65)

φ(2)(0) = 3(h̃ie
ri )|s=0v

′′(0) + 6(h̃ie
ri )′|s=0v

′(0)2

+ (h̃ie
ri )′′|s=0v(0)3. (D66)

The φ(2)(0) contribution enters Eq. (D56) suppressed by a
factor of L−1, so O(1) contributions will only come from
terms in φ(2)(0) that are O(L). We have already seen from
Eqs. (D39) and (D41) that h(k∗) and h′(k∗) are O(ln L), and

FIG. 10. Steady-state half-chain entanglement at half filling (a =
b = n = 1

2 ) in the baseline model. Alongside the numerical MPS
data are two lines: the exact prediction from Eq. (D9) for the half-
chain entanglement of the state in Eq. (D1), and the asymptotic
scaling given in Eq. (D74). We observe that the exact prediction and
asymptotic scaling converge for large L and appear consistent with
the numerical MPS data.
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since g(n)(k∗) is O(1) and ri(k∗) and r′
i (k∗) are O(L−1), it

follows that (h̃ieri ) and (h̃ieri )′ are O(ln L) at k = k∗. Also,
since v(n)(0) can be calculated exclusively in terms of f (n)(k∗),
which are independent of system size, v(n)(0) = O(1). Conse-
quently, (h̃ieri )′′v(0)3 is the only O(L) contribution to φ(2)(0).
More explicitly:

(h̃ie
ri )′′|s=0 = eri (k∗ )(h̃′′

i (k∗) + 2h̃′
i(k∗)r′

i (k∗)

+ h̃i(k∗)((r′
i (k∗))2 + r′′

i (k∗)). (D67)

Noting that r′′
i (k∗) is also O(L−1), we conclude that only

eri (k∗ )h̃′′
i (k∗) can provide O(L) contributions, so

(h̃ie
ri )′′|k=k∗ = h′′

i (k∗) + O(ln L) (D68)

= − L

(abn(1 − n))3/2 + O(ln L). (D69)

We find that

v(0)3 = (2abn(1 − n))3/2, (D70)

so

φ(2)(0) = −23/2L + O(ln L) (D71)

and

S(ρA) = 1

2
(ln L + ln(2πabn(1 − n)))

+ 1√
2

23/2L

4L
+ O

(
ln L

L

)
(D72)

= 1

2
ln L + 1

2
(ln(2πabn(1 − n)) + 1)

+ O

(
ln L

L

)
. (D73)

This asymptotic scaling is compared to the exact result and to
numerical data in Fig. 10, and the leading order contribution
agrees with results for the ideal Bose gas [47].
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