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We theoretically demonstrate nonreciprocity in signal transmission within a three-mode system by exploiting
the nonlinear magnetostrictive interaction within a ferrimagnetic material enclosed in a magnomechanical cavity
system. This setup encompasses two cavity modes: a magnonic mode and phononic modes. Externally, it is
driven by two classical microwave fields: a strong driving magnetic field and a weak probe field. In the cavity
setup, a yttrium iron garnet sphere is subjected to a strong magnetic field, significantly affecting the spins
within the sphere and leading to deformations in its geometry. These deformations, in turn, induce phonon
modes within the sphere. Moreover, three distinct types of nonlinearities are triggered: magnetostriction, magnon
self-Kerr, and magnon-phonon cross-Kerr nonlinearities. Additionally, magnons interact with cavity microwave
photons through a magnetic dipole interaction. The nonlinear magnetostrictive interaction induces a phase
shift in the cavity’s photons, causing the breaking of time-reversal symmetry and ultimately resulting in the
observed nonreciprocal phenomenon in our hybrid magnomechanical cavity system. Furthermore, by adjusting
the magnetostrictive interaction, we can achieve maximal nonreciprocal signal transmission at either port. These
results also encompass the significance of the magnon dissipation rate while realizing its nonreciprocity. The
detunings of all three modes, that is, two microwave photonic modes and a magnonic mode, are found to
be critical for fine tuning the process of nonreciprocal transmission and modulating its characteristics. Since the
proposed setup is quite simple, tunable, and experimentally realizable, the proposed configuration and related
outcomes could be utilized for applications in quantum communication networks and quantum computing, boost
up the sensitivity of microwave detectors, and contribute to advancements in circulators, switching, and other
quantum information processing tasks.

DOI: 10.1103/PhysRevB.109.214303

I. INTRODUCTION

Nonreciprocal devices have captured significant atten-
tion within the engineering and physics communities, owing
to their broad applicability in fields like invisible sensing
and signal processing, which encompass functionalities such
as isolators and directional amplifiers [1]. The manifesta-
tion of the nonreciprocal effect occurs when these devices
disturb time-reversal symmetry. Traditional nonreciprocal de-
vices rely on magnetic bias fields and the magneto-optic
responses of materials [2,3]. Nevertheless, these devices en-
counter limitations due to weak magneto-optic coefficients. In
response to these constraints, several alternative approaches
have been recently proposed to supplant traditional schemes.
These alternatives include techniques such as incorporating
angular momentum biasing in photonic or phononic crystals,
leveraging the quantum Hall effect, implementing synthetic
magnetism, harnessing optical nonlinearity, exploring op-
tomechanical interactions, and others [4–11].

In recent years, there has been an increasing interest in
exploring ferromagnetic materials to investigate fundamental
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quantum physics concepts and implement quantum informa-
tion protocols [12–16]. Researchers are actively engaged in
manipulating the interactions between acoustic waves, also
known as phonons, and the collective spins in ferromagnetic
materials, specifically magnons. This area of study, known
as magnomechanics, has gained significant attention for its
important applications and contributions to quantum informa-
tion processing [17–28]. Particularly, cavity magnomechanics
represents an emerging field of study in which the phonons
are effectively confined within a cavity inside the magnetic
material, thus leading to a significant enhancement of the
magnetostrictive or magnon-phonon coupling. This cavity-
based enhancement introduces various features that include
coherent conversion of energy between magnons and phonons
[29–31], controlling the dynamical back-action [32], back-
action-evading measurements [30,31], and the realization of
magnetic material-based mechanical bistability [33]. The ini-
tial work utilized a sphere constructed from a yttrium iron
garnet (YIG), in which a phononic mode oscillating radially
interacts with a collective magnetization excitation referred
to as the Kittel mode [29,31]. The YIG sphere possesses
desirable characteristics, including high spin density, with
extremely low magnon loss and damping rate [34], and a
high Curie temperature [35,36]. The study presented here will
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not only contribute to practical outcomes, but also has the
potential to inspire the conceptualization of control protocols,
as evidenced by research papers such as [37–39]. Moreover,
our approach draws analogies to control methodologies in
cavity quantum electrodynamics (QED) [40] and cavity op-
tomechanics [10].

The interaction between magnons in a YIG crystal and
microwave photons in a superconducting resonator has been
demonstrated to reach the regimes of strong and ultrastrong
coupling. Particularly, the Kittel mode [41] in the YIG
sphere can achieve strong coupling with the microwave pho-
tons in a high-Q-factor cavity, leading to the formation of
cavity polaritons [14,36,42–44]. This coupling strength is
enhanced by a factor of the square root of the number of
spins involved (

√
N) and is independent of the number of

magnons inside the YIG sphere. Quantum applications in
this field have been realized experimentally, including the
observation of the magnon Kerr effect [45], the identification
of magnon dark modes [46], the observation of bistability
in cavity magnon polaritons [47], the detection of single
magnons [48], and nonreciprocal microwave transmission
[49–52].

The nonreciprocal behavior of the spin wave in a mag-
netic material has been realized experimentally in addition
to being investigated theoretically [53,54]. In the cavity
magnomechanical system, several scientists have achieved
unidirectional invisibility by employing both coherent and
dissipative magnetic dipole moments of the cavity-magnon
couplings [49,55], while nonreciprocal transmission based
on the magnon Kerr effect has been explored [50]. In a
recent investigation, a method was proposed to produce
entanglement between two microwave fields by employ-
ing the nonlinear magnetostrictive interaction inherent in
a YIG material [56]. The magnetostrictive interaction en-
ables the coupling between a magnon mode (a collective
spin wave) and a mechanical mode within the YIG sphere.
The findings are derived from steady-state solutions of
the system variables under study. More recently, Zhao
et al. have studied a hybrid model containing two cavities
with two YIG spheres enclosed where they have theo-
retically investigated nonreciprocity of output signals with
amplification [57].

The nonlinearity observed in magnetic materials emerges
when the YIG sphere is subjected to a strong drive field.
Two significant nonlinearities, namely, the magnon self-
Kerr and cross-Kerr nonlinearities, along with the inherent
magnetostrictive interactions, contribute to this phenomenon.
These nonlinearities have the capability to effectively shift
the optical, magnetic (magnon), and mechanical frequen-
cies, thereby altering the system’s dynamics. Experimental
demonstrations of the magnon Kerr effect have been con-
ducted in strongly coupled cavity-magnon systems. In these
systems, the Kerr effect leads to a shift in the cavity’s cen-
tral frequency and induces more pronounced shifts in the
magnon modes [31,32,45]. Unlike the influence of a strong
external field, Kerr nonlinearity can substantially modify the
dynamics through the deployment of relatively weak drive
fields [31,58,59].

Inspired by this development, we study nonreciprocity
within a hybrid multimode magnomechanical system. This

system features two microwave cavity fields connected to the
magnon mode of a YIG sphere through a magnetic dipole
moment. Our primary objective in this study is to explore
the generation, manipulation, and control of nonreciprocal
signal transmission. The magnon mode engages magnetostric-
tively with the phonon produced by the collective magnetic
spin, induced by the excitation of the YIG sphere through
an external magnetic drive field. Additionally, Kerr nonlin-
earties (self-Kerr and cross-Kerr) are activated when the YIG
sphere is excited by a strong drive. The two microwave cavity
modes can directly transfer microwave photons to each other
through photon-hopping interactions. Very recently, nonrecip-
rocal photon blockade has been investigated in a single-cavity
magnomechanical system having two YIG spheres in which
the nonreciprocity is controlled via tuning Kerr nonlinearities
[60]. Going beyond steady-state solutions, we perturb the
system dynamics by introducing a weak probe field to both
microwave cavity modes, and operate the system to impart
nonreciprocity to the signals flowing in the opposite direction.
Normally, the Kerr nonlinearities and magnetostrictive inter-
action between magnon and phonon are weak, but using the
specific system under study, the YIG sphere is excited via an
external drive magnetic field which efficiently enhances the
spin waves inside and thus phonons can be created effectively
that couple with magnons via magnetostrictive interaction.
A phase difference between distinct field paths can be ma-
nipulated either by tuning the external magnetic field or by
displacing the YIG sphere within the cavity setup. Ultimately,
adjusting the system parameters to introduce a substantial
phase difference can result in the breaking of time-reversal
symmetry, paving the way for achieving nonreciprocal trans-
mission of information.

The paper’s structure is outlined as follows: Section II
elucidates the model of the proposed system and addresses
the solution to the system’s Hamiltonian. Section III provides
numerical results pertaining to nonreciprocity and some ad-
ditional related discussions. The concluding remarks of our
work are presented in the last section.

II. SYSTEM MODEL AND ANALYTICAL RESULTS

The schematic representation of the proposed scheme’s
general magnomechanical system model is presented in
Fig. 1. This model encompasses a magnon mode m within
a YIG sphere, which interacts with two microwave cavity
modes or fields a1 and a2 through magnetic dipole interac-
tions denoted as g1 and g2, respectively. Additionally, the
magnon mode is connected to the mechanical oscillation or
phonon mode b via magnetostrictive interaction Gs. The YIG
sphere is subjected to the influence of a robust magnetic
field with a strength denoted as � and frequency ωd to
maintain the strength of the magnetostrictive interaction. The
resulting output field can be collected at both output ports 1
and 2, respectively. Moreover, the two cavities experience a
photon-hopping interaction characterized by a hopping cou-
pling denoted as J .

Applying the unitary transformation U (t ) =
exp[−iωd (a†

i ai + m†m)t] (i = 1, 2) (analogous to the
Schrödinger equation) in the frame rotating at the magnetic
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FIG. 1. (a) Conceptual framework for the magnomechanical sys-
tem under consideration. A magnon excitation denoted as m within
a yttrium iron garnet (YIG) sphere interacts with two distinct mi-
crowave cavity modes a1 and a2 via magnetic dipole couplings g1

and g2, respectively, and engages with a phononic mode b through
a magnetostrictive coupling Gs. The red curved arrows show the
self-Kerr and cross-Kerr nonlinearities with Ks and Kc as their Kerr
coefficients, respectively [58]. (b) Spectral characteristics, detuning
parameters, and decay constants. The magnonic excitation within the
YIG resonator, with a natural frequency ωm, is excited by a strong
microwave drive of amplitude � and frequency ωd . This interaction
leads to the generation of phonons at frequency ωb due to the co-
herent spin dynamics of magnons in the YIG material. Both cavities
are subjected to weak external probe fields at frequency ωs and are
interconnected directly through a photonic-hopping interaction J .

drive frequency, the system Hamiltonian undergoes
transformation, as indicated by the expression

HT /h̄ =
2∑

i=1

�ia
†
i ai + �mm†m + ωbb†b + Gsm

†m(b† + b)

+ g1(a1m†e−iφ + a†
1meiφ ) + g2(a2m† + a†

2m)

+ i�(m† − m) + J (a†
1a2 + a†

2a1)+Ks(m
†m)2

+ Kcm†mb†b + i
2∑

l=1

�sl (a
†
l e−iδst − ale

iδst ), (1)

where �1 = ωa1 − ωd and �2 = ωa2 − ωd are the cavity-
drive field detunings, whereas �m = ωm − ωd is the
magnon-drive field detuning. The Rabi frequency � =
(
√

5/4)γ0
√

NsB0 denotes the coupling strength between the
magnon mode and its driving magnetic field with amplitude
B0 while Ns is the total number of spins, carrying the ex-
pression Ns = ρV with the spin density of YIG ρ = 4.22 ×
1027 m−3 and the volume of sphere V [37]. The gyromagnetic

ratio γ0 relates the magnetic moment of the spin to the applied
magnetic field and has a value γ0/2π = 28 GHz/T.

The first term in (1) represents the Hamiltonian for two
cavity modes with �i (i = 1, 2) as their detunings. The sec-
ond term accounts for the energy of the magnon mode with
�m representing the magnon’s detuning. (Magnons, quantized
spin waves, arise as collective excitations of a large number of
spins within a massive YIG sphere.) The third term delineates
the Hamiltonian for the phonon mode induced by the oscil-
lations of the YIG sphere, where ωb represents the resonance
frequency of the phonon. The subsequent term establishes the
coupling between the magnon and phonon modes through the
magnetostrictive interaction, involving b† and b as the creation
and annihilation operators of the phonon, respectively. Here,
Gs denotes the magnetostrictive coupling strength between the
magnon and phonon. The expressions g1(a1m†e−iφ + a†

1meiφ )
and g2(a2m† + a†

2m), representing the fifth and sixth terms,
describe the magnetic dipole interactions occurring between
two microwave cavity photon modes and the magnon mode.
In these expressions, g1 and g2 denote the coupling rates
between the magnon mode and the respective cavity modes
a1 and a2. The total phase difference, which arises due to
the nonlinear characteristics of the YIG sphere, is denoted
by φ. Importantly, these coupling rates can be much larger
than the dissipation rates of the cavity and magnon modes,
i.e., gi � κi, κm in certain cases, resulting in the formation
of cavity-magnon polaritons. The subsequent expression in
Eq. (1) corresponds to the hopping interaction between the
two cavity modes, with J representing the hopping coupling
[61]. In the given context, assuming general applicability, the
magnetic dipole moment couplings g1 and g2, along with
the photon-hopping coupling J , are treated as positive real
quantities. Additionally, a total phase difference φ is present,
which can be derived through a suitable redefinition of the
annihilation operators.

The next two terms, i.e., Ks(m†m)2 and Kcm†mb†b, repre-
sent the self-Kerr and cross-Kerr nonlinearities’ Hamiltonians
with Ks and Kc as their Kerr coefficients, respectively [33,58].
The concluding term in the Hamiltonian [Eq. (1)] encapsulates
the interaction dynamics between the probe field and each of
the resonator fields, denoted as a1 and a2. Here, δs = ωs − ωd

signifies the detuning between the probe field and the drive
field frequencies, while �sl represents the amplitude of the
probe field.

Adhering to the standard approach in open dynamical sys-
tems, we introduce input noise sources and dissipation into the
system. Subsequently, the quantum Langevin equation (QLE)
is employed to describe the dynamics of the system as follows
[62,63]:

dY

dt
= − i

h̄
[Y, HT ] − �Y + N, (2)

where Y ∈ (a1, a2, m, b) is a general operator variable, � is
the dissipation rate for each operator under consideration,
and the term N denotes a quantum Gaussian white noise
whose mean value is zero in the semiclassical approximation
[63]. In what follows, the reduced Planck’s constant is set
to h̄ = 1 for convenience. Given our focus on the internal
dynamics of the hybrid system, we establish equations of
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motion for the observed variables by combining (1) and (2),
resulting in

da1

dt
= − i�1a1 − ig1meiφ − iJa2 − κ1a1 + �s1e−iδst

+
√

2κ1ain
1 , (3)

da2

dt
= − i�2a2 − ig2m − iJa1 − κ2a2 + �s2e−iδst

+
√

2κ2ain
2 , (4)

dm

dt
= − i�mm − ig1a1e−iφ − ig2a2 − iGsm(b + b†)

−2iKsm
†mm − iKcb†bm + � − κmm +

√
2κmmin,

(5)
db

dt
= −iωbb − iGsm

†m−iKcm†mb − γbb +
√

2γbbin, (6)

where κ1 and κ2 are the decay rates of respective microwave
cavities, γb represents the damping rate of phononic mode,
and δs = ωp − ωd is the probe-drive field detuning.

Due to the robust excitation of the magnon mode, it ex-
hibits a significantly large amplitude, denoted as |〈m〉| � 1.
Concurrently, the cavity-magnon beam-splitter-like interac-
tions result in substantial amplitudes for the two cavity fields.
This scenario facilitates the linearization of the system’s dy-
namics around the semiclassical mean values. We represent
each mode operator as the sum of its semiclassical averages
and for quantum fluctuations, represented as Z = 〈Z〉 + δZ
where Z stands for and element of the set {a1, a2, m, b}
[63–65]. In this formulation, we disregard the smaller terms of
second-order fluctuations. Upon integrating these linearized
mode operators into Eqs. (3)–(6), we can bifurcate the equa-
tions into two distinct groups: one describing the semiclassical
average behaviors and the other focusing on the quantum
fluctuations. The solutions to the averages 〈Z〉 = Zs can be
expressed as

a1s = −η(Jg2 + ig1eiφ�′
2)ms, (7)

a2s = −η(Jg1eiφ + ig2�
′
1)ms, (8)

|ms|2 = �2

[
κm + η

(
g2

1�
′
2 + g2

2�
′
1

)]2 + (�̃m − ηg1g2J cos φ)2
,

(9)(
�2

b + γ 2
b

)|bs|2 = G2
s |ms|4, (10)

where η = 1/(J2 + �′
1�

′
2), �̃m = �m + 2GsRe[bs] + χsc

represents the effective detuning of the magnon mode being
shifted by the magnon self- and cross-Kerr nonlinearities with
χsc = 2Ks|ms|2 + Kc|bs|2 as mentioned in Refs. [33,58], and
χ = Kc|ms|2. Here, �′

1 = (κ1 + i�1), �′
2 = (κ2 + i�2), and

�b = ωb + χ is the modified frequency or, in other words,
the frequency shift due to cross-Kerr nonlinearity between
magnon and phonon. Equation (9) under study is a cubic
equation with respect to magnon excitation number |ms|2,
which, after applying the stability conditions under suitable
range of drive field, imparts two stable solutions, thus leading
to the bistability of magnon and phonon that was already
studied in Refs. [33,66].

To demonstrate the influence of quantum fluctuations in-
troduced to the system by weak probe field, we transition
to a reference frame that rotates at frequency δs = �̃m = ωb.
To facilitate this transformation, we introduce operators that
evolve slowly with time, denoted as Õ. Within this new frame,
we express the fluctuations in the Õ ∈ {δa1, δa2, δm, δb} as
[67]

δa1 = δã1e−iδst , δa2 = δã2e−iδst , δm = δm̃e−i�̃mt ,

δb = δb̃e−iωbt . (11)

Inserting the ansatz in Eq. (11) into Eqs. (3)–(6) and, after
some simplification, we obtain the following equations:

d

dt
(δã1) = −�′

1δã1 − g1δm̃eiφ − iJδã2 + �s1, (12)

d

dt
(δã2) = −�′

2δã2 − g2δm̃ − iJδã1 + �s2, (13)

d

dt
(δm̃) = −�̃′

mδm̃ − iGmδb̃ − ig1δã1e−iφ − ig2δã2, (14)

d

dt
(δb̃) = −�bδb̃ − iGmδm̃, (15)

where �̃′
m = (κm + i�̃m), �b = (γb + i�b), while Gm =

Gs〈m〉 = Gsms is defined as the effective magnetostrictive
coupling between magnon and phonon modes [38]. After sim-
plification, Eqs. (12)–(15) can be put in the following matrix
form:

dx

dt
= Mx(t ) + Y (t ), (16)

where x(t ) = (δã1 δã2 δm̃ δb̃)T is a vector of all the operator
variables (T denotes the transposition of the matrix), and
Y (t ) = (�s1 �s2 0 0)T is the vector of all input fields. The
coefficient matrix M can be expanded as follows:

M =

⎛
⎜⎜⎝

−�′
1 −iJ −ig1eiφ 0

−iJ −�′
2 −ig2 0

−ig1e−iφ −ig2 −�̃′
m −iGm

0 0 −iGm −�b

⎞
⎟⎟⎠. (17)

By solving for x(t ), we derive expressions for δã1 and δã2 as
given below:

δã1 = η�s2
[
�b(J�̃′

m − ig1g2eiφ ) − G2
mJ

]

�b(Q + i�̃′
m) + iG2

m

, (18)

δã2 = η�s1
[
�b(J�̃′

m − ig1g2e−iφ ) − G2
mJ

]

�b(Q + i�̃′
m) + iG2

m

, (19)

where Q = ηJg1g2 cos φ + iη(g2
1�

′
2 + g2

2�
′
1).

After deriving the adjusted fluctuation coefficients for the
two microwave (MW) cavity modes based on the system
parameters, we will employ input-output theory. This appli-
cation of input-output theory enables us to precisely assess
the coupling of light into and out of these modes. Such an
understanding is fundamental for the purpose of managing
and influencing the system dynamics, and it offers a structured
framework to characterize both the input and output fields of
the system. The general form of this relation outlined in the
previous studies is written as [29,68–70]

εout + εin =
√

2κδa, (20)
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FIG. 2. Transmission of probe signals T12 (red curve) and T21 (blue curve) plotted against scaled cavity decay rate. The values of the
phase and photon-hopping parameters are given as (a) J = 0, φ = 0, (b) J/2π = 0.02 MHz, φ = π/2, (c) J/2π = 0.3 MHz, φ = π/2
and (d) J/2π = 0.3 MHz, φ = π/4. The general parameters values used in these numerical results are ωb/2π = 15 MHz, � = 50ωb,
�s1/2π = �s2/2π = 0.2ωb, κ2/2π = 1.5 MHz, κm/2π = 17.5 MHz, γb/2π = 100 Hz, g1/2π = g2/2π = 3.5 MHz, Gm/2π = 2.5 MHz,
χ = 0.45ωb, χs = 0.015ωb, χc = 0.03ωb ωm/2π = 10 GHz, �m = 0, and the detunings �1 = �2 = ωb.

where the initial term of Eq. (20) represents the output field,
while the subsequent term symbolizes the input field at a
specific port. The term on the right-hand side is indicative
of the system variable, which encapsulates information about
the system’s characteristics. In relation to the setup under
discussion, the output field, denoted as ε1

out = √
κ1δã1, corre-

sponds to the microwave photon emission from the microwave
mode a1. This emission occurs under the condition where
the input field is in reverse propagation. Similarly, the output
field ε2

out = √
κ2δã2 represents the microwave photon emis-

sion from the microwave mode a2. This emission is observed
when the input field is propagating in the forward direction.

We utilize the transmission coefficient expression to char-
acterize and measure the transfer of microwave signals
between the two microwave cavity modes with their relations
given below:

T21 ≡
∣∣∣∣
ε2

out

�s1

∣∣∣∣, T12 ≡
∣∣∣∣
ε1

out

�s2

∣∣∣∣. (21)

The numerator of Eq. (21) represents the output while the
denominator denotes the input field. By substituting the value
of δã2 from Eq. (19) into (21), we obtain the final transmission
coefficient in the direction from optical mode a1 to optical
mode a2 is given by

T21 =
∣∣∣∣∣
√

κ1κ2η�s2[�b(J�̃′
m − ig1g2e−iφ ) − G2

mJ]

�b(Q + i�̃′
m) + iG2

m

∣∣∣∣∣. (22)

Similarly, by substituting the value of δã2 from Eq. (19)
into (21), we calculate the expression for final transmission

coefficient in the opposite direction as follows:

T12 =
∣∣∣∣∣
√

κ1κ2η�s2
[
�b(J�̃′

m − ig1g2eiφ ) − G2
mJ

]

�b(Q + i�̃′
m) + iG2

m

∣∣∣∣∣. (23)

In the upcoming sections, these last two expressions will be
extensively utilized to characterize the generation and ma-
nipulation of nonreciprocal signal transmission within the
proposed magnonic system.

III. RESULTS AND DISCUSSIONS

In this section, we aim to demonstrate the breakdown
of time-reversal symmetry, which results in the transition
of probe signal transmission from reciprocal to nonrecipro-
cal. The nonreciprocal microwave signal transmission in the
system being discussed is primarily governed by two criti-
cal factors: the photon-hopping interaction (J) and the total
phase difference φ across all three modes. This phase differ-
ence is introduced into the system due to the nonlinearity of
the YIG sphere, which is positioned between two microwave
cavity modes. In scenarios where there is an insignificant
phase difference, or in the absence of photon hopping, the
signal transmission through either port of the system remains
reciprocal. Furthermore, the dynamics of the magnomechan-
ical system under analysis is significantly influenced by the
external drive magnetic field (strength �). This nonreciprocal
transmission is intricately linked to the magnetic dipole inter-
actions g1 and g2 between the microwave cavity photon modes
and the magnon, as well as the magnetostrictive interactions
Gs between magnon and phonon.
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FIG. 3. Output probe signal transmission T12 (red curve) and T21 (blue curve) plotted against scaled cavity decay rate. The values for
the effective self-Kerr and cross-Kerr nonlinearities are given as (a) χ = χc = 0, χs = 0.50ωb, (b) χ = 0.20ωb, χc = 0.030ωb, χs = 0.015ωb

(c) χ = 0.45ωb, χc = 0.030ωb, χs = 0.50ωb, and (d) χ = 0.90ωb, χc = 0.030ωb, χs = 0.015ωb. The general parameter values used in these
numerical results are κ2/2π = 2.8 MHz, g1/2π = g2/2π = 3.4 MHz, Gm/2π = 1.21 MHz, the magnon detuning �m = 3.3ωb, and the phase
difference φ = 3π/2. Other parameters have same values as given in Fig. 2(c).

In addition to Gs, the setup also includes two other types
of nonlinearities: magnon self- and cross-Kerr nonlinearities,
which cannot be disregarded under high levels of coupling
(see below). Their presence within the setup can effectively
alter the magnon detuning �̃m and the natural resonance

frequency of the phonon ωb, potentially altering the system’s
dynamics and consequently the behavior of nonreciprocal sig-
nal transmission. For the purpose of conducting numerical
simulations, we employ optimal values of parameters that
are feasible in experimental setups [47]. These parameters

FIG. 4. Transmission of probe signal T12 (red dashed curve) and T21 (blue dotted-dashed curve) vs cavity decay rate under different values
of magnetostrictive interaction: (a) Gm/2π = 50 kHz, (b) Gm/2π = 0.9 MHz, (c) Gm/2π = 1.21 MHz, and (d) Gm/2π = 3.0 MHz. The
general parameters are given as κ2/2π = 2.8 MHz, J/2π = 0.3 MHz, �m = 3.3ωb, and φ = 3π/2. Other parameters are same as given in
Fig. 2(c).
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FIG. 5. Output probe signal transmission T12 (red dashed curve)
and T21 (blue dotted-dashed curve) plotted against cavity detuning
�2 under different values of phonon damping rate γb: (a) γb = ωb/5,
(b) γb = ωb/500. The general parameters are given as κ2/2π =
13.1 MHz, κ1 = 0.4κ2, κm/2π = 2.5 MHz, J/2π = 0.8 MHz, �m =
ωb, and φ = π/3. Other parameters have the same as given in
Fig. 2(c).

help in accurately modeling and understanding the com-
plex interplay of photon, magnon, and phonon interactions
within the system. The numerical values of system param-
eters are given as the phonon mode frequency ωb/2π =
15 MHz, the drive field strength � = 50ωb, input probe field
amplitude �s1/2π = �s2/2π = 0.2ωb, decay rate of cav-
ity mode 2 κ2/2π = 1.5 MHz, dissipation rate of magnon
mode κm/2π = 17.5 MHz, damping rate of phonon mode
γb/2π = 100 Hz, magnetic dipole interactions g1/2π =
g2/2π = 3.5 MHz, magnetostrictive interaction Gm/2π =
2.5 MHz, χ = 0.45ωb, χs = 0.015ωb, χc = 0.03ωb, magnon
resonance frequency ωm/2π = 10 GHz, and the detunings
are given as �1 = �2 = ωb, �m = 0. Given that we deploy
relatively strong external drive field, the presence of the three
types of nonlinearities, magnetostriction, self-Kerr, and cross-
Kerr effects, is unavoidable. Their respective parameter values
have been taken into account in the subsequent discussion of
the results below.

A. Altering signal transmission via phase shifts
and photon hopping

In our exploration of the designated magnomechanical sys-
tem, we identify two crucial parameters: the phase differential

and the photonic-hopping interaction, both of which play a
critical role in modulating the signal’s transition from recip-
rocal to nonreciprocal transmission. As depicted in Fig. 2(a),
in the absence of photonic-hopping interaction between the
microwave (MW) cavity modes, signal propagation remains
strictly reciprocal, evident in the congruence of the blue and
red trajectories. The introduction of a significant phase shift φ

between distinct transmission channels is essential for achiev-
ing nonreciprocity. Specifically, when φ = π/2, the probe
signal’s transmission exhibits symmetry in two opposing di-
rections. Figure 2(a) illustrates this reciprocity at both ports,
maintaining symmetry regardless of the phase φ, particularly
when the photonic-hopping coupling J is nullified. The reason
that we still do not realize nonreciprocity in our system aside
from changing the phase difference is the absence of quantum
interference paths among the three modes (microwave cavity
mode a1, a2, and the magnon mode m inside YIG sphere) are
no longer in existence or connection. For interference to hap-
pen, the photon hopping must have a nonzero and comparable
numerical value to the system parameter values. Upon fine
tuning the hopping interaction to J/2π = 0.02 MHz, we start
to observe the emergence of nonreciprocal behavior in the hy-
brid magnonic structure, as demonstrated in Fig. 2(b), where a
noticeable but small bifurcation of the signal paths in opposite
directions is observed. However, it is only with an enhanced
hopping coupling, at J/2π = 0.3 MHz, that time-reversal
symmetry is decisively disrupted, culminating in a distinctly
nonreciprocal microwave signal transmission, an outcome
rooted in the quantum interference among diverse transmis-
sion paths, as depicted in Fig. 2(c). The dotted-dashed blue
trajectories show troughs near κ1/ωb = 5, indicating reduced
transmission at port 2. Simultaneously, the near-flat red crests
at the same juncture depict increased transmission at port 1. It
is essential to note that maximal nonreciprocity in signal trans-
mission is achieved when the phase parameter is precisely
configured to φ = π/2 since maximum chances of quantum
interference exist to happen at that specific valve of phase.
Variations in the phase value, deviating from this optimal
point (e.g., φ = π/4 in this case), result in a less pronounced
nonreciprocal behavior of the signals at both ports, as ob-
served in Fig. 2(d), because of the strong dependency of the
transmission routes T12 and T12 on the phase difference as ob-
vious from Eqs. (22) and (23). From the preceding discussion,
it becomes clear that by carefully adjusting the parameters φ

and J , one can effectively engineer the input signals traversing
from diametrically opposed vectors to exhibit nonreciprocal
characteristics.

B. Contribution of Kerr nonlinearities
in the output transmission

In a magnomechanical system, when a strong external
drive field is applied to a magnetic material, such as the
YIG sphere in our case, it induces both a radiation pressure,
e.g., force and Kerr nonlinearities. These factors collectively
influence the system dynamics by altering the resonance fre-
quencies of magnons and phonons, thereby modifying the
overall system behavior. Here, we demonstrate the role of the
Kerr effect (both self and cross) in manipulating quantum in-
terference, which is responsible for breaking the time-reversal
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FIG. 6. Output probe signal transmission T12 (red dashed curve) and T21 (blue dotted-dashed curve) plotted against cavity detuning �2

under different values of magnon dissipation rate κm: (a) κm/2π = 0.2 MHz, (b) κm/2π = 1.2 MHz, (c) κm/2π = 5.5 MHz, and (d) κm/2π =
15.5 MHz. The general parameters are given as κ2/2π = 6.0 MHz, κ1 = 0.4κ2, κm/2π = 2.5 MHz, J/2π = 0.8 MHz, �m = ωb, and φ = π/3.
Other parameters are same as given in Fig. 2(c).

symmetry, as illustrated in Fig. 3. We provide the values
of Kerr coefficients in terms of effective Kerr expressions,
such that χ = Kc|ms|2, χs = Ks|ms|2, and χc = Kc|bs|2. In
Fig. 3(a), when χ = χc = 0 and χs = 0.50ωb, we observe
nonreciprocal signal transmission, depicted by a blue curve
dip at κ1/ωb = 5, indicating minimal transmission at port 2.
Adjusting the external bias magnetic field to tune the val-
ues of Kerr nonlinearities to χ = 0.20ωb, χc = 0.03ωb, and
χs = 0.015ωb, results in a slight shift of the blue dip towards
the origin on the frequency axis. The observed shift is at-
tributed to the significant impact of Kerr nonlinearities on
magnons and phonons, leading to shifts in their frequencies.
These frequency changes cause variations in the total phase
φ, consequently altering the quantum interference pattern and
relocating the position of constructive interference to a new
point on the frequency spectrum, as depicted in Fig. 3(c).
Additionally, tuning these nonlinearities results in an increase
in isolation. A similar type of shift has been experimentally
demonstrated in Ref. [33], which investigates shifts in mag-
nomechanically induced resonances, focusing on the self-Kerr
nonlinearity. In our current setup, we address both self-Kerr
and cross-Kerr nonlinearities, as both significantly contribute
to altering the system dynamics. By further adjusting the
values of Kerr nonlinearities to χ = 0.90ωb, χc = 0.03ωb,
and χs = 0.015ωb, the dip shift in signal transmission ex-
tends further to the left, as indicated by the black arrow,
demonstrating the frequency shifts of magnons and phonons
from their resonances. From the preceding discussion, it is
evident that Kerr nonlinearity plays a crucial role in con-
trolling and manipulating nonreciprocal signal transfer across
two ports.

C. Utilizing magnetostrictive interaction
to influence signal transmission

In addition to effective Kerr nonlinearities, the effective
magnetostrictive coupling, denoted as Gm = Gs〈ms〉, between
the magnon and phonon modes under consideration is influ-
enced by the external magnetic drive field strength �, which
plays a pivotal role in determining the nonreciprocal behav-
ior of microwave (MW) signal transmission. As illustrated
in Fig. 4(a), a relatively small magnetostrictive interaction
(Gm/2π = 50 kHz) leads to minimal magnon-induced non-
linearity, thus falling short of achieving optimal nonreciprocal
signal transfer. Conversely, increasing Gm to a larger value,
for example, Gm/2π = 0.9 MHz, amplifies the magnetic non-
linearity, thus increasing the magnitude of nonreciprocity of
output signals, as depicted in Fig. 4(b). Further elevation of the
magnetostrictive coupling to Gm/2π = 1.21 MHz boosts up
the magnitude of nonreciprocal transmission with maximum
isolation. This optimal isolation is particularly noticeable
around κ1/ωb = 0.1, where MW signal transmission reaches
its peak at port 2 and its minimum at port 1 as illustrated,
respectively, by the red trough and blue peak in Fig. 4(c).
These findings indicate that increasing Gm shifts the nonrecip-
rocal signal spectrum rightward along the x axis, suggesting
that the tunability of nonreciprocal transmission can be ef-
fectively controlled through adjustments in magnetostrictive
interaction. The shift in the output signal spectrum can be
further witnessed by increasing Gm to much higher value,
that is, Gm/2π = 3.0 MHz, where the nonreciprocal signal
trajectory spans a broader spectrum along the x axis, as shown
in Fig. 4(d). Consequently, it becomes evident that the non-
reciprocal MW transmission is intricately dependent on the
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FIG. 7. Output probe signal transmission T12 (red dashed curve)
and T21 (blue dotted-dashed curve) plotted against the phonon fre-
quency ωb under different system detunings: (a) �1 = 0, �2 =
10ωb, �m = 0, (b) �1 = 0, �2 = 0, �m = 10ωb, and (c) �1 = 10ωb,
�2 = 0, �m = 0. The general parameters are given as κ1 = κ2/2π =
6.0 MHz, J/2π = 0.6 MHz, φ = π/2, g1/2π = 1.4 MHz, and
g2/2π = 6.4 MHz. Other parameters are same as given in Fig. 2(c).

magnitude of magnetostrictive coupling between the magnon
and phonon modes. Additionally, the isolation can also be
efficiently controlled via tuning of magnetostrictive coupling.

D. Role of phonon damping rate γb and magnon
decay rate (κm) to influence nonreciprocity

Phonons, which are the quantized modes of lattice
oscillations, have intrinsic property of damping rate and lose
energy to the system by different means. Variation in this
damping rate has an incredible impact on the nonreciprocal
transmission spectrum. When the phonon loss rate value
is considered to be γb = ωb/5, the nature of transmission
curves of signal at two ports is nonreciprocal as shown in
Fig. 5(a), where the right resonance has maximum isolation at
�2/ωb = 0.1 unlike the curves at the left of origin. The value
of phonon loss rate can be reduced to have a better mechanical
quality factor. When the value of phonon damping rate

becomes γb = ωb/500, the maximal nonreciprocal curve’s
behavior gets swapped which means that the left curves
receive maximal transmission whereas the right one remains
short or small as seen in Fig. 5(b). Since, to realize optimal
transmission using quantum magnomechanical system, the
dissipation or damping should be as least as possible which
is quite challenging. But with modern technology techniques,
it could be possible to do so by using the optimized materials
with intrinsically low damping rates, using cryogenic setups
to minimize thermal noise, and incorporating YIG spheres of
high purity which reduce inhomogeneous broadening effects
on magnon modes, thereby diminishing or minimizing overall
losses in the system.

The magnon decay rate, denoted as κm, measures the rate
of energy dissipation of the magnon and is inversely pro-
portional to its quality factor Qm, following the relationship
κm = ωm/Qm. In this study, we investigate the impact of the
magnon decay rate (or, equivalently, the quality factor) on
modulating the directionality of signal transmission at the
output ports. As depicted in Fig. 6(a), when the magnon decay
rate is set to κm/2π = 0.2 MHz, the nonreciprocal signal
transmission is characterized by dual red peaks and corre-
sponding blue troughs of similar depths at identical points
along the frequency axis. This suggests that lower dissipa-
tion rates correlate with minimal transmission at port 2 and
maximal transmission at port 1. Increasing the dissipation
rate to κm/2π = 1.2 MHz, as shown in Fig. 6(b), leads to
a significantly enhanced depth of the right trough displaying
enhanced nonreciprocal transmission at port 1 and minimal at
port 2. At this magnitude of the magnon decay rate, optimal
quantum constructive interference occurs, leading to a sub-
stantial level of isolation. A further increment of the magnon
decay rate to κm/2π = 5.5 MHz reveals a closure of red
peaks and blue troughs towards each other, resulting in lower
magnitude of nonreciprocity as can be seen in Fig. 6(c). It
becomes clear that higher values of magnon loss rate lower the
tendency of optimal transmission at the outputs. It is worthy
to mention here that the transmission of signals at the output
is always maximum when the leakage, decay, or loss rates
inside the system are minimum. The converse happens when
the magnon loss rate is set to κm/2π = 15.5 MHz as shown
in Fig. 6(d). The two peaks and troughs converge into a single
peak and trough, respectively, at the origin, resulting in mini-
mal isolation. In the context of nonreciprocity in our proposed
setup as explained above in Fig. 6, it is better to keep the
magnon dissipation rate as low as possible in order to comply
with the quantum magnomechanics. As explained already, for
lower values of magnon, decay rate gives optimal magnitude
of nonreciprocity as obvious from Fig. 6(b). Higher values of
κm can still hold the nonreciprocal nature of information sig-
nals, but the transmission intensity is reduced as can be seen
in Figs. 6(c) and 6(d). Consequently, it can be inferred that the
magnon decay rate plays a pivotal role in selectively position-
ing the nonreciprocal signals along the frequency spectrum.

E. Manipulation of nonreciprocal signal transfer
via tuning of detunings

The system under investigation is highly sensitive to the
frequencies of various parameters, with their respective
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detunings playing a pivotal role in the tunability of
nonreciprocal signal transmission. Figure 7 illustrates the
effects on nonreciprocal signal transfer when the detunings of
both cavities and the magnon are adjusted to distinct values.
Initially, we set the detuning of cavity 2 to �2 = 10ωb,
while reducing the other two detunings, �1 and �m, to zero.
This configuration yields nonreciprocal signal propagation,
as evidenced by the spatial separation of the two signal
curves depicted in Fig. 7(a). Both curves exhibit peaks at
the frequency axis origin, indicating an inclination towards
increased amplitude. Subsequently, reducing the detunings of
both cavities to �1 = �2 = 0, while adjusting the magnon
detuning to �m = 10ωb, results in a marked change in the
behavior of the blue curve (representing the signal at port
2). It tends towards zero, characterized by a pronounced
dip in Fig. 7(b). The signals exhibit a purely nonreciprocal
nature with optimal isolation, and the linewidth of the curve
is notably narrower compared to that in Fig. 7(a).

Furthermore, with the magnon detuning �m = 0 such
that ωm = ωd and the cavity 1 detuning set to �1 = 10ωb,
while the cavity 2 detuning is kept zero, i.e., �2 = 0 [as
shown in Fig. 7(c)), the linewidth of the signal amplitude at
port 1 broadens, peaking at the origin to signify maximum
transmission. In contrast, the blue curve (signal at port 2)
tends to flatten, exhibiting a minimal dip. By modifying the
magnon detuning could potentially render the blue curve
entirely flat (not depicted). This analysis underscores the
significant influence of frequency detunings on nonreciprocal
transmission behavior, demonstrating their potential as a
tool for precisely controlling the amount of information
transmitted to a desired port.

IV. CONCLUSIONS

In summary, our investigation successfully probed the non-
reciprocal behavior of information signals within a hybrid
magnomechanical system featuring two microwave (MW)
cavity modes interconnected with magnons through magnetic
dipole interactions and directly with each other via photon-
hopping interaction. By leveraging the inherent nonlinear
properties of a yttrium iron garnet (YIG) sphere, we were
able to disrupt time-reversal symmetry and control it by ad-
justing various system parameters. We demonstrated that the
breakdown of time-reversal symmetry is contingent upon the
presence of a substantial phase difference between all field
modes and the cavity modes, coupled with the effect of photon
hopping. Manipulation of the relevant nonlinearities, such
as magnetostrictive coupling along with self- and cross-Kerr
nonlinearities, using an external magnetic field, was found
to be pivotal in achieving maximal nonreciprocity and op-
timal isolation. Additionally, the quality factor of the YIG
sphere, as defined by the magnon decay rate, was instrumental
in fine tuning the nonreciprocal microwave signal transmis-
sion between the two ports. Careful tuning of the detuning
parameters allowed us to either inhibit or permit signal trans-
mission through the output ports. In essence, the utilization of
hybrid quantum systems incorporating magnetostatic modes
presents a wide range of platforms with promising prospects
for innovative quantum technologies. These developments
bear significance in both foundational and applied physics,
unveiling numerous avenues for future research and practical
implementation.
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