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We study the possible signatures of prethermal strong Hilbert space fragmentation (HSF) for one-dimensional
(1D) fermions subjected to a periodic drive. We extend the results of Ghosh et al. [Phys. Rev. Lett. 130, 120401
(2023)] to show the possibility of such fragmentation for a large class of experimentally relevant drive protocols.
Moreover, we demonstrate the persistence of HSF when the fermion chain is taken away from half filling.
Both analyses indicate the robustness of the fragmentation phenomenon reported earlier. We also provide an
alternate derivation of the Floquet Hamiltonian of the driven chain which yields insight into the generic nested
commutator structure of its higher order terms. Finally, we study the density-density out-of-time-correlators
(OTOC) of the driven chain both away and near the special drive frequencies at which its first-order Floquet
Hamiltonian exhibits fragmentation. We show that these OTOCs, for a chain with open boundary conditions,
exhibit a distinct periodic unscrambling of information at special drive frequencies; such unscrambling can
therefore serve as a marker of prethermal HSF. We provide an approximate analytic explanation of the role of
HSF behind such periodic unscrambling and discuss experiments which can detect signatures of strong HSF in
such driven chains.
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I. INTRODUCTION

Closed quantum systems driven out of equilibrium have
become an increasingly important subject of research in re-
cent years [1–3]. One of the central questions in this field
pertains to the long-time behavior of the local correlation
functions of these systems. In most cases, the behavior
of such correlation functions can be understood from the
eigenstate thermalization hypothesis (ETH) [4,5]. ETH pre-
dicts eventual thermalization, under unitary Hamiltonian
dynamics, of a generic many-body quantum state which
can initially be far from equilibrium; it is one of the cen-
tral paradigms for understanding long-time behavior of a
generic ergodic many-body system. ETH also holds, with
minor modifications, for periodically driven systems, where
the driven system is ultimately expected to heat to infinite
temperature [6].

ETH relies on the ergodicity of a generic quantum system
and is known to fail when it is violated. Such an ergod-
icity violation can occur in integrable models due to the
presence of a large number of conserved quantities [1]. In
addition, it fails in the presence of strong disorder, leading
to many-body localization and consequent violation of er-
godicity [7–9]. A more subtle and weaker failure of ETH
occurs due to emergent symmetry sectors in otherwise generic
quantum systems. The presence of such symmetries typically
leads to a tower of states which are protected from the other
thermal states in its Hilbert space. Thus, any quantum dy-
namics starting from an initial state which belongs to this
sector cannot thermalize; such states are often called quantum
scars [10–14]. The violation of ETH in this case is weak
since it only happens if the initial state has large overlap
with the states in the scar sector. The number of such states

for a one-dimensional (1D) system of length L is typically
O(L); they form a tiny fraction of the total number of states
in the Hilbert space, which is O(eL ). Thus, these systems
display ETH violating dynamics for a small fraction of initial
states.

Another, recently found, violation of ETH occurs in non-
integrable quantum systems due to the presence of kinetic
constraints. The Hamiltonian of such quantum systems, ex-
pressed as a matrix in the computational basis, breaks down
into an exponentially large number of dynamically discon-
nected fragments. The presence of such a large number of
disconnected sectors is to be contrasted with those occur-
ring from the presence of conserved global quantities; the
latter only leads to an O(L) disconnected symmetry sec-
tor. This phenomenon is known as strong Hilbert space
fragmentation (HSF) [15–19]. Such a strong fragmentation
naturally breaks ergodicity since any generic initial state,
which belongs to a given fragment, cannot, under the ac-
tion of the system Hamiltonian, explore states in the Hilbert
space that belong to other fragments. Most of the Hamil-
tonians studied in this context are 1D spin or fermionic
models [15–18]; however, more recently, some higher-
dimensional models have also been shown to exhibit strong
HSF [19].

More recently, the generalization of strong HSF to peri-
odically driven quantum systems has been studied [20]. It
has been shown that a periodically driven fermionic chain
can show the signatures of Hilbert space fragmentation at
special drive frequencies over a large prethermal timescale;
the extent of this prethermal timescale depends on the drive
amplitude and can be quite large in the large drive amplitude
regime. The signatures of such prethermal fragmentation can
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be found in entanglement entropy, autocorrelation function,
and equal-time correlators of such driven systems; each of
these quantities show a departure from their counterparts in
ergodic quantum systems [20], demonstrating a clear realiza-
tion of prethermal strong HSF. In addition, such prethermal
HSF in driven quantum systems can lead to interesting os-
cillatory dynamics of correlators for certain initial states,
which has no counterpart for HSF realized in an equilibrium
setting [20].

In this paper, we extend the results obtained in Ref. [20]
in several ways. First, we show that such signatures of frag-
mentation can be obtained for a much wider class of drive
protocols, which allow for the periodic modulation of both the
hopping amplitude and the nearest-neighbor interaction. This
makes the prethermal fragmentation phenomenon much more
relevant to standard experiments using the ultracold atom plat-
form which we discuss. Second, we provide a comprehensive
analysis of the Floquet Hamiltonian. The analytical expres-
sion for the first-order Floquet Hamiltonian, H (1)

F , derived
using Floquet perturbation theory (FPT), was presented in
Ref. [20]; here we provide an alternate derivation of the Flo-
quet Hamiltonian up to second order in perturbation theory.
This analysis provides insight into the commutator structure
of the higher order terms that was not apparent from the pre-
vious derivation. It also provides an estimate of the frequency
range over which the first-order Floquet Hamiltonian provides
a qualitatively accurate description of the dynamical evolution
in the prethermal regime. Third, we show that the signature of
fragmentation persists when the driven chain is taken away
from half filling. This shows the robustness of the prethermal
fragmentation phenomenon and points out the possibility of
its experimental realization for a wide range of fermion filling
fraction.

Finally, we study the density-density out-of-time correlator
(OTOC) for the driven fermion chain. OTOCs are known
to probe the rate of spread of local information in quan-
tum systems. In quantum systems which have a well-defined
semiclassical limit which is chaotic, it is possible to iden-
tify a Lyapunov exponent which dictates the behavior of the
OTOC at initial times [21,22]. In ergodic systems, the OTOCs
spread ballistically with a butterfly velocity accompanied by
a diffusive front [23]. In systems which are nonergodic, the
behavior of the OTOC ranges from logarithmic growth in
many-body localized systems to alternate scrambling and
unscrambling in integrable systems [24,25]. Recently connec-
tions between spectral form factors (SFFs) and OTOC has
also been established [26]. We show that the behavior of
such an OTOC is qualitatively different at special frequencies
at which the system exhibits signatures of prethermal HSF.
In particular, for a driven fermion chain with open bound-
ary conditions (OBCs), we find, starting from an initial Z2

state, unscrambling of information manifested through pe-
riodic revival of the OTOC. We analyze this phenomenon
in detail, provide an analytic, albeit qualitative, understand-
ing of its mechanism, and tie it to the fragmented structure
of the first-order Floquet Hamiltonian, H (1)

F , of the driven
chain obtained using FPT. Our results thus demonstrate that
OTOCs can server as markers for prethermal HSF in a driven
system.

The organization of the rest of this paper is as follows.
In Sec. II, we present a derivation of the Floquet Hamilto-
nian which brings out its nested commutator structure. Next,
in Sec. III, we discuss the different classes of drive proto-
cols which allow for signatures of prethermal fragmentation
and also derive the higher order Floquet Hamiltonian corre-
sponding to them. This is followed by Sec. IV, where we
demonstrate a signature of prethermal HSF away from half
filling. Next, in Sec. V, we discuss the behavior of OTOC
in such driven systems. Finally, we discuss our main results
and conclude in Sec. VI. Some details of the calculation are
presented in the Appendixes.

II. FORMALISM

In this section, we outline the derivation of the Floquet
Hamiltonian of the driven fermion chain. Our derivation
brings out the nested commutator structure of the Floquet
Hamiltonian and also addresses a more general class of drive
protocols for which the fermion chain exhibits prethermal
HSF.

A. Preliminary

Consider a time-dependent quantum mechanical system
described by the Hamiltonian

H(t ) = H0(t ) + H1, (1)

where all the time dependence is in the zeroth order term H0.
The term H1, which in the following will be treated pertur-
batively, has no explicit time dependence. From Schrodinger
equation ih̄∂tψ (t ) = [H0(t ) + H1]ψ (t ), and the definition of
the time evolution operator U (t, 0) via ψ (t ) = U (t, 0)ψ (0),
we get

ih̄
∂

∂t
U (t, 0) = [H0(t ) + H1]U (t, 0). (2)

The evaluation of U (t, 0) can be broken into two steps. To
do so, we write [27–30]

U (t, 0) = U0(t, 0)W (t, 0), (3)

where U0(t, 0) is the exact time evolution operator in the
absence of the H1 term. The first step, which is simple, is to
evaluate U0(t, 0), which is given by

U0(t, 0) = exp[− i

h̄

∫ t

0
dτH0(τ )]. (4)

In the above, the time ordering in front of the exponential
can be omitted since the operator H0(τ ) at different times
commute. The second step, which is nontrivial, is to compute
W (t, 0) that encodes the time evolution due to H1. This is
performed perturbatively. Using i∂tU0(t, 0) = H0U0(t, 0) and
Eqs. (2) and (3), we get

ih̄
∂

∂t
W (t, 0) = Hp(t )W (t, 0), (5)

where

Hp(t ) ≡ U0(t, 0)−1H1U0(t, 0). (6)

214304-2



SIGNATURES OF FRAGMENTATION FOR PERIODICALLY … PHYSICAL REVIEW B 109, 214304 (2024)

Using Eq. (5), the perturbative expansion is

W (t, 0) = 1 −
(

i

h̄

) ∫ t

0
dτHp(τ ) +

(
− i

h̄

)2 ∫ t

0
dτ1Hp(τ1)

×
∫ τ1

0
dτ2Hp(τ2) +

(
− i

h̄

)3 ∫ t

0
dτ1Hp(τ1)

×
∫ τ1

0
dτ2Hp(τ2)

∫ τ2

0
dτ3Hp(τ3) + · · · . (7)

Note, in the above, the operator Hp(τ ) at different times do
not commute.

The above formulation can also be viewed as a series
expansion in a rotating frame for the following reason. Con-
sider a time-dependent unitary transformation V (t ) between
a laboratory to a rotating reference frame with the initial
condition V (0) = 1. The wave function in the rotating frame
is ψr (t ) = V †(t )ψ (t ), and an operator in the same frame is
Or (t ) = V †(t )OV (t ), where ψ (t ) and O are the wave func-
tion and the operator in the laboratory frame, respectively.
Simultaneously, the Hamiltonian H(t ) in the laboratory frame
transforms to Hr (t ) in the rotating frame. By demanding that
ih̄∂tψr (t ) = Hr (t )ψr (t ), we get

Hr (t ) = V †(t )H(t )V (t ) − ih̄V †(t )V̇ (t ), (8)

where V̇ ≡ ∂tV (t ). Furthermore, if we define the time
evolution operator Ur (t1, t2) in the rotating frame by
ih̄∂t1Ur (t1, t2) = Hr (t1)Ur (t1, t2), then it is related to that in
the laboratory frame by

U (t1, t2) = V (t1)Ur (t1, t2)V †(t2). (9)

The connection between the two formulations is made if we
choose the time-dependent unitary transformation to be

V (t ) = exp[− i

h̄

∫ t

0
dτH0(τ )], (10)

such that the H0(t ) term is “gauged out” in the rotating frame.
In this case, Hr (t ) coincides with Hp(t ) given by Eq. (6),
Ur (t, 0) with W (t, 0), and Eqs. (3) and (9) become identical
with t2 = 0.

However, note that the first formulation is more versatile in
the sense that it can still be used when H1 is the zeroth order
term and H0 is perturbative. In this case, we simply exchange
H0(t ) ↔ H1 in Eqs. (4) and (6). The resulting expansion will
not match with that in the rotating frame.

B. Floquet perturbation theory

Until now, the discussion has been general, and it ap-
plies to all time-dependent problems. In the particular case
of a Floquet system, where the time dependence is due
to a periodic external drive, we are interested in the stro-
boscopic time evolution operator U (T, 0), where T is the
period of the drive. The related Floquet Hamiltonian is
defined by

HF ≡ ih̄

T
ln U (T, 0) = ih̄

T
ln[U0(T, 0)W (T, 0)]. (11)

We suppose that there is a small parameter that jus-
tifies the expansion W (T, ) = 1 + W1(T ) + W2(T ) + · · · ,
and correspondingly HF = H(0)

F + H(1)
F + H(2)

F + · · · . Then,

using Eq. (7) and after some algebra, the first few
terms in the expansion of the Floquet Hamiltonian are
given by

H(0)
F = ih̄

T
ln U0(T, 0), (12)

H(1)
F = ih̄

T
W1(T ) = 1

T

∫ T

0
dτHp(τ ), (13)

H(2)
F = ih̄

T

[
W2(T ) − 1

2
W1(T )2

]

= −i

2h̄T

∫ T

0
dτ1

∫ τ1

0
dτ2[Hp(τ1),Hp(τ2)], (14)

H(3)
F = ih̄

T

[
W3(T ) − 1

2
(W1(T )W2(T ) + W2(T )W1(T ))

+1

3
W1(T )3

]

= − 1

6h̄2T

∫ T

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3{[Hp(τ1),

× [Hp(τ2),Hp(τ3)]] + [[Hp(τ1),Hp(τ2)],Hp(τ3)]}.
(15)

Equations (12)–(15) indicate the nested commutator structure
of the higher-order terms of the Floquet Hamiltonian; we shall
use them for explicit computation of HF in Sec. III.

III. COMPUTATION OF THE FLOQUET HAMILTONIAN

In this section, we first provide analytical results for higher
order terms in the Floquet Hamiltonian for a cosine drive
protocol in Sec. III A. This is followed, in Sec. III B, by a
derivation and analysis of the first-order Floquet Hamiltonian
H (1)

F for a more general drive protocol.

A. Cosine modulation of interaction

Consider a driven system described by Eq. (1), where

H0(t ) = V1 cos ωDt
∑

i

n̂in̂i+1, (16)

H1 =
∑

i

[−J (c†
i ci+1 + H.c.) + V0n̂in̂i+1 + V2n̂in̂i+2], (17)

with V1 � (J,V0,V2). Thus, in the following, we treat the H0

term exactly, and H1 perturbatively.
Following Sec. II, we have, using Eq. (4),

U0(t, 0) = exp[−iλB̂ sin ωDt], (18)

where λ ≡ V1/(h̄ωD) is a dimensionless parameter and B̂ ≡∑
j n̂ j n̂ j+1.
The next step is to compute Hp(t ) using Eq. (6). As an

intermediate step, we find

[B̂,H1] = −J
∑

i

Âi(c
†
i ci+1 − c†

i+1ci ), (19)

[B̂, [B̂,H1]] = −J
∑

i

Â2
i (c†

i ci+1 + c†
i+1ci ), (20)

and so on, where

Âi = n̂i−1 − n̂i+2. (21)
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Using these relations, we obtain

Hp(t ) = exp[iλB̂ sin ωDt]H1 exp[−iλB̂ sin ωDt] = H1 + iλ sin ωDt[B̂,H1] + 1

2!
(iλ sin ωDt )2[B̂, [B̂,H1]]

+ 1

3!
(iλ sin ωDt )3[B̂, [B̂, [B̂,H1]]] + · · · =

∑
i

[−J (eiλÂi sin ωDt c†
i ci+1 + e−iλÂi sin ωDt c†

i+1ci ) + V0n̂in̂i+1 + V2n̂in̂i+2].

(22)

Using the explicit form of Hp(t ), it is possible to compute
order by order the Floquet Hamiltonian.

The zeroth order Floquet Hamiltonian H(0)
F vanishes be-

cause, from Eq. (18), we have U0(T, 0) = 1.
To compute the first-order Floquet Hamiltonian, we use the

relation

I1(Â, λ) ≡ 1

T

∫ T

0
dτeiλÂ sin(ωDτ )

= J0(λÂ) = (1 − Â2) + Â2J0(λ), (23)

where Jn(x) is a Bessel function of the first kind with integer
order. Using this relation and Eq. (13), we get

H(1)
F =

∑
i

[−JJ0(λÂi )(c
†
i ci+1 + H.c.) + V0n̂in̂i+1 + V2n̂in̂i+2].

(24)

If the drive frequency is tuned to ωm such that λm = V1/(h̄ωm)
coincides with the mth zero of the Bessel function J0, then the
corresponding first order Floquet Hamiltonian is

H(1)
F (λ = λm) =

∑
i

[ − J
(
1 − Â2

i

)
(c†

i ci+1 + H.c.)

+ V0n̂in̂i+1 + V2n̂in̂i+2
]
. (25)

The above defines a model with constrained hopping, where
only those hops are allowed which preserve the total number
of nearest neighbors N̂D ≡ ∑

i n̂in̂i+1. This model is known to
show strong Hilbert space fragmentation [16].

The second-order Floquet Hamiltonian can be broken into
two parts, H(2)

F = H(2a)
F + H(2b)

F , with

H(2a)
F = −i

2h̄T

∫ T

0
dτ1

∫ τ1

0
dτ2[H̃p(τ1), H̃p(τ2)] (26)

and

H(2b)
F = −i

2h̄T

∫ T

0
dτ1

∫ τ1

0
dτ2{[H̃p(τ1), K̂] + [K̂, H̃p(τ2)]}.

(27)

In the above,

H̃p(τ ) ≡ −J
∑

i

(eiλÂi sin ωDτ c†
i ci+1 + H.c.) (28)

and

K̂ =
∑

i

(V0n̂in̂i+1 + V2n̂in̂i+2). (29)

The details of the evaluation of the two parts are given in the
Appendices. The final result is

H(2)
F = 2JC(λ)

h̄ωD

[∑
i

Âi(c
†
i ci+1 − H.c.), H(1)

F

]
, (30)

where

C(λ) ≡
∞∑

k=0

J2k+1(λ)

2k + 1
.

This concludes our derivation of the Floquet Hamiltonian
for the cosine protocol. We note that H(2)

F does not respect the
constrained hopping structure of H(1)

F and therefore destroys
HSF in the driven model beyond a prethermal timescale;
below this timescale, H(1)

F dominates the dynamics leading
to prethermal realization of HSF. This prethermal timescale
during which fragmentation is observed can be estimated
following the argument in Ref. [31], which states that the ther-
malization time scales exponentially with the drive frequency.
This is related to the timescale during which the dynamics
can be described by a local Hamiltonian obtained from a finite
order in Magnus expansion. We have argued in the previous
section that the perturbation expansion we use is equivalent
to a Magnus expansion in a rotated frame. The Hamiltonian
in the rotated frame has the same periodicity as the original
Hamiltonian. Thus, we can use the same argument to deduce
that the thermalization timescale will scale exponentially with
the drive frequency and hence with the drive amplitude. This
exponential scaling was shown in Ref. [20]. However, since
this is an exponential scaling, no reliable estimate of the extent
of the prethermal regime can be obtained from a second-order
perturbative analysis.

B. An experimentally relevant drive protocol

A possible realization of a standard fermion chain where
coherent quantum dynamics can be studied involves ultra-
cold atom platforms [32,33]. In such realizations, both the
hopping amplitude and the nearest-neighbor interaction be-
tween the fermions depend on the strength of the external
lasers; therefore, it is difficult to dynamically alter one, keep-
ing the other fixed. Therefore, an experimental realization
of strong HSF would require a protocol which allows for
simultaneous variation of both the hopping and the interaction
strength.
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To take such simultaneous variations into account, we now
consider a fermionic chain with the Hamiltonian

H = −J (t )
∑

j

(c†
j c j+1 + H.c.) + (V0 + V (t ))

∑
j

n̂ j n̂ j+1

+V2

∑
j

n̂ j n̂ j+2, (31)

where J (t ) and V (t ) are amplitudes of nearest-neighbor
hopping and interactions, respectively, V2 � |V (t )| is the am-
plitude of the second-neighbor interactions, c j denotes the
fermion annihilation operator on the jth site of the chain, and
n̂ j = c†

j c j is the fermion density operator.
In what follows, we choose a square pulse protocol, so

V (t ) = −V1 t � T/2, = V1 T/2 < t � T, (32)

J (t ) = J1 t � T/2, = J2 T/2 < t � T, (33)

with V1 � J1, J2,V0,V2, so one can reliably apply FPT to
compute the Floquet Hamiltonian. We note that the protocol
given by Eqs. (32) and (33) allows for simultaneous variation
of the hopping and the interaction strengths of the fermions.

To obtain an analytic expression for the first-order Floquet
Hamiltonian, we first write the Hamiltonian given by Eq. (31)
as H = H0 + H1, where H0 = V (t )

∑
j n̂ j n̂ j+1 and

H1 = −J (t )
∑

j

(c†
j c j+1 + H.c.) + V0

∑
j

n̂ j n̂ j+1

+V2

∑
j

n̂ j n̂ j+2. (34)

We then follow the standard procedure and obtain the evo-
lution operator corresponding to the term H0 [27–29]. This
yields

U0(t, 0) = eiV1t
∑

j n̂ j n̂ j+1/h̄ t � T/2

= eiV1(T −t )
∑

j n̂ j n̂ j+1/h̄ T/2 < t � T . (35)

The Floquet Hamiltonian corresponding to U0(T, 0) can be
easily read from Eq. (35) to be identically H (0)

F = 0.
Next, we consider the effect of the terms in H1 using per-

turbation theory. The first-order contribution to the evolution
operator from H1 is given by

U1(T, 0) = −i

h̄

∫ T

0
dt U †

0 (t, 0)H1U0(t, 0). (36)

To obtain the analytic expression of U1(T, 0), we first note
that the interaction terms in H1 [Eq. (34)] commute with U0.
Thus, the contribution of this term to U1 is trivially obtained
and yields

U1a(T, 0) = −iT

h̄

(
V0

∑
j

n̂ j n̂ j+1 + V2

∑
j

n̂ j n̂ j+2

)
. (37)

In contrast, the contribution from the hopping term in H1

requires a more detailed analysis. To this end, using Eq. (35),
we write

U1b(T, 0) = iJ1

h̄

∫ T/2

0
e−iV1t

∑
j n̂ j n̂ j+1/h̄

∑
j

(c†
j c j+1 + H.c.)eiV1t

∑
j n̂ j n̂ j+1/h̄

+ iJ2

h̄

∫ T

T/2
e−iV1T

∑
j n̂ j n̂ j+1/h̄eiV1t

∑
j n̂ j n̂ j+1/h̄

∑
j

(c†
j c j+1 + H.c.)e−iV1t

∑
j n̂ j n̂ j+1/h̄eiV1T

∑
j n̂ j n̂ j+1/h̄, (38)

where we have used Eqs. (32) and (33).
To evaluate Eq. (38), we note that the hopping from site j to j + 1 costs an energy due to the nearest-neighbor interaction

if it changes the number of bonds on the lattice whose both ends have sites occupied by fermions. This allows us to define an
operator

Â j = n̂ j+2 − n̂ j−1, (39)

which takes values ±1 or 0 on any site. The hopping of a fermion from a site j changes the energy due to nearest-neighbor
interaction only if Â j �= 0. This allows us to write

U1b(T, 0) = iJ1

h̄

∫ T/2

0
dt

∑
j

(e−iV1t Â j/h̄c†
j c j+1 + H.c.) + iJ2

h̄

∫ T

T/2
dt

∑
j

(e−iV1(T −t )Â j/h̄c†
j c j+1 + H.c.). (40)

Carrying out the integrals in Eq. (40) and noting that Aj can take values 0 and ±1, we find [20]

U1b(T, 0) = iT

h̄
Js

∑
j

([(
1 − Â2

j

) + Â2
j e

−iV1Â j T/(4h̄) sin V1T/(4h̄)

V1T/(4h̄)

]
c†

j c j+1 + H.c.

)
= −iT Ĵc

h̄
, (41)

where Js = (J1 + J2)/2 and the expression of Ĵc can be read
from Eq. (41). Thus, we find that for

V1 = 2mh̄ωD, (42)

where m ∈ Z , the first-order contribution to U1 occurs only
if Â j = 0. This, in turn, means that the first-order evolution
operator receives a finite contribution from a constrained hop-
ping term which propagates fermion hopping in such systems.
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FIG. 1. (a) Plot of S(nT )/Sp as a function of n at ωD = V1/h̄,
starting from a random Fock state for different values of the drive
amplitude V1. For all values of V1, S(nT ) saturates to Sp. (b) Similar
to (a) but at the special frequency ωD = V1/2h̄. With increase in
V1, S(nT ) saturates to S f

p , the Page value of the fragment of H (1)
F

from which the initial Fock state is chosen, for n � 200. (c) Plot
of the density-density autocorrelator CL (nT ) as a function of n at
ωD = V1/2h̄ starting from a infinite temperature thermal state. In
this case too, the autocorrelator does not reach its thermal value
of zero within the first 500 drive cycles, thus bearing signatures of
prethermal HSF. (d) Value of CL (nT ) after n = 5000 drive cycles as
a function of V1 and h̄ωD/V1. The plot shows two special frequencies
at h̄ωD/V1 = 0.25 and h̄ωD/V1 = 0.5. The time evolutions are per-
formed using the exact unitary evolution operators, corresponding to
drive protocols (32) and (33). The system sizes are L = 16 for plots
(a) and (b) and L = 14 for (c) and (d). For all plots, J1 = J2/3 = 0.5
and V0 = V2 = 2.

This leads to a Floquet Hamiltonian that exhibits Hilbert space
fragmentation similar to that derived in Ref. [20].

The derivation of the first-order Floquet Hamiltonian from
Eqs. (41) and (35) can be carried out in a straightforward
manner [27] and yields

H (1)
F = Ĵc + V0

∑
j

n̂ j n̂ j+1 + V2

∑
j

n̂ j n̂ j+2. (43)

Thus, the fragmentation exhibited by H (1)
F for this protocol

is identical to that found in Ref. [20]. In addition, it also
allows for variation of J , which makes the protocol much less
restrictive compared to its counterpart in Ref. [20].

The corresponding dynamical signatures in the half-chain
entanglement entropy and the density-density autocorrelation
function are shown in Fig. 1. For these plots, we use Eqs. (32)
and (33) and set the hopping amplitudes to J1 = 0.5 for the
first half of the drive and J2 = 1.5 for the next half cycle in
Fig. 1. Also, we set V0 = V2 = 2. Figures 1(a) and 1(b) show
the evolution of the half-chain entanglement entropy starting
from a random Fock state from the half-filled sector in a chain
of length L = 16 with periodic boundary conditions (PBCs)
at ωD = V1/h̄ (generic frequency) and ωD = V1/2h̄ [special
frequency satisfying the relation in Eq. (42)], respectively.

Figure 1(a) shows that away from the special frequency, for all
values of the drive amplitude, the entanglement entropy S(nT )
saturates to the Page value Sp of the half-filled symmetry
sector from which the initial state is chosen, as is expected
of ergodic systems. In contrast to this, Fig. 1(b) shows that
at the special frequency, the entanglement entropy fails to
reach Sp with increasing drive amplitude within the first 200
drive cycles. Instead, with increase in drive amplitude, S(nT )
saturates to S f

p , the Page value of the fragment of H (1)
F , from

which the initial state is chosen.
To calculate the Page value of the half-filled symmetry

sector Sp, we choose random Gaussian orthogonal ensemble
(GOE)-like states from the half-filled sector, i.e., states whose
coefficients za,b are drawn from a normal distribution having
zero mean and unit variance, viz

|ψ〉 =
L/2∑

NA=0

dB (NB )∑
b=1

dA(NA )∑
a=1

za,b√
DL/2

|a; NA〉|b; NB〉. (44)

Here DL/2 is the Hilbert space dimension (HSD) of the half-
filled sector, and dA(NA) and dB(NB) are HSD’s of subsystems
A and B with occupancies NA and NB = L

2 − NA respectively.
These dimensions can be calculated from combinatorics in a
straightforward manner.

The next step involves calculating the reduced density
matrix ρA = TrB|ψ〉〈ψ | for one-half of the system and then
evaluating the average of ρA with respect to the Gaussian-
distributed random coefficients. Using

dB (NB )∑
b=1

za,bza′,b = dB(NB)δaa′ , (45)

we get for the average reduced density matrix:

ρ̄A =
L/2∑

NA=0

dA(NA )∑
a=1

dB(NB)

DL/2
|a, NA〉〈a, NA|. (46)

The mean value of the half-chain entanglement entropy (aver-
aged over GOE states) is S̄L/2 = −TrAρA ln ρA. The maximal
value of S̄L/2 can be estimated by using the concavity property
of the function f (x) = x ln x, which implies

S̄L/2 � −TrAρ̄A ln ρ̄A = Smax
L/2 . (47)

Hence, the maximal value of the half-chain entanglement
entropy for thermal GOE states is

Smax
L/2 = −

L/2∑
NA=0

dA(NA)dB(NB)

DL/2
ln

dB(NB)

DL/2
. (48)

The leading order correction to this in the half-filled sector
was found in Ref. [34] to be − 1

2 . The Page value of the

fragment, S f
p was found numerically using the same averaging

procedure by drawing GOE-like states from a given fragment.
Further details regarding computation of entanglement en-
tropy can be found in Ref. [20].

Figure 1(c) shows similar behavior for the time evolution
of the density-density autocorrelator,

CL(nT ) = 〈(nL(nT ) − 1/2)(nL(0) − 1/2)〉, (49)
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FIG. 2. (a) Plot of the Dsub−sector/Dsector for H (1)
F as a function of

L for N/L = 1/3, showing exponential reduction with L similar to
the half-filling case. (b) Similar plot for N/L = 1/4. For both plots,
J = 1 and V1/(h̄ωD ) = 2m.

in an infinite temperature thermal state for a chain of length
L = 14 with open boundary conditions at the special fre-
quency ωD = V1/2h̄. A careful look at Eq. (49) reveals that
CL also represents the connected autocorrelator since 〈nL(0) −
1/2〉 = 0. Thus, in an ergodic system, CL(nT ) is expected to
decay to zero at long enough times, signifying loss of any
initial memory. However, Fig. 1(c) shows that with increas-
ing drive amplitude V1, CL saturates to a value much higher
than zero at long enough times. This can be explained by
considering the fragmented structure of H (1)

F and the Mazur’s
bound on the autocorrelator in the presence of the fragmented
structure [20,35]. In Ref. [20], we had seen that the long-time
saturation value of the autocorrelator was above the lower
bound predicted by the Mazur’s bound. The autocorrelator
decays down to zero when the chain is driven away from
the special frequencies. Figure 1(d) elucidates this by plotting
the value of CL(nT ) after 5000 drive cycles as a function of the
drive amplitude and the drive frequency. This plot can also
serve as a “phase diagram” in the drive frequency and drive
amplitude space, where nonzero saturation values of CL(nT )
(bright regions in the color plot) indicate parameter regimes
where prethermal fragmentation is observed.

It is to be noted here that for a given drive amplitude, the
rate of thermalization is faster as compared to that reported
in Ref. [20]. This is to be attributed to the asymmetric drive
protocol (different values of the hopping amplitude during
the two half-cycles) used here. Due to the asymmetric nature
of the protocol, the lowest nontrivial correction to the con-
strained Hamiltonian at the special frequency comes from the
second-order Floquet Hamiltonian, H (2)

F as compared to H (3)
F

in Ref. [20]. This, in turn, results in a shorter thermalization
timescale.

IV. OTHER FILLING FRACTIONS

In this section, we study the driven fermion chain away
from half filling to demonstrate the robustness of the frag-
mentation signature. To this end, we consider the driven
fermion chain at filling fractions N/L = 1/3, 1/4 (where N
is the fermion number and L is the chain length). In what
follows, we shall use the square-pulse protocol given by
V (t ) = −(+)V1 for t � (>)T/2 in accordance with Ref. [20].

We begin our study by analyzing the HSD of the largest
fragment of the first-order Floquet Hamiltonian [Eq. (13)] at
N/L = 1/3 and 1/4. This is shown in Fig. 2 where the ratio
of the HSD of the largest fragment, Dsubsector, and the total

FIG. 3. (a) Growth of entanglement entropy from exact dynam-
ics for L = 18 and N = 6, starting from a randomly chosen Fock
state. The result is averaged over ten such states chosen from the
same fragment of the first-order Floquet Hamiltonian. The sector
dimension from which the state is chosen is 1980. The entanglement
entropy is scaled by the Page value Sp of the symmetry sector for
which N/L = 1/3. At the special frequencies, EE saturates to a value
less than Sp but close to S f

p for the fragment from which the initial
state was chosen. (b) Same as in (a) but for L = 20 and N = 5,
corresponding to 1/4 filling. The sector dimension of the fragment
from which the initial state is chosen is 1050. (c) Plot of CL (nT ) as a
function of n at the special frequency V1/(h̄ωd ) = 2 and away from it
V1/(h̄ωD ) = 1/2 for N/L = 1/3 and L = 18 The initial state is same
as in (a). (d) Same as (c) but for L = 20 and N/L = 1/4; the initial
state is same as in (b). For all plots, J = 1.

HSD of the symmetry sector [one-third filled sector in (a) and
one-fourth filled sector in (b)], Dsector, is plotted as a function
of L for J = 1 and at a special frequency V1/(h̄ωD) = 2m,
where m is an integer. We find a clear signature of exponential
decay of this ratio for both 1/3 and 1/4 filling fractions as a
function of L. This indicates the possibility of the presence
of the signature of strong HSF in the dynamics of the driven
chain at these fillings.

To verify this expectation, we compute the entanglement
entropy S(nT ) as a function of n and at different drive frequen-
cies. For an ergodic driven system, S is expected to increase
with n and eventually saturate to its Page value corresponding
to the symmetry sector Sp, irrespective of the initial state
chosen for the dynamics [34]. In contrast, for a chain which
exhibits HSF, S(nT ) is expected to saturate to the Page value
of the fragment to which the initial state belongs: S → S f

p .
Thus, the saturation value of S is lower; also it depends on the
initial state from which the dynamics originates. This allows
one to distinguish between dynamical behavior of a driven
chain with and without strong HSF. A plot of S(nT )/Sp,
shown in Fig. 3(a) for N/L = 1/3 and Fig. 3(b) for N/L = 1/4
clearly shows the distinction between the behavior of S at
and away from the special frequencies. S(nT )/Sp saturates,
for both fillings, to unity at large n away from the special
frequencies (V1/(h̄ωD) = 1/2); in contrast, at the special fre-
quency V1/(h̄ωD) = 2, they saturate to a lower value which
corresponds to S f

p of the respective sectors from which the
initial states are chosen.
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FIG. 4. Plot of S(nT )/Sp as a function of n at V1/(h̄ωD) = 2
starting from Fock states belonging to different fragments for (a) L =
18 and N = 6 and (b) L = 20 and N = 5. The numbers label the
Hilbert space dimensions of the fragments and the dashed lines
indicate the corresponding S f

p . For all plots, J = 1.

In addition, we compute the density-density autocorrela-
tion function given by Eq. (49). Figures 3(c) and 3(d) show
the behavior of CL(nT ) as a function of n at and away from the
special frequency for N/L = 1/3 and 1/4, respectively. We
find that in both cases, CL(nT ) saturates to finite value at the
special frequency and to zero away from it. Thus, these plots
confirm the existence of strong HSF similar to the half-filling
sectors in these fermionic chains.

Finally, in Fig. 4, we show the plot of S(nT )/Sp starting
from several initial Fock states which belong to different sec-
tors with different values of S f

p for V1/(h̄ωD) = 2. We find
that in each case, both at N/L = 1/3 [Fig. 4(a)] and 1/4
[Fig. 4(b)], S(nT )/Sp < 1 for large n; moreover, S(nT ) → S f

p

corresponding to the fragment of H (1)
F to which the initial state

belongs. This clearly demonstrates signature of HSF at these
filling fractions.

As the filling is reduced, the number of fragments de-
creases. For very low filling, the fragments disappear; for
instance, when there is just one particle, there are L possible
states, all of which are connected. Similarly, very high fill-
ings correspond to O(L) states, all of them being connected
with each other. As an example, we may consider that there
are L states with L − 1 particles. An exponential number of
fragments, which necessitates the presence O(eL ) states for a
specific N/L, is therefore observed for finite filling fractions
which are reasonably close to N/L = 1/2.

V. DENSITY-DENSITY OUT-OF-TIME ORDERED
CORRELATION FUNCTION

In this section, we analyze the OTOC for the driven chain.
The basic definitions are outlined in Sec. V A. This is followed
by numerical study of the OTOC for a chain with PBCs and
starting from an infinite temperature thermal state in Sec. V B.
Finally, we study the behavior of the OTOC for fermion chains
with OBCs and starting from the Z2 = |0, 1, 0, 1, . . .〉 Fock
state in Sec. V C.

A. Preliminary

The study of the OTOC serves as an important tool to
diagnose the rate of propagation of local information in a
quantum system [23,36–38]. Ergodic systems are known to
exhibit ballistic spread of local information accompanied by

a diffusive front. In the case of nonergodic systems, the
behavior of information propagation, as detected using the
OTOC, ranges from logarithmic growth in many-body local-
ized systems [24] to alternate scrambling and unscrambling in
certain integrable systems [25]. For fragmented systems, the
scrambling of information is expected to be slow since the
Hamiltonian does not connect states belonging to different
fragments; however, its detailed features, in the presence of
a periodic drive, have not been studied earlier. To probe the
rate of scrambling of information in our system, we study
the temporal (in stroboscopic times) and spatial profile of the
OTOC,

F (r, nT ) = 〈ñi(nT )ñ j (0)ñi(nT )ñ j (0)〉, (50)

where ñi = 2ni − 1, with ni and n j being the number den-
sity operators at sites i and j, respectively, and r = |i −
j| measures the distance between these two sites. We take
the average with respect to both an infinite-temperature
thermal state and the |Z2〉 state. Since the operator ñi is
Hermitian and squares to identity, it can be shown that
the function F (r, nT ) is related to the squared commutator
C(r, nT ) as

C(r, nT ) = 〈[ñi(nT ), ñ j]
†[ñi(nT ), ñ j]〉

= 2(1 − F (r, nT )). (51)

Cast in this form, it can be argued that as the operator ñi, ini-
tially localized at site i, spreads to site j, the value of C(r, nT )
at this site gradually increases from zero and hence the OTOC,
F (r, nT ) decreases from 1. A higher value of C(r, nT ) [i.e.,
lower value of F (r, nT )] at a given instant of time therefore
indicates a larger spread of the local operator (ñi in the present
case).

B. Infinite-temperature initial state

In this section, we study the spread of the OTOC in
an infinite-temperature thermal state for a half-filled chain
of length L = 14 with PBCs both at the special frequency
[h̄ω∗

1 = V1/2, shown in Fig. 5(b)] and away from it [ωD =
2ω∗

1, shown in Fig. 5(a)]. The operator is initially localized at
the center of the chain, i.e., i = L/2 in both cases. Figure 5(a)
shows that at a generic frequency, the operator spreads ballis-
tically. Such a spread can be inferred from the linear variation
of r, for sites at which F (r, t ) has almost similar values, as a
function of t .

F (r, nT ) quickly falls to a value close to zero, implying
that C(r, nT ) saturates to a value close to 1. At the special
frequency, however, Fig. 5(b) shows that although the lo-
cal information reaches the farthest site almost at the same
time as in the previous case, the OTOC saturates to a higher
value as compared to its thermalizing counterpart. This is
a direct consequence of the fact that the first-order Floquet
Hamiltonian H (1)

F , which is fragmented, only allows mixing of
the states within a particular fragment. Although the infinite-
temperature thermal initial state (represented by a density
matrix) weighs all the states equally, during time evolution
they can only be connected with states belonging to the same
fragment. As a result, they fail to spread out through the
whole Hilbert space. The information is scrambled only due to
mixing between states within individual fragments; this leads
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FIG. 5. (a) Profile of the OTOC F (r, nT ) in an infinite tem-
perature thermal state for L = 14 (half-filled sector) with PBC and
ωD = V1/h̄. The initial operator ñi is localized at the center of the
chain i = 7. The index j in the x axis labels the site of the chain and
r = | j − 7| for all plots. A ballistic spread of information is seen
with the value of the OTOC rapidly dropping close to zero as is
expected of a thermalizing system. (b) Same as (a) but at the special
frequency ω∗

1 = V1/2h̄, where the first-order Floquet Hamiltonian
H (1)

F is fragmented. Although there is some information scrambling
in this case due to mixing of states within fragments, the value to
which F (r, nT ) reaches at similar times is higher as compared to
the thermalizing case. This implies that the extent of information
scrambling is less in this case, compared to (a). (c) Profile of F (r, nT )
at site j = 14 both at and away from the special frequency ω∗

1 , illus-
trating the same point. (d) Variation of the value of F (r, nT ) at the
farthest site j = 14 after t = nT = 15 with drive amplitude V1 and
ωD = ω∗

1 . With decrease in V1, higher-order terms in the perturbation
series gain prominence and enhance information scrambling. For all
plots, J = 1,V0 = V2 = 2. For (a)–(c), V1 = 50. All the results are
obtained using the exact time-evolution operator.

to lower scrambling in the prethermal regime than that due
to ergodic evolution away from the special frequency. Fig-
ure 5(c) illustrates this fact by plotting the value of F (r, nT )
for site j = 14 both at and away from the special frequency.
As the drive amplitude decreases, the higher order terms in the
perturbation series start dominating, allowing mixing between
different fragments. This enhances information scrambling,
leading to a decrease in the value of the OTOC. This is shown
in Fig. 5(d), which plots the variation of the value of the
OTOC at the farthest site ( j = 14) at nT = 15 as a function
of V1 for ωD = ω∗

1. This shows that information scrambling is
suppressed beyond a critical V1, where signatures of fragmen-
tation can be found over a long prethermal timescale.

C. Z2 state

In this section, we study the spatial and temporal profile
of the OTOC in a |Z2〉 state at the special frequency with
OBC. Figure 6(a) shows that away from the special frequency,
starting from one end of the chain, the information propagates

FIG. 6. (a) Profile of the OTOC F (r, nT ) in a Z2 state for L = 14
with OBC and at a generic frequency ωD = V1/h̄. The initial operator
ñi is localized at one of the edges of the chain i = 1. The infor-
mation reaches to the other end of the system ballistically, bearing
signature of thermalizing systems. (b) Same as (a) but at the special
frequency ω∗

1 = V1/2h̄. The information after reaching the other end
starts unscrambling again. This alternate scrambling and unscram-
bling of information continues over a short timescale, dictated by
the quasienergy spectrum of the fragmented H (1)

F as explained in the
main text. (c) Long-time oscillations in the profile of the OTOC at
ω∗

1 . (d) Plot of χβα (nT ) (defined below Eq. (56) in the main text)
as a function of t = nT . The color codes are: χ28 (blue), χ38 (red),
χ48 (brown), χ58 (pink), χ68 (green) and χ78 (cyan). The red dashed
lines mark integer multiples of 2π . The first two times when these
phases are very close integer multiples of 2π , are marked as t∗

1 and
t∗
2 , respectively. These correspond to the first two recurrence times in

(b). For all plots, J = 1,V0 = V2 = 2,V1 = 50.

ballistically to the other end, as is expected for a ergodic
system; F (r, t ) monotonically decays to near-zero value at
all sites within nT � 10. In contrast, as shown in Figs. 6(b)
and 6(c), at the special frequency the behavior of F (r, nT )
is quite different and shows signatures of fragmentation. In
Fig. 6(b), we find that at short timescales nT ∼ 10, there are
initial fast oscillations which lead to alternate scrambling and
unscrambling of information. Such alternate scrambling and
unscrambling of information is reminiscent of the behavior
of OTOCs in integrable systems [25]; however, as we show
below, the mechanism for this phenomenon is different in the
present case. Furthermore, over longer timescales nT ∼ 100–
500, we find slow oscillatory behavior as seen in Fig. 6(c).
As discussed below, this is related to tunneling between two
near-degenerate states.

Both the above oscillatory features can be related to the fact
that at high drive amplitude and at the special frequencies, the
dynamics is mostly governed by H (1)

F at short and intermediate
timescales. To understand the behavior of F , we therefore
focus on the fragment of H (1)

F (with OBCs) to which |Z2〉
belongs. For L = 14, there are eight states in this fragment,
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namely,

H = {|Z2〉, | jh = 2〉, | jh = 4〉, | jh = 6〉,
| jh = 8〉, | jh = 10〉, | jh = 12〉, |Z̄2〉}. (52)

Here |Z̄2〉 = |1, 0, 1, 0, . . .〉 and | jh〉 is a state with one hole-
defect (two adjacent holes) at j = jh and zero particle defect
(i.e., no two adjacent fermions). The state can therefore
be written as | jh = 2〉 = |1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1〉.
Note the constrained hopping introduces dynamics between
these eight states, and H (1)

F in this subspace is equivalent to
a nearest-neighbor hopping model of a linear chain with eight
sites and OBCs. Here |Z2〉 and |Z̄2〉 form the ends of the chain
while jh = 2, 4, . . . , 12 form the sites in between.

The OTOC at a site j will have the structure

F (r1, nT ) = 〈Z2|ñ1(nT )ñ j (0)ñ1(nT )ñ j (0)|Z2〉, (53)

where r1 = | j − 1|. Inserting the complete set of states |m〉
from this fragment and noting that the operator ñ is diagonal
in the Fock basis, this expression reads

F (r1, nT ) ≈
∑

m

(−1) j f j
m|〈m(nT )|ñ1|Z2(nT )〉|2, (54)

where f j
m = 〈m|ñ j |m〉. Expanding |Z2〉 and |m〉 in the energy

eigenstates of H (1)
F : |Z2〉 = ∑

α cα|φα〉, |m〉 = ∑
β cm

β |φβ〉,
Eq. (54) yields

F (r1, nT ) ≈
∑

m

(−1) j f j
mgm(nT ), (55)

where

gm(nT ) =
∣∣∣∑

α,β

cm∗
β cαe−iχβα (t )N1

βα

∣∣∣2
, (56)

with N1
βα = 〈φβ |ñ1|φα〉 being the matrix element of ñ1 be-

tween the energy eigenstates and χβα (t ) = (εα − εβ )nT/h̄.

1. Short- and long-time oscillations

In Eq. (55), the spatial dependence on r1 or j is factorized
out from the time dependence nT . This implies that the time
dependence of the OTOC is site-independent, i.e., the recur-
rence time at every site is the same and the recurrence happens
when all the phases χβα (t ) are approximately close to integer
multiples of 2π . We arrange the spectrum ε1 < ε2 < . . . < ε8.
Numerically, we find that the matrix elements N1

βα between
the states |φβ〉; β = 2, 3, . . . , 8 and |φα〉; α = 7, 8 are an order
of magnitude higher than the rest of the off-diagonal matrix el-
ements. This is because the states β = 1, 2, . . . , 6 are mostly
made of the six single-hole wave function, while the states
α = 7, 8 are mostly made of the states Z2 and Z̄2. Since the
last two states have one extra next-nearest-neighbor interac-
tion compared to the first six, εαβ ∼ V2, and this energy scale
shows up in the fast oscillations seen over timescales nT ∼ 10.
Thus, in this relatively short time, the recurrence is predom-
inantly dictated by the phases χβα (t ) with β = 2, 3, . . . , 7
and α = 8. Figure 6(d) plots these phases as a function of
t = nT . It can be seen that the recurrence occurs when all
these phases are close to 2π p0 (where p0 ∈ Z), as shown in
Fig. 6(d). The first two of these times are marked with t∗

1
and t∗

2 in Fig. 6(d). These are not exactly periodic because

FIG. 7. (a) Comparison of exact and approximate estimate
[Eq. (55)] of F (r1, nT ) for j = 1 (green solid, brown dashed), j = 5
(cyan solid, red dashed), and j = 14 (pink solid, black dashed)
sites. The solid lines represent results obtained from exact dynamics
and dashed lines represent approximate estimates obtained using
the fragment of H (1)

F . The first two recurrence times are in good
agreement, emphasizing the role of fragmentation in the scrambling
and unscrambling behavior observed in Fig. 6(b). For j = 1, the
agreement between approximate and exact numerical results is nearly
perfect and the green solid and brown dashed lines are almost on top
of each other. (b), (c) Similar comparison for the long time oscilla-
tions for j = 1, 14, following the color scheme used in (a). (b) Plot of
exact numerical result for j = 1, 14. (c) Plot of approximate estimate
for j = 1, 14.

of the involvement of multiple phases in the dynamics. It is
also to be noted from Fig. 6(d) that the energies ε7,8 (which
are mostly linear combinations of Z2 and Z̄2 Fock states) are
so close that for the short timescale involved, the phase χ87(t )
almost remains close to zero; it does not play much of a role in
determining the short recurrence time. Thus, from the above
discussion it is clear that the recurrences at short timescales
owe their existence to two features in the model. First, the
finite next-nearest-neighbor interaction energy V2. Second, the
OBC which allows the single-hole states to be included within
the same fragment as to which the states Z2 and Z̄2 belong
(with PBC, the fragment has only the Z2 and Z̄2 states).

In Fig. 7(a), we show the comparison between results for
F (r1, nT ) obtained from exact dynamics (solid lines) and the
analytical estimate obtained from H (1)

F in Eq. (55) (dashed
lines) for some representative sites j = 1, 5, 14. It can be seen
that the first two recurrence times at t∗

1 = 8.07, t∗
2 = 16.21 are

well approximated by Eq. (55).
The phase χ87(t ) manifests itself only at longer timescales

of nT ∼ 100–500. As seen in Fig. 6(c), over this timescale
F (r1, nT ) oscillates from values nearly one to nearly minus
one with frequency �, where � = (ε8 − ε7)/h̄. In Figs. 7(b)
and 7(c), we show that these oscillations can be explained
using Eq. (55) by considering the eight states belonging to this
fragment of H (1)

F . In Appendix B, we show that a four-state
ansatz can be used to arrive at this result for a high next-
nearest-neighbor interaction strength, when the Z2, Z̄2 states
are well separated in energy from the remaining | jh〉 states.
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2. Spatial profile of OTOC

The spatial dependence in the profile of the OTOC appears
through the term h jm = (−1) j f j

m in Eq. (55). The initial linear
increase in Fig. 6(b) for nT � 5 can be explained by focusing
on this term. The profile of h jm for odd j’s reads

h jm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 −1

1 1 1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 1 1 −1 −1 −1

1 1 1 1 1 1 −1 −1

1 1 1 1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(57)
where the rows label the odd sites j = 1, 3, 5, . . . 13 and the
columns label the different Fock states |m〉 in this fragment, in
the same order as in Eq. (52). The time-dependent functions
gm(nT ) are positive definite at all times. As j increases, the
number of gm(nT )’s having positive weights increases linearly
as is evident from Eq. (57). Thus, the shift of F (r1, nT ) from
1 happens progressively at a later time as j increases. It is also
useful to note that f 2k−1

m = − f 2k
m for all k and m, so h2k−1,m =

h2k,m and hence at any given instant of time, F (2k − 1, nT ) =
F (2k − 2, nT ). Thus, the even sites j have similar behavior as
the odd sites.

VI. DISCUSSION

In this paper, we studied the dynamics of a periodically
driven Fermi chain and extended the study of prethermal HSF
in these system undertaken in Ref. [20] in several ways.

First, we have studied the existence of such prethermal
HSF beyond half filling in such chains. We found the existence
of such a prethermal HSF phase for several other filling frac-
tions such as N/L = 1/4 and 1/3. This shows the robustness
of the prethermal MBL phase in such a driven chain.

Second, we provided a derivation of the first- and second-
order Floquet Hamiltonian in such a driven system in an
alternative manner. Our derivation brings out the commutator
structure of the Floquet Hamiltonian; in particular, we find
that the second-order term in the Floquet Hamiltonian, H2

F ,
can be expressed as a commutator of a constrained current
operator

∑
j A j (c

†
j c j − H.c.) with H (1)

F . We expect similar
commutation relations to hold for higher order terms in HF ;
this sheds light on the symmetry content of the higher order
terms in the Floquet Hamiltonian for the cosine drive protocol.

Third, we extended our analysis to experimentally rel-
evant and slightly more complicated drive protocols. In a
typical experiment, involving ultracold atoms, the interaction
strength between fermions and their hopping strength are both
controlled by intensities of the applied lasers. Consequently,
experimentally relevant protocols must allow the change of
both the hopping amplitudes and interaction strength. We
show that the prethermal HSF is stable for a large class of
such drives and chart out a phase diagram for the special
frequencies at which it occurs.

Finally, we studied the behavior of density-density OTOC
for such driven systems. Our study shows that such OTOCs

can serve as detectors of such prethermal HSF in two distinct
ways. First, irrespective of the boundary condition used, the
OTOC F (r, t ) for a finite fermion chain driven at the special
frequency and starting from a Z2 initial state exhibits a larger
long-time value than when driven away from such frequen-
cies. In addition, it also exhibits oscillations with very large
periodicity at the special frequencies that have the same origin
as the correlation functions discussed in Ref. [20]. In contrast,
no such oscillations are found when one is away from the spe-
cial frequency; the OTOC monotonically decreases to zero.
Second, for fermion chains with open boundary conditions
and driven at special frequencies, we find periodic scrambling
and unscrambling of information, which is in sharp contrast
to the standard behavior of OTOCs in driven ergodic systems.
Such behavior was found earlier for integrable spin chains
[25]; however, their origin for systems with prethermal HSF is
quite different and can be tied to the localization of the driven
system within a group of Fock states with the same dipole
number (nd = 0). For chains with open boundary conditions,
there are O(L) such states which govern the dynamics up to
a long prethermal timescale, leading to periodic scrambling
and unscrambling. This phenomenon is qualitatively different
from the behavior of the OTOC away from the special fre-
quencies where it monotonically decays due to fast spread of
the driven system through the Hilbert space; it is also different
for a chain with PBCs with two Fock states (Z2 and Z̄2) in the
nd = 0 sector where no such unscrambling is found.

Experimental verification of our result would require real-
ization of isolated fermi chain. A possible scenario for this
is a 1D fermion systems with nearest-neighbor hopping and
local interaction realized suing ultracold fermions in an op-
tical lattice. We propose driving this with the experimentally
relevant protocol discussed in this paper; this can be achieved
by varying the strength of lasers used to generate the lattice
[32,33]. The simplest measurement would involve measuring
〈n̂d〉 as a function of time. We predict that the dynamics of
〈nd〉 starting from the Z2 state for such a chain will be ap-
proximately constant (and close to zero) for a long prethermal
timescale when the system is driven at the special frequency.
This is to be contrasted the behavior of 〈nd〉 away from the
special frequency, which should exhibit rapid dynamics at a
short timescale.

In conclusion, we have studied several aspects of prether-
mal HSF in a driven Fermi chain. Our results have shown
the robustness of this phenomenon by confirming its existence
for different, experimentally relevant, drive protocols and also
when the system is away from half filling. In addition, we
have demonstrated that OTOCs may serve as a marker for
such prethermal HSF; they exhibit periodic scrambling and
unscrambling for fermion chains with open boundary condi-
tions driven at the special frequency.
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APPENDIX A: COMPUTATION OF H(2)
F FOR COSINE

PROTOCOL

The second-order Floquet Hamiltonian can be broken into
two parts: H(2)

F = H(2a)
F + H(2b)

F . From Eq. (26), we get

H(2a)
F = −iJ2

2h̄T

∑
i, j

∑
m,n

Bm,n[Jm(λÂi )c
†
i ci+1 + Jm(−λÂi )

× c†
i+1ci, Jn(λÂ j )c

†
j c j+1 + Jn(−λÂ j )c

†
j+1c j], (A1)

where

Bm,n ≡
∫ T

0
dτ1

∫ τ1

0
dτ2 eimωτ1 einωτ2 . (A2)

The evaluation of the above integrals yield

Bm,n = T 2

2
δm,0δn,0 + T

imω
δn,0(1 − δm,0)

− T

inω
δm,0(1 − δn,0) + T

inω
(1 − δn,0)δm,−n. (A3)

Due to the commutator structure of Eq. (A1), the first and
fourth terms above do not contribute. The second and third
terms are nonzero and equal. Next, due to the 1/m factor in
the second term, only integers m contribute. We get

H(2a)
F = − 2J2

h̄ω

∞∑
k=0

1

2k + 1

[∑
i

J2k+1(λÂi )

× (c†
i ci+1 − H.c.),

∑
j

J0(λÂ j )(c
†
j c j+1 + H.c.)

]
.

(A4)

Noting that Âi can only take values 0, 1, −1, we have the
relation

J2k+1(λÂi ) = ÂiJ2k+1(λ).

Using the above, we get

H(2a)
F = − 2J2

h̄ω
C(λ)

[∑
i

Âi(c
†
i ci+1 − H.c.)

×
∑

j

J0(λÂ j )(c
†
j c j+1 + H.c.)

]
, (A5)

where

C(λ) ≡
∞∑

k=0

J2k+1(λ)

2k + 1
.

For the second term H(2b)
F , we note that∫ T

0
dτ1

∫ τ1

0
dτ2H̃p(τ2) =

∫ T

0
dτ1

∫ T

τ1

dτ2H̃p(τ1).

Using the above relation and Eq. (27), we get

H(2b)
F = i

2h̄T

∫ T

0
dτ (T − 2τ )[H̃p(τ ), K̂]

= −iJ

2h̄T

∑
i,m

∫ T

0
dτ (T − 2τ )eimωτ

×[Jm(λÂi )c
†
i ci+1 + Jm(−λÂi )c

†
i+1ci, K̂].

For the τ -integral above, we use the relation∫ T

0
dτ (T − 2τ )eimωτ = − 2T

imω
(1 − δm,0).

The appearance of the factor 1/m in the above implies that,
again, only the Bessel functions with odd indices contribute.
This gives

H(2b)
F = 2JC(λ)

h̄ω

[ ∑
i

Âi
(
c†

i ci+1 − H.c.
)
, K̂

]
. (A6)

Equations (A5) and (A6) imply Eq. (30) in the main text.

APPENDIX B: FOUR-STATE ANSATZ FOR THE
LONG-TIME OTOC OSCILLATIONS

In this section, we discuss a simplification of Eq. (55) when
a high value of the next-nearest-neighbor interaction V2 is con-
sidered. In this case, the {|Z2〉, |Z̄2〉} states, which have one
extra next-nearest-neighbor pair, are well separated in energy
from the other | jh〉 states. Thus, the extent of hybridization
between {|Z2〉, |Z̄2〉} states and the | jh〉 is small and hence the
eigenfunctions of H (1)

F can be written down in terms of only a
few Fock states as we show below.

We assume that the two highest energy levels |φ7〉 and |φ8〉
are mostly symmetric and antisymmetric combinations of Z2

and Z̄2 with very small contributions from the two nearest
| jh〉 states, i.e., | jh = 2〉 and | jh = 12〉. By nearest, we refer to
states which can be connected to Z2, Z̄2 by one constrained
hop. We also consider two more states |φ5,6〉 which are or-
thogonal to |φ7,8〉 and have energies ε5,6. We assume these last
two states to be nearly degenerate, i.e., ε5 ≈ ε6 = E0 and the
splitting between the two highest states ε8 − ε7 = � � V2,
ε7 − ε6 = V2. Thus,

|φ8〉 = 1√
2
C(|Z2〉 − |Z̄2〉) + 1√

2
S (|2〉 − |12〉),

|φ7〉 = 1√
2
C(|Z2〉 + |Z̄2〉) + 1√

2
S (|2〉 + |12〉),

|φ6〉 = 1√
2
S (|Z2〉 − |Z̄2〉) − 1√

2
C(|2〉 − |12〉),

|φ5〉 = 1√
2
S (|Z2〉 + |Z̄2〉) − 1√

2
C(|2〉 + |12〉), (B1)

where C = cos θ and S = sin θ with θ being a phenomeno-
logical parameter to be determined from diagonalization.
Inverting these relations, the time-evolved states read

|Z2(t )〉 = 1√
2

[Ce−iV2t (|φ7〉 + |φ8〉e−i�t ) + S (|φ5〉 + |φ6〉)],

|Z̄2(t )〉 = 1√
2

[Ce−iV2t (|φ7〉 − |φ8〉e−i�t ) + S (|φ5〉 − |φ6〉)],

|2(t )〉 = 1√
2

[Se−iV2t (|φ7〉 + |φ8〉e−i�t ) − C(|φ5〉 + |φ6〉)],

|12(t )〉 = 1√
2

[Se−iV2t (|φ7〉 − |φ8〉e−i�t ) − C(|φ5〉 − |φ6〉)],

(B2)
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where we have set the reference energy E0 = 0. Using these
four states, Eq. (54) for sites j = 1, 14 can be simplified as

F (0, nT ) = f1(nT ) − f2(nT ),

F (13, nT ) = f1(nT ) + f2(nT ), (B3)

where

f1(nT ) = |〈Z2(nT )|ñ1|Z2(nT )〉|2 − |〈Z̄2(nT )|ñ1|Z2(nT )〉|2,
f2(nT ) = |〈2(nT )|ñ1|Z2(nT )〉|2 + |〈12(nT )|ñ1|Z2(nT )〉|2.

(B4)

Using the time-evolved states in Eqs. (B2), we obtain

f1(t ) = C8 cos 2�t − 2C6S2 sin �t (sin (V2 + �)t − sin V2t )

+ 2C4S4[2 cos �t − 1 + 2(1 − cos (V2 + �)t

− cosV2t )2] − 4S2C2(S4 + C4 cos �t )

× (1 − cos (V2 + �)t − cosV2t ) + S8,

f2(t ) = S2C2[S4(cos (V2 + �)t − cosV2t )2

+ (C2 sin �t + S2(sin (V2 + �)t − sin V2t ))2

+ (sin (V2 + �)t + sin V2t )2]

+S2C2[S2 − C2 cos �t

+ (2C2 − 1)(cos (V2 + �)t + cosV2t − 1)]2. (B5)

For V2 � J , θ � 1, we retain up to quadratic terms in θ ,
yielding

F (0, t ) = (1 − 4θ2) cos 2�t + 6θ2 − 2θ2 cos �t

+ 4θ2 cosV2t (cos �t − 1),

F (13, t ) = (1 − 4θ2) cos 2�t − 6θ2 − 6θ2 cos �t

+ 4θ2 cosV2t (3 cos �t + 1).

(B6)

We compare in Fig. 8 the exact results and those obtained
from Eqs. (B5) for sites j = 1 and j = 14 where we find
good agreement between the two. The parameters chosen are
V0 = 2,V2 = 6,V1 = 50, and ωD = V1/2h̄.

APPENDIX C: OTOC IN Z2 STATE WITH PBCS

In this Appendix, we consider the evolution of the profile
of the OTOC starting from a |Z2〉 state with PBCs at the
special frequency. Figure 9 shows that in this case, too, there
is alternate scrambling and unscrambling for nT � 1200 and
V0 = 10V2 = 2,V1 = 20. In the following, we show that these
oscillations can be interpreted as tunneling back and forth
between the states Z2 and Z̄2 when the system is close to
the fragmented limit. Such tunneling events were reported in
Ref. [20]. This can be understood by noting that, for PBCs,
the |Z2〉 and |Z̄2〉 states are degenerate frozen states for H (1)

F .
This degeneracy is lifted by higher-order hopping terms and,
for exact HF , there are two eigenstates which are symmetric
and antisymmetric combinations of |Z2〉 and |Z̄2〉 states viz

χ+ = 1√
2

(|Z2〉 + |Z̄2〉), χ− = 1√
2

(|Z2〉 − |Z̄2〉).

FIG. 8. Comparison of exact results for OTOC F (r1, nT ) with
that obtained from Eqs. (B3) and (B5), starting from a |Z2〉 state.
(a) Green (light-colored) line is obtained from exact dynamics for
j = 1. (b) Pink (light-colored) line is obtained from exact dynamics
for j = 14. (c) Brown (dark-colored) is obtained from the four-state
ansatz, given by Eqs. (B1) for j = 1. (d) Black (dark-colored) is
obtained from the four-state ansatz for j = 14. For all plots, L =
14,V0 = 2,V2 = 6, and V1 = 50 with ωD = V1/2h̄.

The energy splitting between these two states is given by � =
ε− − ε+. This implies the time evolutions

|Z2(t )〉 = eiε−t [(ei�t + 1)|Z2〉 + (ei�t − 1)|Z̄2〉]/2,

|Z̄2(t )〉 = eiε−t [(ei�t − 1)|Z2〉 + (ei�t + 1)|Z̄2〉]/2. (C1)

Inserting an approximate complete set comprising of the states
Z2 and Z̄2 in Eq. (53) of the main text, we obtain

F (r1, t ) ≈ |〈Z2|ñ1(t )|Z2〉|2 − |〈Z2|ñ1(t )|Z̄2〉|2

= |〈Z2(t )|ñ1|Z2(t )〉|2 − |〈Z2(t )|ñ1|Z̄2(t )〉|2, (C2)

where the last line is going from the Heisenberg to
Schrodinger picture. Note the above equation already captures
an important aspect of Fig. 9, namely, F (r1, t ) is mostly inde-
pendent of r1 at this timescale.

FIG. 9. Profile of the OTOC F (r, nT ) in a Z2 state for L = 14
with PBCs and ωD = V1/2h̄. The initial operator is localized at i = 1.
This too shows alternate scrambling and unscrambling with a period
τ ∼ 300. The parameters are V0 = 10V2 = 2,V1 = 20.
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Using Eq. (C1), we get

F (r1, t ) ≈ cos(2�t ). (C3)

Thus, at stroboscopic times t = nT , where n�T is close to an
integer multiple of π , the OTOC is close to one, while, when
n�T is close to a half-integer multiple of π , the OTOC is
close to minus one.
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Papić, Nat. Phys. 14, 745 (2018); S. Moudgalya, N. Regnault,
and B. A. Bernevig, Phys. Rev. B 98, 235156 (2018).

[12] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev.
Lett. 122, 040603 (2019); N. Shiraishi, J. Stat. Mech. (2019)
083103.

[13] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis,
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