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Local correlations in partially dual-unitary lattice models
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We consider the problem of local correlations in the kicked, dual-unitary coupled maps on D-dimensional
lattices. We demonstrate that for D � 2, fully dual-unitary systems exhibit ultralocal correlations: The correla-
tions between any pair of operators with a local support vanish in a finite number of time steps. In addition, for
D = 2, we consider the partially dual-unitary regime of the model, where the dual-unitarity applies to only one
of the two spatial directions. For this case, we show that correlations generically decay exponentially and provide
an explicit formula for the correlation function between the operators supported on two and four neighboring
sites.
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I. INTRODUCTION

Until recently, the vast majority of research in the field of
quantum chaos has been limited to systems with few degrees
of freedom, even though chaotic spectral statistics were first
found in the atomic nuclear, which essentially is a many-
body problem [1,2]. Indeed, the many-body quantum systems,
where the Hilbert space dimension grows exponentially with
the number of degrees of freedom, represent a significant
challenge for numerical and analytical studies. In recent years
substantial progress in the field has been achieved due to the
introduction of new classes of many-body models and the
development of appropriate mathematical methods for their
investigation. This is closely connected to a burst of activities
in the field of quantum circuits, see a recent review in [3].
In this article, our attention is focused on the calculation of
the correlations between localized quantum observables in
dual-unitary quantum systems of arbitrary dimensions, with
a particular focus on D = 2 dimensions. Dual-unitary models
possess a remarkable property—their dynamics are invariant
under the exchange of spatial and temporal degrees of free-
dom. A toy model with such property, a chain of linearly
coupled Arnold’s cat maps, was first introduced in [4] and
subsequently studied in a number of papers [5–7] both on
classical and quantum levels. Other examples of dual-unitary
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models were found among different classes of systems, e.g.,
kicked Ising spin chain and its generalizations [8–11], circuit
lattices [12–15]. Although their full characterisation is still ab-
sent, dual-unitary models are generic and can be constructed
in a systematic way [16].

In the field of many-body quantum chaos the dual-unitary
models attract considerable attention [8–10,12,16–26] due to
their intriguing properties. On one hand, they demonstrate
quantum properties akin to those of maximally chaotic many-
body systems, such as Wigner-Dyson spectral statistics and
insusceptibility to many-body localization effects [9,19,27].
On the other hand, dual-unitary models are amenable to exact
treatment. In particular, due to the combination of duality and
causality, the local two-point correlation functions in these
systems can be calculated exactly [11,12,28]. Correlations
continue to find considerable interest [22,29–34]. Other recent
research directions include aspects of matrix product states
[20,35], steady states as well as eigenstate thermalization
[36,37], computational aspects [38], and random matrix statis-
tics [39,40].

Previous studies have primarily focused on dual-unitary
models with a single spatial dimension. Extension to two
spatial dimensions has been considered in a number of recent
papers [13,14,38,41] for quantum circuits model. In the cur-
rent study, we extend our investigation to encompass coupled
map lattices of an arbitrary dimension D. Our findings reveal
that starting from D = 2 onwards, the correlations within
a system exhibiting the complete spatiotemporal symmetry
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demonstrate an ultralocal behavior, which implies that the
correlations between operators with local support vanish iden-
tically after a finite time. In particular, this suggests that in the
case D � 2, the requirement of the complete duality can be
relaxed without compromising the solvability of the model.
Accordingly, in the main body of this paper, we consider
partially dual -unitary map lattices, where the system remains
invariant under the exchange of the time variable and only one
of several spatial coordinates. Dual-unitary quantum circuits
of this type have recently been explored in [38], where it has
been demonstrated that correlation functions are classically
simulatable for certain types of initial states. The central result
of the present paper is the explicit expression for the local cor-
relation function in the partially dual-unitary coupled maps.
The way of derivation is closely related to the one suggested
in Ref. [11].

II. THE MAIN IDEAS

The general model considered in this paper is defined for
a finite piece of the D-dimensional lattice ZD. Specifically,
let Z̄D be a finite-size hyper rectangular subset of ZD where
Ni (for i = 1, . . . , D) represents the number of sites along the
ith spatial direction so that the product N = N1 · N2 · · · · · ND

is the total number of sites of the lattice Z̄D. The unitary
Floquet evolution operator U acts in discrete time steps in the
Hilbert space H⊗N , which is the tensor product of N local
L-dimensional spaces H = CL. In the following, we assume
that the time evolution U is dual unitary (at least for one
spatial direction) with a unit speed of interaction propagation.
Detailed information regarding the construction of U with the
necessary properties will be provided in the main body of the
paper.

The main object of our consideration is the reduced cor-
relation function between two local observables, Q̂1 and Q̂2

after t time steps of the evolution,

C(r, t ) = 〈Q̂1(0)Q̂2(t )〉 − 〈Q̂1(0)〉〈Q̂2(t )〉, (2.1)

where the evolution is provided by the action of a unitary
operator U ,

Q̂i(t ) = U −t QiU
t , i = 1, 2. (2.2)

It is important to note that the value of t should be smaller
than any spatial dimension of Z̄D, ensuring that the resulting
correlation function remains independent of both the size of
Z̄D and the boundary conditions. To make our explanations
more transparent we assume here that two observables, Q1

and Q2, are strictly local. In other words, they are localized
at single lattice points r1 ∈ Z̄D, and r2 ∈ Z̄D, respectively.
Furthermore, since our model is shift invariant, the correlation
function depends solely on the difference r = r2 − r1. Conse-
quently, we can set, without a loss of generality, that Q1 is
localized at the origin 0 and Q2 at the position r, respectively.
The average in Eq. (2.1) is defined by the operator trace taken
over the entire many-body Hilbert space, 〈·〉 = L−DTr (·).

To explain the main ideas of the paper we will now
consider the cases of one-dimensional (D = 1) and two-
dimensional lattices (D = 2).

(a) (b)

FIG. 1. Representation of the connected part of the correlation
function C(n, t ) [Eq. (2.1)] between two observables located at the
coordinates (0,0) and (n, t ) of the space-time grid. (a) In the general
case due to causality the correlations vanish inside the light cones
defined by the inequality |n| > |t | (grey regions). (b) In the case of
the dual-unitary model, when Eq. (2.3) holds, solely the correlations
along the light-cone edges (dark-blue lines |n| = |t |) do not vanish.

A. One-dimensional lattice (chain) of quantum maps

For a one-dimensional lattice (chain) Z̄1, the location of
an observable is determined by an integer number n, r = n.
Since the speed of interaction propagation equals one, the
causality implies that the correlation function of many-body
operators (2.1) vanishes outside the light cone |t | < |n|, see
Fig. 1(a). Furthermore, for dual unitary U , the correlation
function remains invariant under exchange of time t and the
spatial coordinate n,

C(n, t ) = C(t, n). (2.3)

Therefore, the correlation function C(n, t ) nullifies also inside
the light cone |n| < |t |, see Fig. 1(b). As a result, the light-
cone edges |t | = |n| remain as the only possible location of
the space-time manifold where the nontrivial correlations can
arise. From a technical point of view, the calculation of the
correlation function in the dual-unitary case reduces to the cal-
culation of the correlations propagating along the light-cone
edges, which in turn can be expressed through an expectation
value of a product of transfer matrices of a reduced dimension,
independent on D, see [11,12,28].

B. Two-dimensional lattice of quantum maps

In the case of a two-dimension lattice Z̄2 the situation is
somewhat different. Here any point of the lattice is labeled by
a pair of integers r = (m, n). Due to causality, the correlations
vanish outside the light-cone domain

|t | � |n| + |m|, (2.4)

see Fig. 2. For systems with full spatiotemporal symmetry, the
correlation function remains invariant under the exchange of t
and n, as well as under the exchange of t and m. This implies
that for the nontrivial correlations the inequalities

|m| � |n| + |t |, |n| � |t | + |m| (2.5)

must hold, as well. It is straightforward to see that the only
point satisfying all three inequalities [(2.4) and (2.5)] is the
origin of the space-time grid t = m = n = 0. In other words,
all correlations of strictly local operators vanish for any time
t > 0. A similar consideration for the operators supported
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(a) (b)

FIG. 2. On the left (a) is shown a lattice Z̄D with a central point
located at the origin (n = 0, m = 0) of the system. The lines t = 1
(orange), t = 2 (red), and t = 3 (blue) mark the event horizon of the
light cone. The observables, which are outside the cone at a given
time step t , do not correlate with the observable at the origin. The
right figure (b) shows the entire light cone with the boundaries of the
event horizon represented by the eight triangular areas.

on a finite number � of sites shows that C(r, t ) = 0 for
t > �. For this reason, we refer to such behavior as ultralocal
correlations.

Note that the “light-cone” borders are determined by the
velocity of the signal propagation. Generically the light-cone
surface can be seen as a space-time membrane pinned to
the initial point, so that its surface tension is interpreted in
terms of the rate at which information “flows” across it.
This allows to consider generic (nonunitary) dynamics across
the membrane [15]. Note also that the ultralocal behavior
of the correlation function in our model contrasts with that
of the correlation function in the ternary-unitary and triuni-
tary (2 + 1)-dimensional circuits introduced in [13] and [41],
respectively. In these models, the light-cone domain is de-
termined by the conditions: |t | � |n|, |t | � |m|. Application
of the above duality argument in this case yields nontrivial
correlations along the lines |t | = |n| = |m|. In Appendix A,
we show that a dual-unitary kicked quantum map on 2D lattice
can be represented as a 2D quantum circuit with a ternary
unitary gate operator as described in [41] and give explanation
to the seeming ambiguity mentioned above.

Suppose now that our system belongs to a class of partially
dual-unitary systems. It is invariant under the exchange of
only one coordinate, e.g., n and time t . In such a case the
domain of nontrivial correlations is given by

|t | � |n| + |m| ∩ |n| � |t | + |m|. (2.6)

The correlation function C(r, t ) does not necessarily vanish
along the line m = 0, |n| = |t |. In the body of the text, we
show, similarly to the one-dimensional case, that the correla-
tions along this line can be expressed through an expectation
value of a transfer operator powers. In particular, the transfer
operator eigenvalues determine the decay rates of the correla-
tions.

C. Outline of the article

In the next section, we formulate the general model of
coupled quantum maps with periodic kicks in D spatial di-
mensions. In this context, we introduce the notion of partial
and full dual unitarity. In Sec. IV we briefly recall the main
results for D = 1 case. We then introduce the correlation

function for the D = 2 model and demonstrate that, similar
to the one-dimensional case, it can be expressed in the form
of a three-dimensional partition function for a classical spin
model. In Sec. V, we derive the contraction rules that enable
us to compute the correlation function. The general expres-
sions for the transfer operator and the correlation function
are derived in Sec. VI. In Sec. VII we apply our results to
the model of coupled cat maps and kicked Ising spin lattice.
For this purpose we study here in detail the spectra of the
corresponding transfer operators. Finally, in Sec. VIII we give
the concluding remarks.

III. THE KICKED QUANTUM MAP ON A LATTICE

To start our consideration we introduce a multidimen-
sional lattice model of periodically kicked locally interacting
particles. The system Hamiltonian H (t ) consists of the time-
dependent and the time-independent parts,

H (t ) = HI + HK

+∞∑
τ=−∞

δ(t − τ ). (3.1)

The kick part of the Hamiltonian HK induces independent
evolution of noninteracting particles. It turns on periodically
at integer instants of time τ . The HI part [Eq. (3.1)] describes
the nearest-neighbor interaction between the particles. Such
Hamiltonian structure, in particular, implies that the quantum
time evolution can be written as a product

U = UKUI (3.2)

of unitary evolutions [8,42,43] UK and UI , corresponding to
the kick and the interaction parts of the Hamiltonian, respec-
tively.

To specify the form of the unitary operators we define, first,
the on-site local Hilbert space H equipped with the discrete
L-dimensional basis { |s〉, s = 1, L }. The total Hilbert space
of the system is defined then by the tensor product H⊗N .
It has the dimension LN and possesses the natural product
basis, ⎧⎨

⎩|s〉 ≡
∏
j∈Z̄D

|s j〉, s j = 1, L

⎫⎬
⎭, (3.3)

where the multidimensional index j marks the particles’ po-
sitions in the lattice Z̄D and the product runs over all N
lattice sites. The Floquet time evolution between the kicks
is governed by the unitary operator UI = e−iHI . We require
that HI couples the nearest neighbor sites of the multidimen-
sional lattice and has to be diagonal in the product basis
(3.3). This yields the following matrix form of the evolution
operator:

〈s|UI [ f ]|s′〉 = δ(s, s′) exp

⎡
⎣i

D∑
d=1

∑
j

fd (s j, s j+1d )

⎤
⎦, (3.4)

where UI [ f ] is determined by the set of functions f =
( f1, f2, . . . , fD). Here we used the notation 1d , which denotes
the one site shift of the index j in the spatial direction d .
The function δ(s, s′) stands for the product of the Kronecker
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symbols, δ(s, s′) =∏ j δ(s j, s′
j ). In the above formula

[Eq. (3.4)] the cyclic boundary conditions in each spatial
dimension are implied. The operator UI acts independently in
each spatial direction so that it can be represented as a product
of mutually commuting unitary operators UId , where d indexes
the spatial axis number,

UI [ f ] =
D∏

d=1

UId , (3.5)

〈s|
D∏

d=1

UId |s′〉 = δ(s, s′)LN /2
D∏

d=1

∏
j

〈s j |u[ fd ]|s j+1d 〉, (3.6)

where we have introduced the notation u[ f ] for the L ×
L unitary matrix with the symbol f , and the factor LN /2

is introduced to satisfy the unitary properties of u[ f ]. Its
entries are

〈s|u[ f ]|s′〉 = 1√
L

ei f (s,s′ ), (3.7)

and the unitarity condition is written in the form

1

L

L∑
s′=1

ei f (s,s′ )e−i f ∗ (s′′,s′ ) = δ(s, s′′). (3.8)

Note that, to satisfy the unitary condition for UI , each function
fd in Eqs. (3.4) and (3.6) has to be a real-valued function.

The kick part HK of the total Hamiltonian H in Eq. (3.1)
defines the on-site particle dynamics. The corresponding evo-
lution operator UK = e−iHK can be represented as the tensor
product of unitary operators defined in the single-particle
Hilbert space. We assume that the kicks act identically on each
particle, so that

〈s|UK [g]|s′〉 =
∏

j

〈s j |u[g]|s′
j〉, (3.9)

where u is the L × L unitary matrix with the symbol g. Matrix
u[g] satisfies the unitarity condition

1

L

L∑
s′=1

eig(s,s′ )e−ig∗(s′′,s′ ) = δ(s, s′′). (3.10)

Having introduced the basic notations we are in a position
to formulate the duality relation for the quantum maps, which
has been established for the one-dimensional case in Ref. [11].
In the case D = 1 it states that for the dual-unitary quan-
tum system the evolution operator U = UK [g]UI [ f ] and its
dual counterpart, Ũ = UK [ f ]UI [g], obtained by the exchange
of f and g functions, are both unitary and the system pos-
sesses the spatiotemporal symmetry. Note that this requires
the Hadamard property for the matrices

〈s|u[ f ]|s′〉 = ei f (s,s′ )
√

L
, 〈s|u[g]|s′〉 = eig(s,s′ )

√
L

. (3.11)

In other words, these are L × L unitary matrices with iden-
tical absolute values for all entries, where both f and g are
real-valued functions. Certainly the duality is achieved when
f = g, so that U ≡ Ũ . As we demonstrate in Sec. VII. (appli-
cations) the strict equivalence f = g is not necessary for the

duality. In fact, f and g can be chosen from rather wide class
of functions.

The above notion of dual unitarity can be straightforwardly
extended to an arbitrary dimension D. In general, there exist
D possible dual operators,

Ũj = UK [ f j]UI [g̃], g̃ = ( f1, . . . , g, . . . , fD), (3.12)

where the function g is exchanged with one of the spatial
coupling functions f j . We say that the system is partially dual
unitary if one of the spatial evolution operators Ũj is unitary.
The system is called fully dual unitary if all Ũj, j = 1, . . . , D
are unitary. If, in addition all functions f j, j = 1, . . . , D and g
are equal, then

U = Ũ1 = Ũ2 = · · · = ŨD.

In this case, the system possesses full spatiotemporal symme-
try.

IV. CORRELATIONS BETWEEN LOCAL OPERATORS

In this paper, we aim at the calculation of the correlation
function,

C(t ) = L−N Tr �̄U −t�Ut , (4.1)

for two local observables �̄,�. For simplicity of exposition,
we restrict our consideration to the case of two-dimensional
spatial lattices Z̄2, while the generalization to D-dimensional
lattices with D > 2 is straightforward.

A. One-dimensional lattice

We start by recalling the results of [11] for the one-
dimensional case. There the correlation function (4.1) was
calculated for the operators �̄ and � given by the products
of the following form:

�̄ = q1 ⊗ q2 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−2

, (4.2)

� = 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n

⊗q3 ⊗ q4 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
N−n−2

, (4.3)

where each q� (� = 1, 2, 3, 4) is an operator acting on the on-
site Hilbert space H.

For the one-dimensional (D = 1) dual-unitary model the
correlation function (4.1) for the traceless q� always equals
zero, except for the case when the correlations are considered
along the “light-cone” edge. The latter case corresponds to the
choice |n| = t in Eq. (4.3). The resulting correlation function
at the light-cone edge, n = t > 2, can be represented as the
expectation value of the transfer operator T̂ power,

CD=1(t ) = 〈�̄q1,q2

∣∣T̂ t−2∣∣�q3,q4

〉
, (4.4)

where the vectors 〈�̄q1,q2 |, |�q3,q4〉 depend on the operators
q1, q2, and q3, q4, respectively. The transfer operator T̂ acts
in the Hilbert space H ⊗ H, and has the entries

〈χ, η|T̂ |χ ′, η′〉 = 1

L3

∣∣∣∣∣
L∑

s=1

ei f1(χ,s)+ig(η,s)+ig(s,χ ′ )+i f1(s,η′ )

∣∣∣∣∣
2

.

(4.5)
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In a general nondual case the correlation function becomes
zero only outside the light cone, |n| > t (which is supported
by the argument that the speed of information propagation in
the kicked chain model equals 1), but remains finite inside the
light cone, |n| < t .

The result (4.4) was obtained in [11] by representing the
correlation function C(t ) in the form of a partition function of
a classical spin lattice model, followed by the application of
contraction rules that allow the elimination of most of the spin
variables. As we demonstrate below, this method also applies
to the higher dimensional lattices.

B. Two-dimensional lattice

We now consider the correlation function (4.1) for two-
dimensional lattice models. For convenience we address two
spatial directions as “vertical” and “horizontal”, using indexes
v and h, instead of 1 and 2. The number of sites in the vertical
and horizontal direction is denoted by N and M, respectively,
with N = MN being the total number of lattice sites. The
two-point correlation function is defined by Eq. (4.1) with the
evolution matrix U = UKUI , where the interaction part of the

evolution operator,

〈s|UI |s′〉 ≡ δ(s, s′)
N∏

n=1

M∏
m=1

ei fv (sn,m,sn+1,m )+ fh (sn,m,sn,m+1 ), (4.6)

is diagonal in the product basis |s〉. The circular boundary con-
ditions are assumed in the above formulas, namely, sn,M+1 ≡
sn,1, and sN+1,m ≡ s1,m. The kicked part of the evolution is
defined by the Eqs. (3.7) and (3.9).

We consider correlations (4.1) for a pair of many-body
operators �̄ and �, each supported at four neighboring
points of the lattice. They are defined by eight [rather
than four, as in Eqs. (4.2) and (4.3)] local matrices q�,
� = 1, . . . , 8. Without loss of generality, we define �̄

as a direct product, where the nontrivial matrices are
placed in the “left upper corner”, i.e., at the coordinates
(n, m) = { (1, 1), (1, 2), (2, 1), (2, 2) }. The second many-
body operator, � has the nontrivial entries at the coordinates
(n, m) = { (ν, μ), (ν, μ + 1), (ν + 1, μ), (ν + 1, μ + 1) }.
Schematically, these operators can be represented as follows:

�̄ =

1 2 3 N
q1 ⊗ q2 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ 1
q3 ⊗ q4 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ 2
1 ⊗ 1 ⊗ 1 ⊗ . . . ⊗ 1 ⊗ 3

...

1 ⊗ 1 ⊗ 1 ⊗ . . . ⊗ 1 M

,

� =

ν − 1 ν ν + 1 ν + 2
...

...
...

...

. . . ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ . . . μ − 1

. . . ⊗ 1 ⊗ q5 ⊗ q6 ⊗ 1 ⊗ . . . μ

. . . ⊗ 1 ⊗ q7 ⊗ q8 ⊗ 1 ⊗ . . . μ + 1

. . . ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ . . . μ + 2
...

...
...

...

. (4.7)

To evaluate the correlation function, we first introduce the basis vectors additionally indexed by the integer time t ,

|st 〉 ≡
∏

(n,m)∈Z̄2

|snmt 〉, (4.8)

and then write

C(T ) ≡ L−N Tr �̄U −T �U T = L−N
∑

〈s2T +1|�̄|s0〉〈sT |�|sT +1〉
(

T −1∏
t=0

〈st |U †|st+1〉〈s2T −t |U |s2T −t+1〉
)

, (4.9)

where the sum runs over all possible values of the components, snmt ∈ 1, L. We assume that for T = 0 the product in Eq. (4.9)
equals 1 identically. It is also convenient to introduce at each position (m, n) a two-component spin variable with the components
s̄nmt and snmt . The upper component of the spin variable s̄n,m,t coincides with sn,m,t for all t ∈ 0, T . The lower component
corresponds to the spin variable taken at the conjugated instance of time 2T − t , such that sn,m,t = sn,m,2T −t+1 with the same set
of the indexes t ∈ 0, T . The schematics of the above correspondence are plotted below for convenience

s0 sT −1 sT | sT +1 sT +2 s2T +1

• ⇔ . . . • ⇔ • | • ⇔ • . . . ⇔ •
s̄0 s̄T −1 s̄T | sT sT −1 s0

. (4.10)
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Using this notation we can rewrite the correlation function in
a symmetric form,

C(T ) = L−N
∑

S

	̄(s̄0, s0)T̄I (s̄0, s0)	(s̄T , sT )

×
T −1∏
t=0

T̄K (s̄t , s̄t+1; st+1, st )T̄I (s̄t+1, st+1), (4.11)

where 	̄ and 	 depend on N spin variables and implicitly
include dependence on the matrices q�,

	̄(s0, s̄0) = 〈s0|�̄|s̄0〉, (4.12)

	(s̄T , sT ) = 〈s̄T |UI�U †
I |sT 〉. (4.13)

Each T̄I is a function of N spin variables and describes the par-
ticle interactions between the kicks. Substituting the explicit
form of the matrix UI entries [Eq. (4.6)] we have for T̄I ,

T̄I (s̄t , st ) ≡ 〈s̄t |UI |s̄t 〉∗〈st |UI |st 〉

=
N∏

n=1

M∏
m=1

e−i fv (s̄n,m,t ,s̄n+1,m,t )+i fv (sn,m,t ,sn+1,m,t )

× e−i fh (s̄n,m,t ,s̄n,m+1,t )+i fh (sn,m,t ,sn,m+1,t ). (4.14)

The explicit form of the matrix UK [Eqs. (3.9) and (3.7)]
allows to write down the expression for T̄K ,

T̄K (s̄t , s̄t+1; st+1, st )

≡ 〈s̄t+1|UK |s̄t 〉∗〈st+1|UK |st 〉

= 1

LNM

N∏
n=1

M∏
m=1

e−ig∗(s̄n,m,t+1,s̄n,m,t )+ig(sn,m,t+1,sn,m,t ). (4.15)

The sum runs over all possible values of the full set

S = {(s̄nmt , snmt )|(n, m, t ) ∈ L }, (4.16)

of the MNT ≡ |S| spin variables, located at the nodes of the
3D space-time grid,

L = {(n, m, t )|t ∈ 0, T , n ∈ 1, N, m ∈ 1, M}. (4.17)

Note that in the present calculations, we have used the sym-
metrization procedure slightly different than in Ref. [11].
Namely, instead of incorporating UI into 	̄ we introduced an
additional unity operator 1 = UIU

†
I = U †

I UI from both sides
of �. This is done to formulate the contraction rules in a
symmetric way.

The correlation function (4.11) can be equally represented
in another form with the structure of a partition function,

C(T ) = 1

L|S|
∑

S

G1(S1)G2(S2)e−iF (S). (4.18)

The expression under the sum is split into the product of three
factors in accordance with the location of the spin variables
within the lattice L. The first one is given by G1(S1) = D�̄D� ,
where

D�̄ = 〈s̄111|u[g]q1u†[g]|s111〉〈s̄121|u[g]q2u†[g]|s121〉
× 〈s̄211|u[g]q3u†[g]|s211〉〈s̄221|u[g]q4u†[g]|s221〉,

(4.19)

D� = 〈s̄νμT |q5|sνμT 〉〈s̄νμ+1T |q6|sνμ+1T 〉
× 〈s̄ν+1μT |q7|sν+1μT 〉〈s̄ν+1μ+1T |q8|sν+1μ+1T 〉. (4.20)

It depends on the spin variables

S1 = { (s̄nmt , snmt )|(n, m, t ) ∈ L1 }, (4.21)

located at the eight lattice sites,

L1 = {(1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1), (ν, μ, T ),

(ν, μ + 1, T ), (ν + 1, μ, T ), (ν + 1, μ + 1, T )},
(4.22)

corresponding to the position of the local operators q� in �̄,
�. The second term is given by the product of the Kronecker
delta functions

G2(S2) =
∏

(n,m,t )∈L2

δ(s̄nmt , snmt ). (4.23)

It depends on the spin variables

S2 = {(s̄nmt , snmt )|(n, m, t ) ∈ L2}, (4.24)

located at the subset

L2 = {(n, m, t )|t ∈ {1, T }, n ∈ 1, N, m ∈ 1, M} \ L1

of the three-dimensional space-time grid. Finally, the inter-
action between spins is described by the third term e−iF (S),
where the exponent is given by the function

F =
∑

(n,m,t )∈L
fv (s̄n,m,t , s̄n+1,m,t ) + fv (sn,m,t , sn+1,m,t )

+ fh(s̄n,m,t , s̄n,m+1,t ) + fh(sn,m,t , sn,m+1,t )

+ g∗(s̄n,m,t+1, s̄n,m,t ) + g(sn,m,t+1, sn,m,t ), (4.25)

and the sum runs over the full set S of spin variables.

V. GRAPHICAL METHOD FOR EVALUATION
OF CORRELATIONS

The correlation function, expressed in the form of the
partition function (4.18) permits an instructive graphical rep-
resentation, as illustrated in Fig. 3. The 3D space-time lattice
L is partitioned into the three subsets L1,L2,L3 ≡ L/(L1 ∪
L2). In the picture, the spin variables are schematically shown
by balls of various colors in accordance with their role in
the partition function (4.18). The green-colored balls, located
at L1, correspond to the positions of the operators q�, see
Eq. (4.7). The red balls, located at the subset L2, correspond
to the δ-correlated spins. Since each unit matrix 1 in the oper-
ators �̄ and � generates the pair of the δ-correlated spins, the
majority of the endpoints are colored red. Finally, the brown
balls placed at L3 correspond to all other spin variables.

In general, the partition function (4.18) can be calculated
by eliminating the spin variables one by one. To facilitate this
procedure, a simple graphical method can be developed by
drawing an analogy with Ref. [11]. Below, we formulate the
“contraction rules”, which form the basis of our approach.
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A. Contraction rules

Consider the local configuration consisting of four neighboring δ-correlated spins and an unpaired spin (s̄n,m,t+1, sn,m,t+1),
as it is shown in Fig. 4(a). The corresponding part of the partition function includes five δ symbols, eight phases entering the
function T̄I (s̄t , st ) and two phases from the function T̄K (s̄t , s̄t+1; st+1, st ),


 = L−1
L∑

s=1

e−i(g∗(s̄n,m,t+1,s)−g(sn,m,t+1,s))δ(s̄n+1,m,t , sn+1,m,t )δ(s̄n,m+1,t , sn,m+1,t )δ(s̄n−1,m,t , sn−1,m,t )δ(s̄n,m−1,t , sn,m−1,t )

× e−i( fv (s,s̄n+1,m,t )− fv (s,sn+1,m,t ))e−i( fv (s̄n−1,m,t ,s)− fv (sn−1,m,t ,s))e−i( fh (s,s̄n,m+1,t )− fh (s,sn,m+1,t ))e−i( fh (s̄n,m−1,t ,s)− fh (sn,m−1,t ,s)). (5.1)

Utilizing the unitarity of the kick evolution operator u[g] [see
Eq. (3.10)] and the properties of the Kronecker function the
sum in Eq. (5.1) can be simplified to


 = δ(s̄n,m,t+1, sn,m,t+1). (5.2)

The contraction rules, conveniently, can be represented in
a graphical form. In Fig. 4 they are shown as a transition
from some initial configurations in the left column to the
final configuration depicted in the right column in Fig. 4,
where the “central” spin variables (s̄n,m,t+1, sn,m,t+1) has been
eliminated according to the result Eq. (5.2). The contraction
rule in Fig. 4(a) is formulated to act along the time direction.
The contraction rule for the inverse direction (t → t − 1) is
shown in Fig. 4(b).

Note also that similar contraction rules exist for the con-
figurations with a reduced number of spin variables, see
Fig. 4(c). In fact, a white ball (where a spin variable was
eliminated in the previous steps) at some node (n, m, t ) can be

FIG. 3. 3D grid of the configuration space for calculation of the
sum in Eq. (4.11) for the choice of N = 11, M = 12, T = 7, ν = 8,
and μ = 9. The brown small balls correspond to the uncorrelated
spin components, i.e., at the brown-ball vertex, say (n′, m′, t ′), the
summation over the spins s̄n′,m′,t ′ , and sn′,m′,t ′ is performed indepen-
dently. The red balls show the presence of the Kronecker symbol
δ(s̄n,m,t , sn,m,t ) at the corresponding vertex (n, m, t ) and the double
summation reduces to a single sum over s̄n,m,t = sn,m,t = 1, . . . , L.
The large green balls denote the positions of the matrices q� entering
the many-body operators �̄ at t = T , and � at t = 0 [Eq. (4.7)]. The
function T̄I [Eq. (4.14)] defines the amplitudes of interaction between
the balls in each time-plane, while T̄K [Eq. (4.15)] is responsible for
interaction between the time-planes.

replaced back by the identity multiplier presented as a sum of
the Kronecker symbols, 1 ≡ L−1∑L

s̄n,m,t ,sn,m,t =1 δ(s̄n,m,t , sn,m,t ).
This allows to extend the contraction rule for all combinations
of balls including those, where some red balls are substituted
by the white ones.

B. Application of the contraction rules

We now proceed with eliminating the spin variables from
the partition function (4.18) by using the contraction rules
graphically formulated in Fig. 4. Application of the con-
traction rules along the time axis, starting from t = 0 and
continuing up to t = T − 1 allows us to eliminate most of
the spin variables, resulting in the pyramidal structure shown
in Fig. 5(a). The coordinates (n, m, t ) of the remaining spin
variables satisfy the equation t + 1 � |n − 3/2| + |m − 3/2|
[the positions of q� are fixed by Eqs. (4.7)]. Furthermore, the
application of the contraction rule in the opposite time direc-
tion, i.e., t changes from T to 0, yields a parallelepiped-like
structure shown in Fig. 5(b). This parallelepiped shrinks to
a line when the operators q� (� = 5, 6, 7, 8) are positioned
at one of the vertices of the pyramid base. If the operators
q� (� = 5, 6, 7, 8) are placed outside the pyramid base, all
spin variables can be eliminated by contraction rules and the
resulting correlation function nullifies (for the traceless q�).
Note that this observation is consistent with the causality
argument given in Sec. II.

C. Dual-unitary case

Up to now we considered a general case, where no further
systematic elimination of the spin variables can be done in the
sum (4.18). Further progress in calculations becomes possi-
ble for the (partial) dual-unitary models. For definiteness, we
choose the spatial direction marked by the index n to be dual
with the time direction, i.e., the evolution operator u[ fv] with
the symbol fv is unitary. The partial dual-unitarity assumption
allows us to formulate the contraction rules for this spatial
direction. Indeed, by using the unitarity of u[ fv] the part of
the sum (4.18),


 = L−1
L∑

s=1

e−i( fv (s,s̄n+1,m,t )− fv (s,sn+1,m,t ))

× δ(s̄n,m+1,t , sn,m+1,t )δ(s̄n,m−1,t , sn,m−1,t )

× δ(s̄n,m,t−1, sn,m,t−1)δ(s̄n,m,t+1, sn,m,t+1)

× e−i( fh (s,s̄n,m+1,t )− fh (s,sn,m+1,t ))e−i( fh (s̄n,m−1,t ,s)− fh (sn,m−1,t ,s))

× e−i(g(s̄n,m,t+1,s)−g(sn,m,t+1,s))e−i(g(s,s̄n,m,t−1 )−g(s,sn,m,t−1 )) (5.3)
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FIG. 4. The graphical representation of the contraction rules acting in time-direction (a) and in the inverse time-direction (b)(c). The pairs of
spins sn,m,t ≡ (s̄n,m,t , sn,m,t ) are depicted by the balls of various colors. The summation over the correlated spins s̄n,m,t = sn,m,t = 1, . . . , L (the
central red balls in the plots from the left column) surrounded by other correlated spins transforms the initially uncorrelated spins s̄n,m,t−1

and sn,m,t−1 (brown balls in the left column of the plots) into the delta-correlated ones (red balls in the corresponding positions sn,m,t−1

in the right column). The white balls in the final configurations (right column of the plots) show the spins over which the summation
has been performed. The diagram in (c) is a possible extension of the contraction rule for the case with a reduced number of spin
variables.

simplifies to


 = δ(s̄n+1,m,t , sn+1,m,t ). (5.4)

This allows us to formulate the contraction rule in the dual
(spatial) direction, which is illustrated by the diagram in
Fig. 6(a). It can be naturally extended to the opposite direction
of the same spatial axis, see Fig. 6(b).

Note here that the contraction rule in the spatial direc-
tion becomes useful only for N > T + 2. In this case, after
subsequent applications of the contraction rules in the time
direction, the border of the correlated spins is formed at some
(at least one) given n. So that starting from this border we can
subsequently apply the contraction rule in spatial direction.

Application of the contraction rules both in spatial and
temporal directions yields trivial correlations for the majority
of choices of the operators �̄ and � in Eq. (4.7). All nontrivial
cases result from a specific choice of q� mutual positions.
Namely, the operators q� entering �̄ and those from � have
to be positioned along the line given by the equation |n| =
t, m = 0. A number of possible realisations are analysed in
Appendix B. As it is demonstrated there, for the operators �̄,
� with four-point supports, the nontrivial correlations arise
only when μ = 0, ν = T + 1, see Eq. (4.7). An example of
the spin structure resulting from the application of the con-
traction rules is depicted in Fig. 8(a) below.

Finally, if duality holds for both spatial directions (fully
dual-unitary case), both u[ fv] and u[ fh] are unitary matrices.
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FIG. 5. (a) The spin configuration (parameters N = M = 28, T = 15, ν = 25, and μ = 7) obtained after consequent application of the
contraction rule acting in the time direction [Fig. 4(a)] to the initial configuration (Fig. 3). The meaning of the ball’s colors is the same as in
the Fig. 4. For better visualisation, the spin array was periodically shifted along the horizontal and vertical axes and the white balls’ radii were
made small. (b) The spin configuration after the iterative application of the contraction rules acting in the inverse time-direction [Figs. 4(b) and
4(c)] to the structure given in the plot a, up to now, no duality was implied.

In this case, there is an additional set of contraction rules
acting along the m axis. Applying contraction rules along the
third axis leads to the elimination of all spin variables (for
T > 2), regardless of the positions of �̄ and �. This implies
that C(T ) vanishes entirely when T > 2.

To summarize this section, we list the general proper-
ties of the correlation function (4.11) established so far for
two-dimensional lattice models: (i) For a general (nondual
unitary) case the correlation function becomes trivial when
the entries q� (� = 5, 6, 7, 8) of the operator � are placed
outside of the pyramid basis |n − 3/2| + |m − 3/2| � t + 1
(see Fig. 5). (ii) In the partially dual-unitary case, the cor-
relation function becomes nontrivial when the operators �̄

and � are aligned along the line |n| = t, m = 0 (see Ap-
pendix B). (iii) In the fully dual-unitary case at T > 2 the
correlation function trivializes for any mutual positions of the
operators q�.

VI. THE LOCAL CORRELATION FUNCTION
AND THE TRANSFER OPERATOR

In this section, we show that similarly to the one-
dimensional dual-unitary case, the correlation function C(T )
in a two-dimensional partially dual-unitary model can be
expressed as an expectation value of the power of the low-
dimension transfer operator [see Eq. (4.4)].

A. Operators with the two-point supports

Before addressing the correlation function for generic op-
erators �̄, � with four-point supports [see Eq. (4.7)], we
illustrate our method for the case of the operators with the
two-point supports. To this end we set in Eqs. (4.7) q3 = q4 =
q7 = q8 = 1. An example of the structure of the uncorrelated
spins obtained after applications of the contraction rules is
illustrated in Fig. 7(a). In Appendix B we list all nontrivial

FIG. 6. The graphical representation of the contraction rules (a) in the spatial direction n, dual to the time direction, and (b) in the inverse
direction. The summation over the correlated spins s̄n,m,t = sn,m,t (the central red balls in the starting configurations) transforms the initially
uncorrelated spins (brown balls) into the correlated ones (red balls in the final configurations). The white balls in the final configurations show
the spins over which the summation has been performed. It is assumed that summation over the spin variables on the previous level (the spins
s̄n−1,m,t and sn−1,m,t for the diagrams a, b and the spins s̄n+1,m,t and sn+1,m,t for the diagrams c, and d) has been made to generate a white/red ball
at the corresponding position.
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FIG. 7. (a) The spin structure obtained after application of the contraction rule to a partially dual-unitary map for T = 4, M, N � T and
μ = 1, ν = T + 1 in the case of operators with the two-point supports. (b) The spin structure that emerges after eliminating a part of the spin
variables (see Appendix B for details). The horizontal coordinates n of the brown balls entering the intermediate linear structure of uncorrelated
spins satisfy the equation n = t + 2 and are made up of the repeating blocks (unit cells). (c) The unit cell entering the spin-bridge structure
corresponds to the transfer operator T̂ [Eq. (6.5)].

structures obtained after applications of the contraction rules.
A part of the spin variables can be, furthermore, eliminated
from the corresponding partition functions (see Appendix B
for more details), so that only one nontrivial structure (up

to the mirror reflection with respect to the plane n = const)
survive. It is shown in Fig. 7(b). The reduced locus of spins
S′ over which the summation still has to be performed (red,
brown and green balls) is

S′ = { s̄nmt |(n, m, t ) ∈ L′ } ∪ { snmt |(n, m, t ) ∈ L′′ } (6.1)

with

L′ = {(N, 1, 0), (1, M, 0), (1, 1, 0), (1, 2, 0), (2, M, 0), (2, 1, 0), (2, 2, 0), (3, 1, 0), (1, 1, 1), (T, 1, T ),

(T + 1, M, T ), (T + 1, 1, T ), (T + 1, 2, T ), (T + 2, M, T ), (T + 2, 1, T ), (T + 2, 2, T ), (T + 3, 1, T )}
T −1⋃
t=1

{(t + 1, 1, t ), (t + 2, 1, t ), (t + 2, M, t ), (t + 2, 2, t ), (t + 3, 1, t )}, (6.2)

L′′ = { (1, 1, 0), (2, 1, 0), (T + 1, 1, T ), (T + 2, 1, T ) }
T −1⋃
t=1

{ (t + 2, 1, t ) }. (6.3)

This chain of spin variables is composed of repeating blocks shown in Fig. 7(c), with their centres positioned along the
straight line n = t, m = 0. Since two neighboring unit cells are connected by a pair of spins, each block can be described by the
L2 × L2 transfer matrix T̂ with the entries 〈χ, η|T̂ |χ ′, η′〉, where the indexes χ, η, χ ′, η′ = 1, L mark the values of the spins to
be convoluted with the spins of the neighboring upper and lower unit cells. The matrix entries of T̂ can be read off directly from
the spin structure shown in Fig. 7(b), they are

〈χ, η|T̂ |χ ′, η′〉 = 1

L5

L∑
s̄,s=1

L∑
r1,r2=1

e−i fh (r1,s̄)+i fh (r1,s)e−i fh (s̄,r2 )+i fh (s,r2 )e−i fv (χ,s̄)+i fv (χ,s)−ig(s̄,η)+ig(s,η)e−i fv (s̄,η′ )+i fv (s,η′ )−ig(χ ′,s̄)+ig(χ ′,s).

(6.4)

The latter expression can be rewritten in a compact form

〈χ, η|T̂ |χ ′, η′〉 = 1

L5

L∑
r1,r2=1

∣∣∣∣∣
L∑

s=1

ei fv (χ,s)+ig(s,η)+i fv (s,η′ )+ig(χ ′,s)+i fh (r1,s)+i fh (s,r2 )

∣∣∣∣∣
2

, (6.5)

The spin s̄ and the conjugated spin s in this expression describe possible internal states of the central vertex in the unit cell (brown
ball). The other two spin variables r1 and r2 describe the states of the neighboring lattice points in the horizontal direction (red
balls). It is worth noting that the matrix entries 〈χ, η|T |χ ′, η′〉 coincide with those of the one-dimensional map [Eq. (4.5)] when
we set the horizontal interactions fh to zero.

The overall expression for the correlation function is given by the expectation value,

C(T ) = 〈�̄q1,q2

∣∣T̂ T −2∣∣�q5,q6

〉
, (6.6)
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where the entries of the transfer matrix T̂ are given by Eq. (6.5) and the vectors 〈�̄q1,q2 |, |�q5,q6〉 are defined below by Eqs. (6.7)–
(6.10).

The vector |�̄q1,q2〉 incorporates the function 	̄(s0, s̄0), function T̄I (s̄0, s0) and a single phase drawn from the function
T̄K (s̄1, s̄1; s1, s0), so that

〈
�̄q1,q2

∣∣χ, η
〉 = 1

L5

L∑
s1,s̄2,s2=1


̄s̄2,s2
s1

(χ, η)〈s1|q1|s1〉〈s̄2|q2|s2〉 (6.7)

with the factor 
̄
s̄2,s2
s1 (χ, η) given by


̄s̄2,s2
s1

(χ, η) = e−ig(χ,s̄2 )+ig(χ,s2 )e−i fv (s1,s̄2 )+i fv (s1,s2 )−i fv (s̄2,η)+i fv (s2,η)
L∑

r1,r2=1

e−i fh (r1,s̄2 )+i fh (r1,s2 )−i fh (s̄2,r2 )+i fh (s2,r2 ). (6.8)

The vector |�q5,q6〉 incorporates two time slices, namely it incorporates the functions 	(s̄T , sT ), T̄I (s̄T , sT ),
T̄K (s̄T −1, s̄T ; sT , sT −1) and a single phase factor drawn from the function T̄K (s̄T −2, s̄T −1; sT −1, sT −2). Note that the contraction
rules were formulated in a symmetric manner, namely, we have introduced the additional matrices UI into the functions
	(s̄T , sT ), so that the product 	(s̄T , sT )T̄I (s̄T , sT ) naturally simplifies to the scalar product 〈s̄T |�|sT 〉. The entries 〈χ ′, η′|�̄q5,q6〉
are defined by the expression

〈χ ′, η′|�q5,q6〉 = 1

L5

L∑
s̄1,s1,s2=1



s2
s̄1,s1

(χ ′, η′)〈s̄1|u†[g]q5u[g]|s1〉〈s2|u†[g]q6u[g]|s2〉 (6.9)

with



s2
s̄1,s1

(χ ′, η′) = e−ig(s̄1,η
′ )+ig(s1,η

′ )e−i fv (χ ′,s̄1 )+i fv (χ ′,s1 )−i fv (s̄1,s2 )+i fv (s1,s2 )
L∑

r1,r2=1

e−i fh (r1,s̄1 )+i fh (r1,s1 )−i fh (s̄1,r2 )+i fh (s1,r2 ). (6.10)

The expression (6.6) was obtained for the structure shown in Fig. 7(a), when the spin-bridge structure is parallel to the line
n = t . The correlation function

C(T ) = 〈�̄r
q1,q2

∣∣ ˆ̄T T −2
∣∣�r

q5,q6

〉
, (6.11)

for the mirror-symmetric structure of spins (along the line n = −t) can be obtained by using the symmetry arguments. The
“reflected” transfer matrix ˆ̄T has the entries 〈η′, χ ′| ˆ̄T |η, χ〉 = 〈η′, η|T̂ |χ ′, χ〉 and the boundary vectors for the reflected picture
are

〈
η, χ

∣∣�̄r
q1,q2

〉 = 1

L5

L∑
s̄1,s1,s2=1


̄
s2
s̄1,s1

(η, χ )〈s̄1|q1|s1〉〈s2|q2|s2〉; (6.12)

〈
�r

q5,q6

∣∣η′, χ ′〉 = 1

L5

L∑
s1,s̄2,s2=1


s̄2,s2
s1

(η′, χ ′)〈s1|u†[g]q5u[g]|s1〉〈s̄2|u†[g]q6u[g]|s2〉 (6.13)

with


̄
s2
s̄1,s1

(η, χ ) = e−ig(χ,s̄1 )+ig(χ,s1 )e−i fv (s̄1,s2 )+i fv (s1,s2 )−i fv (η,s̄1 )+i fv (η,s1 )
L∑

r1,r2=1

e−i fh (r1,s̄1 )+i fh (r1,s1 )−i fh (s̄1,r2 )+i fh (s1,r2 ), (6.14)


s̄2,s2
s1

(η′, χ ′) = e−ig(s̄2,η
′ )+ig(s2,η

′ )e−i fv (s̄2,χ
′ )+i fv (s2,χ

′ )−i fv (s1,s̄2 )+i fv (s1,s2 )
L∑

r1,r2=1

e−i fh (r1,s̄2 )+i fh (r1,s2 )−i fh (s̄2,r2 )+i fh (s2,r2 ). (6.15)

The more general case of four-point support boundary operators is considered in the next section.

B. Operators with the four-point supports

For generic operators �̄, � with four-point supports [see Eq. (4.7)], the spin structure emerging after the application of the
contraction rules gets the structure shown in Fig. 8(b). Each unit cell [Fig. 8(c)] composing the bridge between the boundaries
(green balls) is described now by the L4 × L4 transfer matrix T̂ with the entries

〈χ, η, χ1, η1|T̂ |χ ′, η′, χ ′
1, η

′
1〉

= 1

L7

L∑
r1,r2=1

∣∣∣∣∣
L∑

s1,s2=1

ei fv (χ,s1 )+ig(s1,η)+i fv (s1,η
′ )+ig(χ ′,s1 )ei fh (r1,s1 )+i fh (s1,s2 )+i fh (s2,r2 )ei fv (χ1,s2 )+ig(s2,η1 )+i fv (s2,η

′
1 )+ig(χ ′

1,s2 )

∣∣∣∣∣
2

. (6.16)
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FIG. 8. (a) The structure of spins obtained after application of the contraction rule to a partially dual-unitary map for T = 4, M, N � T
and μ = 1, ν = T + 1 corresponding to the nontrivial correlation function C(T ). (b) The spin structure obtained from the one in (a) being
reduced by taking into account the boundary conditions (see Appendix B for details). (c) The unit cell entering the linear structure of spins
corresponds to the transfer operator T̂ [Eq. (6.16)].

Note that after summation over the indexes χ1, η1, the matrix
element 〈χ, η, χ1, η1|T̂ |χ ′, η′, χ ′

1, η
′
1〉 reduces to the one in

Eq. (6.5). As in the case of the operators with two-point
supports, the correlation function is given by the expectation
value,

C(T ) = 〈�̄�̄|T̂ T −2|��〉, (6.17)

with the vectors 〈�̄�̄|, |��〉 determined by the operators
q1, q2, q3, q4 and q5, q6, q7, q8, respectively. The explicit ex-
pressions for these vectors are quite cumbersome, and we do
not provide them here.

C. Spectral properties of the transfer operator

It follows immediately from the unitarity of matrices u[g]
and u[ fv] that the transfer matrix (6.16), as well as its reduced
form (6.16), is doubly stochastic, i.e., it satisfies the property

L∑
χ1,η1,χ,η=1

〈χ, η, χ1, η1|T̂ |χ ′, η′, χ ′
1, η

′
1〉 = 1,

L∑
χ ′

1,η
′
1,χ

′,η′=1

〈χ, η, χ1, η1|T̂ |χ ′, η′, χ ′
1, η

′
1〉 = 1. (6.18)

The identity (6.18), in particular, means that the spectrum of
T̂ is contained within the unit disk on the complex plane with
the largest eigenvalue λ0 = 1. The eigenvector corresponding
to the maximal eigenvalue has the constant entries,

〈E |χ, η, χ1, η1〉 = 1, χ, η, χ1, η1 ∈ 1, L.

It is straightforward to see that for traceless operators �̄,�

both 〈�̄�̄| and |��〉 are orthogonal to E ,

〈�̄�̄|E〉 = 〈E |��〉 = 0.

As a result, for the traceless operators, the leading contribution
into the correlation function (6.17) and (6.6) is determined by
the second largest eigenvalue, λ1 (|λ1| < |λ0|), of the operator
T̂ . Thus, generically, the nontrivial part of the correlation
function decays exponentially with time and the characteristic
decay rate is | ln |λ1||−1. It is instructive, therefore, to study the
dependence of λ1 on the internal parameters of the model. In

the next section, we provide an analysis of the transfer matrix
spectrum for a particular choice of the map.

VII. APPLICATIONS

In this section, we illustrate our results using two partic-
ular realizations of the general model: coupled cat maps and
kicked Ising spin-lattice. Specifically, we provide a detailed
spectral analysis of the transfer matrix (6.5), for the case of
operators with two-point supports.

A. Coupled cat maps

One of the best studied and understood examples of sys-
tems with chaotic dynamics is provided by Arnold’s cat map,
which is the hyperbolic automorphism of the two-dimensional
unit torus [44]. The cat map acts in the 2D phase space:
{ xt , pt } → { xt+1, pt+1 }, with xt , pt being the coordinate and
momentum at the discrete moment of time t . The generation
function of a single perturbed cat map is the function

S (xt , xt+1) = 1
2

(
ax2

t + 2cxt xt+1 + bx2
t+1

)+ V (xt ), (7.1)

where a, b, c are integers and V (x) is an arbitrary smooth
real-valued function satisfying the periodic conditions, V (x +
1) = V (x). The equations of motion are defined through
the derivatives of the action, xt = ∂S/∂xt+1, pt = −∂S/∂xt .
Their explicit form is

xt+1 = axt + pt + V ′(xt ), mod 1,

pt+1 = (ab − 1)xt + bpt , mod 1, (7.2)

where we set c = −1 for the sake of simplicity of exposition.
The regime of fully chaotic dynamics is achieved when a +
b > 2. The above dynamical equations can be cast into a more
compact, Newton form

xt−1 + xt+1 = (a + b)xt + V ′(xt ) mod 1. (7.3)

An extension of the cat map to the many-body setting, cou-
pled cat map lattice, was introduced in [4] and subsequently
studied in a number of papers [5–7] both on classical and
quantum levels. In this model, N cat maps, placed on the sites
of the D-dimensional lattice Z̄D, are coupled with the help of
nearest-neighbor linear interactions. The resulting dynamical
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equations for D = 2 take the form

dh(xn+1,m,t + xn−1,m,t ) + dv (xn,m+1,t + xn,m−1,t )

= xn,m,t+1 + xn,m,t−1 − (a + b)xn,m,t −V ′(xn,m,t ) mod 1,

(7.4)

where xn,m,t stands for the cat’s coordinate at the (n, m)-site
of the lattice. The constants dh, dv in Eq. (7.4) determine
the strength of the coupling in the horizontal and vertical
directions, respectively. The model is partially dual unitary if
one of the coupling constants equals −1 and fully dual unitary
when dh = dv = −1. Indeed, as can be readily observed, the
Eq. (7.4) remains invariant under the exchange of t and n if
dh = −1, or under the exchange of t and m if dv = −1. Since
we are primarily interested in the partially dual-unitary case,
we fix dv = −1 from now on and leave dh as a free parameter.

The quantization of a single cat map can be carried out
according to a general procedure for quantization of a linear
automorphism, see [45,46]. The corresponding unitary time
evolution is given by L × L matrix u[g] of the form (3.7),

where the function g is determined by the classical action (7.1)
at c = −1, according to the agreement we made in Eq. (7.2),

g(s, s′) = 2π

L
S (s, s′). (7.5)

Note that u[g] is a Hadamard matrix, with the factor 2π/L
playing the role of the effective Planck’s constant. An exten-
sion of this quantization procedure to coupled cat map lattice
was presented in [7]. In accordance with the structure of the
classical map, the corresponding quantum evolution can be
split into the product, U = UK [g]UI [ fh, fv], where UK is given
by the tensor product of N operators u[g] and UI [ fh, fv] is an
interaction part provided by the diagonal matrix (3.6), with

fv (s, s′) = 2π

L
ss′, fh(s, s′) = 2π

L
dhss′. (7.6)

Since the resulting time evolution U is partially dual
unitary and possesses the required form (3.2), we can straight-
forwardly apply the results from Sec. VI. For the above set
of functions g, fv, fh the transfer matrix entries [Eq. (6.5)]
become

〈χ, η|T̂ |χ ′, η′〉 = 1

L5

L∑
r1,r2=1

∣∣∣∣∣
L∑

s=1

ei 2π
L s(χ−η+η′−χ ′ )+i π

L (a+b)s2+iV (s/L)+i 2π
L dhs(r1+r2 )

∣∣∣∣∣
2

. (7.7)

A brief analysis of the matrix elements [Eq. (7.7)] imme-
diately shows that, since the matrix indexes enter in the
combination (χ − η) − (χ ′ − η′), among all L2 matrix rows
only L rows are linearly independent [see Fig. 12(a) below].
Therefore, for each choice of L the transfer matrix has only
L nonzero eigenvalues. The nontrivial kernel of the transfer
matrix is the Toeplitz matrix, i.e., the matrix entries depend
on the difference of their indexes. It has the entries Kj−k

( j, k = 0, L − 1), with

Kj = 1

L5

L∑
r1,r2=1

∣∣∣∣∣
L∑

s=1

ei 2π
L s j+i π

L (a+b)s2+iV (s)+i 2π
L dhs(r1+r2 )

∣∣∣∣∣
2

.

(7.8)

The Toeplitz matrices are known to be diagonalizable by the
Fourier matrix with the entries Fk,� = L−1/2 exp[2π i k�/L],
namely

L−1∑
j,k=0

F ∗
�, jKj−kFk,�′ = δ(� − �′)λ�, (7.9)

λ� =
L−1∑
j=0

e−i 2π
L � jKj, (7.10)

where � runs from 0 to L − 1. After performing the summation
in Eq. (7.10), the nontrivial eigenvalues λ� of T can be written

in a compact form

λ� = λ̄�ei π�
L [(a+b)�+2(L+1)dh]RL,�(dh), (7.11)

RL,� (dh) = sin2 πdh�

L2 sin2 πdh�
L

, (7.12)

where the first factor

λ̄� = 1

L

L∑
s=1

ei 2π
L (a+b)s�+iV (s/L)−iV (s/L+�/L), (7.13)

represents eigenvalues of the transfer matrix for the dual-
unitary couple cat map chain (D = 1). The real and the
imaginary parts, as well as the absolute value of λ̄�, are plotted
in Fig. 9 for L = 27 and the perturbation V (s) = cos 2πs. The
plot showing dependence of λ̄� on L is given in Fig. 10.

As expected, at � = 0, the leading eigenvalue is λ0 = 1,
independently of the model’s parameters. For all other eigen-
values we have |λ�| � |λ̄�| � 1 due to the presence of the
modulating function RL,�(dh), bounded from above and below,
0 � RL,�(dh) � 1. At dh = 0 the modulating function equals
1 identically, which returns us to the one-dimensional cat map
chain. For dh = −1 corresponding to the fully dual-unitary
case, the function RL,�(dh) equals zero identically for � > 0.
From this observation, it follows that the correlation func-
tion C(t ) vanishes for the traceless observables, as it should
be for a fully dual-unitary model. Moreover, the function
RL,�(dh) and the correlation function C(t ) equal zero for al-
most all other integer values of dh. Exceptions occur in cases
where L is a product of several prime numbers, for example,
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FIG. 9. Real part, imaginary part, and the absolute value of the eigenvalues λ̄� [Eq. (7.13)] vs a + b at L = 27 and V (s) = cos 2πs. The
eigenvalues change periodically with respect to a + b with the period L.

FIG. 10. The spectrum |λ̄�| [Eq. (7.13)] of the one-dimensional cat map model transition operator plotted with respect to the particle Hilbert
space dimension L for three different values of the parameter a + b. The perturbation is chose to be V (s) = cos 2πs.
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(a) (b)

FIG. 11. The eigenvalue modulation function (a) R4,�(dh ) and (b) R5,�(dh ) plotted vs dh for � > 0 [Eq. (7.11)]. Only the single period of
each function is plotted.

L = p1 p2 and p1, p2 �= 1. Here, the function RL,�(dh) can
attain its maximum value of 1 at certain values of dh other than
0. For instance RL=p1 p2,�=p1 (p2) = RL=p1 p2,�=p2 (p1) = 1. To
demonstrate this features we plotted the functions RL=4,�(dh),
and RL=4,�(dh) in Fig. 11.

B. The kicked Ising spin lattice

In this part, we illustrate our results on the particular ex-
ample of the minimal dimension model (L = 2), the kicked
Ising spin-1/2 lattice. This model is known to have the
dual-unitary regime and has served as a paradigm in the
field of many-body quantum chaos, see [8–11,47]. Although
the model has primarily been investigated in one dimension
(D = 1), its extension to many-dimensional (D > 1) lattices
is straightforward [48]. The system evolution is governed by
the Hamiltonians

HI =
N∑

n=1

M∑
m=1

dvσ̂
z
n,mσ̂ z

n+1,m + dhσ̂
z
n,mσ̂ z

n,m+1 + hσ̂ z
n,m,

HK =
N∑

n=1

M∑
m=1

Jσ̂ x
n,m, (7.14)

where the operators σ̂ α
n,m are the Pauli matrices with α =

x, y, z (see Appendix C), acting in the two-dimensional Hilbert
space (L = 2) of a single spinor with the lattice index (m, n).
As everywhere above, we assume that n = 1, N , m = 1, M as
well as the cyclic boundary conditions, i.e., σ̂ α

N+1,m ≡ σ̂ α
1,m,

σ̂ α
n,M+1 ≡ σ̂ α

n,1. To make the model partially dual unitary we
set J = π/2, dv = π/4. With this choice the matrix u[g] has

the form

u[g] = 1√
2

(
1 −i
−i 1

)
, (7.15)

while the matrices u[ fv/h] are given by

u[ fv/h] = 1√
2

(
e−i(dv/h+hv/h ) eidv/h

eidv/h e−i(dv/h−hv/h )

)
, (7.16)

where hh = h, hv = 0. The function g(s, s′) = π
4 ((2s −

3)(2s′ − 3) − 1) and fv/h(s, s′) = dv/h(2s − 3)(2s′ − 3) +
hv/h(s + s′ − 3). Note that the matrices u[ fv] and u[g] are
Hadamard matrices, at the choice J = π/2, dv = π/4 they
coincide up to the constant phase factor eiπ/4, which is
irrelevant as far as the correlation function is concerned. In
accordance with the Eq. (6.5), the resulting 4 × 4 transfer
matrix 〈χ, η|T̂ |χ ′, η′〉 in the basis {|1, 1〉, |2, 2〉, |1, 2〉, |2, 1〉}
has the 2 × 2 block structure

T̂ =
(

αE βE
βE αE

)
,

α = 1

4
(1 + cos2 2dh cos 2h), β = 1

4
(1 − cos2 2dh cos 2h),

(7.17)

where E is the 2 × 2 matrix with the unit entries, i.e., Ei, j = 1
for all i, j. The transfer matrix has two zero eigenvalues, the
eigenvalue λ0 = 1 with the eigenvector 1

2 (1, 1, 1, 1) and the
eigenvalue

λ1 = cos2 2dh cos 2h, (7.18)

with the corresponding eigenvector 1
2 (−1,−1, 1, 1).

By using the spectrum of T̂ , the correlation function C(T )
for the traceless operators qi takes the form

C(T ) = − 1
2λT −2

1 cos4 2dh〈1|u†[g]q6u[g]|1〉[cos 2h(〈1|u†[g]q5u[g]|2〉 − 〈2|u†[g]q5u[g]|1〉) + i sin 2h(〈1|u†[g]q5u[g]|2〉
+ 〈2|u†[g]q5u[g]|1〉)][cos 2h(〈1|q2|2〉 − 〈2|q2|1〉) + i sin 2h(〈1|q2|2〉 + 〈2|q2|1〉)]〈1|q1|1〉. (7.19)

It is instructive to calculate the correlation function for the operators q� taken from the set of Pauli matrices. Obviously, only the
choices q1 = σ̂ z, q6 = σ̂ y, and q2 = σ̂ x, σ̂ y, q5 = σ̂ x, σ̂ z correspond to the nonzero correlation function. In total there are four
combinations, which lead to a nontrivial correlation function. The results of calculations are gathered in Appendix C.
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(a)

(b)

FIG. 12. The typical block structures of transfer matrices T̂ for (a) the coupled cat map model at L = 3, and (b) for the kicked Ising spin
lattice. The identical colors (arbitrary choice for each case) correspond to the identical matrix elements. The first column contains the plots for
the four-point transfer matrices [Eqs. (6.5), (7.7), and (7.17)], and in the second column the pictures of the eight-point transfer [Eqs. (6.16) and
(7.20)] matrices are gathered.

Finally, consider the transfer matrix [Eq. (6.16)] for
the correlation function of four-point supported opera-
tors for the kicked Ising spin lattice model. The matrix
〈χ, η, χ1, η1|T̂ |χ ′, η′, χ ′

1, η
′
1〉 can be written in a block-

hierarchical structured form [see Fig. 12(b)]

T̂ =

⎛
⎜⎜⎜⎜⎝

α̃E β̃E γ̃ E γ̃ E

β̃E α̃E γ̃ E γ̃ E

γ̃ E γ̃ E α̃E β̃E

γ̃ E γ̃ E β̃E α̃E

⎞
⎟⎟⎟⎟⎠, (7.20)

where

α̃ = 1
8 (4 cos4 h cos2 2dh + sin2 2dh),

β̃ = 1
8 (4 sin4 h cos2 2dh + sin2 2dh),

γ̃ = 1
32 (3 − cos 4h − 2 cos2 2h cos 4dh).

This transfer matrix possesses four nonzero eigenvalues:
the eigenvalue λ0 = 1, two degenerated eigenvalues λ1,2 =
cos2 2dh cos 2h [coincide with the eigenvalue λ1 for the two-
point transfer matrix, Eq. (7.18)], and the eigenvalue λ3 =
cos2 2dh cos2 2h. Note that λ1,2 are identical to the second-
largest eigenvalue [Eq. (7.18)] of the transfer matrix (7.17).
This implies that the decay rate of the correlations be-
tween operators with the two-point and four-point supports
coincide.

VIII. CONCLUSIONS

In the current paper, we have explored two-dimensional
lattice models featuring partial spatiotemporal symmetry. The
study revealed that for partially dual-unitary models, non-
trivial correlations exist along the light-cone edges in the
space-time grid. We have expressed these correlations through
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the expectation values of powers of a low-dimensional transfer
matrix. On the other hand, fully dual-unitary models exhibit
ultralocal correlations that completely vanish after a finite
time. These findings corroborate earlier observations [10]
indicating that (fully) dual-unitary models constitute a max-
imally chaotic class of systems.

As an illustration, we applied these findings to the coupled
quantum cat maps and the kicked Ising spin lattice. For these
models we have derived an explicit formula for the spectrum
of the transfer operator T̂ , enabling us to determine decay
rates of correlation functions for operators with two-point and
four-point supports. Remarkably, the second-largest eigenval-
ues of T̂ attain a simple structure—it is provided here by
the second-largest eigenvalue of the transfer operator for the
corresponding one-dimensional model, multiplied by some
reducing factor [Eqs. (7.11) and (7.18)]. The absolute value
of this factor depends on the coupling in nondual directions
and is bounded from above by one. This demonstrates that
the inclusion of an extra spatial dimension generally en-
hances the decay rate of the correlation function. Note also
that the transfer matrix at a certain choice of the basis vec-
tors can be presented in the L × L block form (the typical
structures of the four- and eight-point transfer matrices are
shown in Fig. 12). In the case of the coupled cat map model,
the structure of the four-point transfer matrix can be seen
as a matrix of permutations, while the eight-point transfer
matrix represents a hierarchy of permutations on different
scales. Such hierarchy is clearly seen for the transfer ma-
trices plotted for the kicked Ising spin model [Fig. 12(b)].
The eight-point transfer matrix has a block-hierarchical struc-
ture, which is also known as Parisi matrix, typical for spin
models.

It is worth noticing that the above results can be straightfor-
wardly extended to lattice models with arbitrary dimensions
D > 2. Assuming that the dual-unitarity holds for at least
two spatial dimensions (e.g., 1, 2), we can conclude that the
correlation function can take nontrivial values

C(r, t ) �= 0, r = (n1, n2, . . . nD) (8.1)

if and only if the following three inequalities hold:

|t | �
D∑

i=1

|ni|, (8.2)

|n1| � |t | +
D∑

i �=1

|ni|, (8.3)

|n2| � |t | +
D∑

i �=2

|ni|. (8.4)

As these are satisfied only at a single point, t = 0, r = 0, all
correlations in this case are ultralocal, meaning they vanish
identically after a finite time. If, however, the dual unitarity
holds solely for a single spatial dimension, then only the
first two inequalities are satisfied. In this case, the nontrivial
correlations emerge along the line |t | = |n1|, ni = 0, i �= 1. As
in the two-dimensional case, C(r, t ) can be expressed through
a transfer operator, whose dimension is determined by the size
of the local operator’s support.

Finally, we note that in this article, among the calculation
of the correlation function, we also established the neces-
sary conditions for the quantum map duality property (the
Hadamard property of the matrices u[g] and u[ f ]), and we
were not concerned with the clarification of the sufficient
conditions for the duality. The obvious strict equivalence
f = g leading to the duality can be significantly relaxed: As
we demonstrated in Sec. VII the duality holds for a rather
wide class of functions. From our derivation we can say that
the duality holds for the functions those f and g, which are
in the relation f (s, s′) − g(s, s′) = A(s) + B(s′), where A(s)
and B(s) are arbitrary real-valued functions. Nevertheless, the
problem of finding a class of functions, which guarantees
duality, is of interest and is the topic for future research.
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APPENDIX A: QUANTUM CIRCUIT REPRESENTATION
OF 2D DUAL-UNITARY COUPLED MAPS

In this Appendix, we show that a dual-unitary kicked quan-
tum map on 2D lattice can be represented as a 2D quantum
circuit with a ternary unitary gate operator Ugate ∈ End(H⊗4).

Assuming that the lattice has even dimensions M, N , we
split the interaction part of the evolution (4.6) into two terms,
UI = U e

I U o
I ,

〈s|U e
I |s′〉 ≡ δ(s, s′)

N/2∏
n=1

M/2∏
m=1

[ei fv (s2n,2m;s2n+1,2m )+i fh (s2n,2m;s2n,2m+1 )],

(A1)

〈s|U o
I |s′〉 ≡ δ(s, s′)

N/2∏
n=1

M/2∏
m=1

× [ei fv (s2n−1,2m−1;s2n,2m−1 )+i fh (s2n−1,2m−1;s2n−1,2m )], (A2)

where the sum runs over even and odd lattice sites, respec-
tively. The even powers of the Floquet operator (3.2) can be
written in the form

U 2t = (UKUI )2t = U e†
I

[
U e

I UKU e
I U o

I UKU o
I

]t
U e

I , (A3)

where we split the interaction part of the evolution into the odd
and even parts of the lattice. The two parts of the evolution are
given by

Ue = U e
I UKU e

I =
⊗

(i, j)∈{1,...,N/2}
Ugate

(2i,2 j), (A4)

Uo = U o
I UKU o

I =
⊗

(i, j)∈{1,...,N/2}
Ugate

(2i+1,2 j+1), (A5)

where Ugate
(m,n) is the ternary unitary operator Ugate acting on the

site (m, n) of the lattice, see Fig. 13(a). Explicitly it is given
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FIG. 13. (a) Two-dimensional lattice of interacting particles.
The green-dashed lines correspond to the interactions defined
by the function fh, and the red dot-dashed lines to the function
fv . The squares marked by different shadowing correspond to even
Ue and odd parts Uo of the evolution, see Eqs. (A4) and (A5).
(b) Schematics of the ternary unitary operator Ugate, which includes
among the particle-particle interactions (green and red dashed edges
of the cube) also one time-step propagation (the vertical edges), see
Eqs. (A6) and (A7).

by L4 × L4 matrix with the entries

〈s1s2s3s4|Ugate|s′
4s′

3s′
2s′

1〉 = 1

L2
eiF (s,s′ ), (A6)

F = fv (s1, s2) + fv (s3, s4) + fh(s2, s3) + fh(s4, s1)

+ fv (s′
1, s′

2) + fv (s′
3, s′

4) + fh(s′
2, s′

3) + fh(s′
4, s′

1)

+ g(s1, s′
1) + g(s2, s′

2) + g(s3, s′
3) + g(s4, s′

4), (A7)

corresponding to 12 edges of the cube, see Fig. 13(b).

Due to the forms of the operators Ue, Uo, the equation (A3)
effectively represents the time-evolution as a 2D quantum
circuit with a ternary unitary gate operator, akin to the ap-
proach in the work [41]. Importantly, the unitary gate (A7)
allows for spreading onto the neighboring sites only. Indeed,
it is straightforward to see that for a local operator aj localized
on the site j ∈ {1, 2, 3, 4} we have

Ugate[a j ⊗ I ⊗ I ⊗ I](Ugate)† = A ⊗ I, (A8)

where A is localized on the sites j, ( j ± 1)mod 4 and the last
unite operator I on the site ( j + 2) mod 4, respectively. This
accounts for the ultralocal correlations in our model, distin-
guishing it from the one featuring a generic ternary unitary
gate as described in [41].

APPENDIX B: THE SPIN STRUCTURES OBTAINED
BY APPLICATION OF THE CONTRACTION RULES

Multiple applications of the contraction rules formulated
in Sec. III to the original spin structure in the case of the
two-dimensional partially dual map (the horizontal direction
is dual to the time direction) and for T � M, N generates
a number of nontrivial structures. In the generic case of the
eight-point correlation function, there are three (up to the
mirror transformation n → N − n) nontrivial final structures
(Fig. 14) taking place at ν = T, T + 1, T + 2 [see Eq. (4.7)].
Further analysis shows that only the case ν = T + 1 corre-
sponds to the nontrivial correlation function. Moreover, the
structure similar to the one shown in Fig. 14(b) reduces to
those in Fig. 8(b). These conclusions follow from the explicit
summation of the correlated spins (red balls) in the vicinity of
the boundaries (green balls).

On the upper boundary of the structure shown in Fig. 14(a),
the summation over the correlated spins sN,1,0, sN,2,0, s3,1,0,
s3,2,0 has to be done according to the following scheme (only
the spins with m = 1 are shown)

(B1)

FIG. 14. The spin structures generated after the application of the contraction rules in the temporal and the horizontal directions at T = 4
(M, N � T ) and (a) ν = 4, (b) ν = 5, (c) ν = 6.
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FIG. 15. The spin structures generated after the application of the contraction rules in the temporal and the horizontal directions at T = 4
(M, N � T ) when only four from eight operators q� are different from 1. The mutual positions of the operators q� are different at each plot
and [(a),(d)] ν = 4, [(b),(e)] ν = 5, [(c),(f)] ν = 6.

The arrows on this scheme show the order of indexes
in the corresponding functions ( fv of g), from left to
right. The horizontal interactions are not shown, while the
presence of the horizontal interactions after summation results
in the correlation of the spins s̄1,1,0 and s1,1,0. Thus, on the next
turn, summation over the spin s1,1,1 leads to the correlation of
s̄2,1,1 and s2,1,1, which cuts the spin bridge and the correlation
function becomes trivial (the same arguing works for the spins
with m = 2).

The spin structure in Fig. 14(c) has to be analysed start-
ing from the bottom. To formulate the contraction rules in a
symmetric manner we have introduced the additional matrices
UI into 	(s̄T , sT ), so that the product 	(s̄T , sT )T̄I (s̄T , sT )
reduces to the scalar product 〈s̄T |�|sT 〉, where all spins on the
level t = T are correlated and does not interact horizontally.
Therefore summation over the spins sT +1,1,T and sT +1,2,T re-
sults in the correlation of the spin pairs s̄T +1,1,T −1, sT +1,1,T −1
and s̄T +1,2,T −1, sT +1,2,T −1, which again breaks the spin bridge.
The very same arguments allow us to reduce the spin structure
in Fig. 14(b) to obtain the one in Fig. 8(b).

For completeness, we also plotted the structures obtained
after the application of the contraction rules for the case cor-
responding to the four-point correlation function with various
mutual positions of the operators q�, see Fig. 15. Additional
analysis shows that only one of them shown in Fig. 15(b)

generates a nontrivial correlation function. It can be reduced
to the structure in Fig. 7(b).

APPENDIX C: EXPLICIT EXPRESSIONS FOR THE
CORRELATION FUNCTION IN THE SPIN-CHAIN

MODEL (SEC. VII B)

The correlation function calculated in Eq. (7.19) take
nonzero values for particular choices of the operators qi: q1 =
σ̂ z, q6 = σ̂ y, q2 = σ̂ x, σ̂ y, q5 = σ̂ x, σ̂ z, totally four combina-
tions. We use the standard definition of the Pauli matrices,

σ̂ z =
(

1 0
0 −1

)
, σ̂ x =

(
0 1
1 0

)
, σ̂ y =

(
0 −i
i 0

)
.

(C1)

The correlation function is

C(T ) = −2λT −2
1 cos4 2dh × (I)× (II), (C2)

where the factors (I), (II) take the following values:(
I
) =

{
sin 2h q2 = σ̂ x,

− cos 2h q2 = σ̂ y,
(C3)

(
II
) =

{
sin 2h q5 = σ̂ x,

− cos 2h q5 = σ̂ z.
(C4)
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