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Strong edge burst with bipolar non-Hermitian skin effect
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We consider a system exhibiting the bipolar non-Hermitian skin effect (NHSE), where bipolar skin states are
localized at both edges, and discuss how the topological funneling effect can occur with a single focal point in
this system. We explore a topological phase transition from bipolar NHSE to NHSE, which alters the localization
characteristics of the eigenstates. After the transition, both the delocalized and bipolar skin states transform into
skin states. The non-Hermitian edge burst is a novel and unexpected feature of non-Hermitian quantum dynamics,
characterized by substantial particle loss at the boundary of a system. Using the model displaying bipolar NHSE,
we show the emergence of the edge-burst effect with a large amount of loss observed only at one boundary. To
enhance this effect, we introduce slightly asymmetric long-range couplings into a system that already exhibits the
edge burst. This leads to a notable enhancement of the edge burst. We discuss the significance of asymmetrical
local power generation in contributing to this enhanced edge-burst effect.
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I. INTRODUCTION

Non-Hermitian systems display intriguing and unique
topological properties not found in their Hermitian counter-
parts. A noteworthy phenomenon in non-Hermitian systems
is the non-Hermitian skin effect (NHSE), where the eigen-
states and eigenvalues exhibit high sensitivity on the boundary
conditions, challenging the conventional understanding of
bulk-boundary correspondence [1–5]. The NHSE describes
a unique non-Hermitian phenomenon where all eigenstates
under open boundary conditions (OBCs) are localized near
the boundary, while those under periodic boundary condi-
tions (PBCs) are extended. Studies have revealed that the
emergence of the NHSE in one dimension is linked to
the spectral winding number, a topological invariant unique
to non-Hermitian systems [6–8]. Recently, there has been
significant attention on the bipolar NHSE, which occurs
in non-Hermitian systems when long-range coupling is in-
troduced [9–18]. Unlike conventional NHSE, where skin
states asymmetrically localize at one edge, bipolar NHSE
implies that skin modes appeared either at the left or the
right edge. The spectral characteristics of NHSE continue
to be a significant subject of investigation within the non-
Hermitian community due to its unconventional implications
and promising potential applications in different fields.

The NHSE also leads to intriguing dynamical effects
such as topological funneling [19–21] and edge-burst ef-
fects [22–26]. Non-Hermitian topological funneling, observed
in the context of light propagation in photonic lattices, relies
on NHSE, channeling light to a focal point regardless of
its initial form. In recent years, a new phenomenon called
the non-Hermitian edge burst has captured the interest of re-
searchers. The non-Hermitian edge burst refers to a significant
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portion of loss occurring at the system boundary. Understand-
ing and characterizing the non-Hermitian edge burst is crucial
for both fundamental research and technological applications.
Originally, the edge burst was attributed to topological edge
states [22], which is questioned in a paper [23]. Its physi-
cal origin is found to be an interplay between two unique
non-Hermitian phenomena: the NHSE and imaginary gap
closing [23]. However, recent work has emphasized that while
these conditions can give rise to the edge burst, they are not
necessary and sufficient for the emergence of the edge-burst
effect [24]. It was shown that this effect appears even in a
particular one-dimensional lossy lattice with nonuniform loss
rates, where the skin localization is absent. Experimental ob-
servations by Xue’s group, using single-photon discrete-time
quantum walks, have confirmed the existence of the edge-
burst effect [26].

To date, studies of the edge-burst effect have primarily
focused on lossy non-Hermitian systems without considering
asymmetrical couplings. Our paper aims to investigate the
non-Hermitian edge burst in a lattice with asymmetrical long-
range couplings, exhibiting bipolar NHSE. We will explore
the underlying mechanisms and their properties using the-
oretical and numerical methods, analyzing system behavior,
time evolution, local decay distribution, and sensitivity to
parameters. Our focus will be on how the edge-burst effect
enhances with asymmetrical couplings, leading to nonexpo-
nential decay of total power from the system. Additionally,
we will discuss the topological funneling effect in the context
of bipolar NHSE. This paper contributes to expanding knowl-
edge on the edge-burst effect in non-Hermitian systems.

II. BIPOLAR NHSE

Tight-binding lattices with asymmetric couplings between
nearest-neighboring sites serve as prominent systems in the
field of non-Hermitian systems, providing insights into the
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behavior of nonreciprocal systems and their topological prop-
erties. In this paper, we explore a modification of this model,
wherein the asymmetry is introduced not in the couplings
between nearest-neighboring sites, but rather between the
next-to-nearest neighboring sites. Furthermore, we consider
the presence of losses at each odd-numbered site within the
lattice [Fig. 1(a)]. Therefore, the non-Hermitian character
arises from both the losses and the asymmetry between the
forward and backward long-range couplings in the system.
This minimal model serves as the basis for our investigation
on the non-Hermitian edge burst. The equation for the field
amplitude ψ j at site j = 1, 2, . . . , N reads

ψ j+1 + ψ j−1 + i(γL ψ j+2 − γR ψ j−2) − i Vj ψ j = i
dψ j

dt
,

(1)

where 0�γR < 1 and 0�γL < 1 are real-valued coefficients in
the backward and forward directions, respectively. Therefore,
the next-to-nearest-neighboring couplings are purely imagi-
nary, and with a phase difference between the forward and
backward directions. The loss rates Vj > 0 are nonzero only
at odd-numbered sites, i.e., Vj = V when j is odd and Vj = 0
when j is even.

We start to study the stationary solutions of Eq. (1).
The PBC eigenvalues can be readily found in closed
analytical form using the k-space Hamiltonian H =
(i(γLeik − γRe−ik ) − iV 1 + e−ik

1 + eik i(γLeik − γRe−ik )). They are given by

E∓(k) = −(γR + γL ) sin(k) + i(γL − γR) cos(k)

− i
V

2
∓

√
2 − V 2

4
+ 2 cos(k). (2)

This formula allows us to study the topological properties of
the system through the spectral winding number for a complex
reference energy E0 [6,8,10],

ν =
∫ 2π

0

dk

2π i

d

dk
ln[E (k) − E0]. (3)

The system is topologically nontrivial and demonstrates a
strong dependence on the boundary conditions even when
γR = γL, indicating the presence of a skin effect that is not
exclusively linked to the asymmetry in the couplings. In other
words, the skin states do not require asymmetric couplings in
this case, where the non-Hermiticity is only due to losses. To
be more precise, the system displays bipolar NHSE, implying
localization on both edges. To explore the OBC and PBC
spectra on the complex energy plane when γR = γL, we per-
form numerical computations in three distinct phases: V < 4,
V = 4, and V > 4 [the expression inside the square root in
Eq. (2) is always negative]. First, we start with the case when
V < 4. In this regime, the PBC eigenvalues unveil a distinctive
structure characterized by a line almost parallel to the ER axis
and a loop, as depicted in Fig. 1(b). A segment of this line
bisects the loop, resulting in two loops with opposite winding
numbers ν = ∓1 that intersect along the line, which we refer
to as a Bloch line. The OBC modes with eigenvalues inside
the loops are identified as skin states. Intriguingly, the skin
states exhibit bipolar nature, with eigenvalues in the lower and
upper PBC loops localized at the opposite edge. Conversely,
the remaining OBC states with the eigenvalues lying on the

FIG. 1. (a) A schematic of the non-Hermitian model. The lattice
sites are colored red and white to represent odd-numbered and even-
numbered sites, respectively, with red indicating lossy sites and white
representing lossless sites. The numerically computed PBC (black)
and OBC (red) spectra in the complex energy plane at γR = γL = 0.5
and N = 90, where the non-Hermiticity arises solely from losses at
(b) V = 3.7 and (c) V = 4.5. The insets are the densities |ψ j |2 of all
OBC eigenstates. The system exhibits bipolar NHSE, with the skin
modes being localized at opposite edges (ν = 1 and ν = −1 for the
upper and lower loops, respectively). (a) Two loops intersect along
the Bloch line whose length decreases with increasing V . Note that
the Bloch line eventually transforms into a Bloch point when V = 4.
(b) The Bloch point vanishes and imaginary line gap occurs when
V > 4.

line are extended; their eigenvalues display substantial over-
lap with the corresponding PBC eigenvalues. Therefore, the
system under OBC demonstrates a coexistence of extended
and bipolarly localized eigenstates. The number of extended
states exceeds that of skin states for small values of V . Note
that the length of the Bloch line decreases with increasing V ,
leading to more skin states and less extended states. At the
critical loss rate V = 4, the Bloch line becomes a Bloch point.
Finally, we consider that V exceeds the critical value, V > 4,
where an imaginary line gap arises on the PBC spectrum. Two
distinct PBC loops with opposite windings encircle the OBC
eigenvalues [Fig. 1(c)]. The corresponding OBC modes in the
upper and lower loops are localized at opposite edges. As
V further increases, the PBC loops become more elongated
along the ER axis. If V is exceedingly large, the PBC loops
become so elongated that it leads to a substantial overlap with
the OBC spectra, meaning that the localization lengths of the
OBC states become almost equal to the lattice size. Note that
the upper PBC loop touches the ER axis (a zero-energy PBC
eigenstate exists), hence the imaginary gap closing occurs in
these three regimes.

Next, we consider the case of the asymmetrical couplings
with γL>γR, where the imaginary gap closing does not occur.
In this case, NHSE or bipolar NHSE occurs in the system.
In the absence of losses, V = 0, where the asymmetry in the
couplings is the only source of the non-Hermiticity, the system
displays NHSE with the skin states being localized at the
left edge. Figure 2(a) illustrates the PBC spectrum according
to Eq. (2), consisting of two identical loops with the same
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FIG. 2. The PBC spectra E∓ on the complex energy plane ac-
cording to Eq. (2) at (a) V = 0, (b) V = 3, (c) V = 4, and (d) V = 5.
The parameters are γL = 0.8, γR = 0.1. The NHSE occurs as both
loops have the same windings ν = 1 for (a) and (d), implying skin
localization at the left edge. On the other hand, the bipolar NHSE
occurs for (b) and (c). (b) The lower loop (in black) has one loop with
ν = 1, whereas the upper loop (in red) has two loops with opposite
windings ν = ∓1. (c) The lower and upper loops have opposite
windings with ν = −1 and ν = 1, respectively.

winding number ν = 1, implying the existence of the NHSE.
The two loops meet at the Bloch point. In the presence of the
losses, V >0, the system can exhibit either NHSE or bipolar
NHSE, depending on the parameters. Furthermore, the PBC
loops are not identical in appearance, with the lower loop hav-
ing a larger area, as illustrated in Figs. 2(b)– 2(d). The shapes
of the loops change significantly depending on whether V is
below or above the critical value of 4. For example, the upper
red loop is composed of two loops with opposite windings
ν = ∓1, while the lower one has only one loop with ν = 1
when V is below than the critical number [see Fig. 2(b)]. Since
ν = 1 and ν = −1 imply the existence of skin states localized
at the left and right edge, respectively, we can say that the
skin states with eigenvalues in the lower loop are localized at
the left edge, while those with eigenvalues in the upper red
loop are localized at both edges. Consequently, the skin states
localized at the left edge outnumber those at the right edge. At
V = 4 [see Fig. 2(c)], two nonidentical loops with opposite
windings meet at the Bloch point. Notably, the nonidentical
nature of the loops also implies differences in localization
lengths of the skin states on each edge. If V exceeds 4, an
imaginary line gap appears [see Fig. 2(d)]. In this case, an
intriguing phase transition occurs from the bipolar NHSE to
the NHSE. In Fig. 3, a basic illustration demonstrates such

FIG. 3. An illustration of the phase transition from bipolar NHSE
to NHSE as the parameter V increases. The two PBC loops with
opposite winding numbers, meeting at the Bloch point, change into
a single PBC loop with a single winding number. The Bloch point
disappears with the phase transition. Under OBC, the system with
bipolar NHSE can accommodate skin states localized at both edges
and may also have extended states, whereas in the NHSE regime,
skin states are asymmetrically localized at one edge. In other words,
a slight increase in the parameter V at the transition point shifts
all right-localized skin states, along with the extended states, to
become left-localized skin states. Note that in the system depicted in
Fig. 2(d), the winding number of the lower loop remains unchanged
as V crosses the transition point.

a topological phase transition. Physically, a tiny amount of
change of V at the transition point can change the localiza-
tion properties of the eigenstates. This is different from the
Hermitian Anderson transition, where even a tiny amount of
disorder can localize all extended states. In our system, the
OBC system exhibits both delocalized states and bipolar skin
states before the phase transition, V�Vt . However, all these
states transform into skin states localized at the left edge
after the transition takes place. Let us calculate the transition
point V = Vt using Eq. (2) when the system has an imaginary
line gap. Before the transition occurs, the two Bloch points
traverse through the k space, eventually meeting at k = 0 at
the transition point. If we set E+(k = 0) = E+(k = π ), we
obtain the transition point, marking the onset of the NHSE,

Vt = 2[1 + (γL − γR)2]

|γL − γR| . (4)

We see that Vt→∞ if the system has symmetrical couplings,
γR = γL. Note that the transition point is not smaller than
the critical point, Vt � 4. As an example, Vt = 4.25 for the
parameters used in Fig. 2(d). Therefore, the upper loop has
the same winding as the lower one in Fig. 2(d), indicating
the absence of bipolar NHSE, and all the corresponding skin
states are localized only at the left edge.

Topological funneling effect

The NHSE gives rise to intriguing dynamical effects, such
as the topological funneling effect—a phenomenon where an
arbitrary initial excitation, typically localized at a specific
site within the system, always moves towards the focal point
where the skin localization occurs, and remains localized at
that point [19]. Considering the funneling effect in the dy-
namics of NHSE, one may ask similar questions about bipolar
NHSE, where the skin states exhibit localization near both
edges. One might intuitively expect a topological funneling
effect with two focal points in the context of bipolar NHSE.
In other words, an initial single-site excitation propagates
towards both edges by splitting into two distinct wave packets
and remains localized there instead of being reflected from
the edges. Contrary to this expectation, the initial excitation
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FIG. 4.
ψ j (t )∑

j |ψ j (t )|2 as a function of time with (a) ψ j (0) = δ j,20 and

(b) ψ j (0) = δ j,70. The lattice has symmetric couplings but is subject
to losses at every odd-numbered site. The initial excitation always
moves to the right even if the system has bipolar NHSE, where half
of the eigenstates are localized at the left edge and the remaining half
at the right edge. The parameters are γ = 0.5, V = 5, and N = 90.

tends to move to one edge. This behavior is distinct from
these conventional expectations, adding a unique and inter-
esting aspect to the study of wave dynamics in non-Hermitian
physics. To illustrate this, we analyze the spreading dynamics
corresponding to an initial single-site excitation of the OBC
lattice with γR = γL = γ and V = 5, where the skin states
exhibit localization near both edges, i.e., half of the states
being localized at the left edge and the remaining half at the
right edge. We suppose the initial state at site j and time t = 0
is given by ψ j (t = 0) = δ j,S , where S is the starting site, and
then find its time evolution. Figure 4 plots the normalized
density ψ j (t )∑

j |ψ j (t )|2 as a function of time when the initial ex-

citation is close to either the right or left edge. We see that
the wave always propagates in the forward direction to the
right edge, regardless of its initial excitation location, without
experiencing reflection from the right edge. Note that if γ re-
verses its signs, then the system favors motion towards the left.
Additionally, if the next-to-nearest-neighboring couplings are
real valued (γL→iγL and γR→ − iγR), then this asymmetric
motion would disappear. This asymmetric motion can be ex-
plained as follows. In the absence of losses, V = 0, the system
has extended eigenstates and the initial wave splits in two
and is transported bidirectionally. In the presence of losses
with V = 5, an imaginary line gap appears, indicating that the
skin states localized at the left edge decay much faster than
those localized at the opposite edge. Second, the skin states
localized at the right edge have shorter localization lengths
compared to those at the left edge. As a result, the initial
wave splits in two, with the majority of the splitting towards
the forward direction. Furthermore, motion in the backward
direction is rapidly suppressed, allowing the wave packet to
survive and move in the forward direction towards the right
edge. This leads to unidirectional wave transport in the lattice,
where backward-propagating waves dissipate within a short
distance of propagation due to damping.

We have studied the asymmetrical motion, but the question
of determining the total dissipated power at each site remains
unresolved. Interestingly, in certain cases, we find that most of
the initial power is lost not from the starting site, but from the

right edge. In the next section, we explore another dynamical
phenomena, the so-called non-Hermitian edge burst, to further
study this problem.

III. NON-HERMITIAN EDGE BURST IN THE LATTICES
WITH BIPOLAR NHSE

Let us study the non-Hermitian edge burst in a lattice with
open edges, i.e., ψ0 = ψ−1 = ψN+1 = ψN+2 = 0 in Eq. (1).
Suppose that the lattice is initially excited at a single site in
the bulk near the left edge, described by the initial conditions
ψ j (t = 0) = δ j,S , where the starting site S is an even number.
Let I (t ) = ∑

j |ψ j (t )|2 be the total power (norm) with the
initial value I (0) = 1. Let us multiply Eq. (1) by ψ�

j and
its complex conjugate by ψ j , and then subtract these two

expressions to obtain d|ψ j |2
dt . We sum this expression over the

index j and, after some algebra, we find that I (t ) changes
according to

dI

dt
= −(γR − γL )

∑
j

ψ�
j (ψ j+2 + ψ j−2) − 2

∑
i

Vj |ψ j |2.

(5)
The first term on the right-hand side of this equation increases
the total power and, concurrently, the second term leads to
a decrease in the total power. Given the second term’s dom-
inance, the initial power is eventually dissipated from the
system entirely. Specifically, the power I (t ) decays exponen-
tially in time and becomes zero as t → ∞ when γR = γL.
On the contrary, it exhibits either a nonexponential decay
or unbounded growth when γR �=γL. During nonexponential
decay, which occurs when γR − γL is sufficiently small, the
power I (t ) undergoes fluctuations of reduction and growth
over time and eventually vanishes. On the other hand, the
power grows unboundedly if γR − γL is large. Let us integrate
the expression Eq. (5) from zero to infinity and assume that
γR − γL is small enough such that I (t → ∞) → 0. We define
two parameters, the local decay Pj and local growth Qj prob-
abilities,

Pj = 2Vj

∫ ∞

0
|ψ j |2 dt,

Qj = (γL − γR)
∫ ∞

0
ψ�

j (ψ j+2 + ψ j−2) dt . (6)

Note that Pj is nonvanishing only when j is an odd number
since losses are not introduced at the even-numbered sites. We
obtain the relation between the total dissipated power from the
lossy sites and the added power due to the nonreciprocity,

N∑
j=1

Pj = 1 +
N∑

j=1

Qj . (7)

This formula is different from the one previously explored
in the literature for investigating the non-Hermitian edge
burst, where the total dissipated power is equal to the initial
power [22–24]. The asymmetrical couplings lead to amplified
power. The total extra power

∑N
j=1 Qj is ultimately dissipated

from the system. Remarkably, the dissipation of this extra
power is not uniformly distributed along the lattice. Some
lossy sites may experience a more pronounced increase in
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(a) (b)

FIG. 5. The distribution of the decay probability Pj : (a) γ = 0.5
and (b) γ = 1/100. Both cases exhibit bipolar NHSE with an imag-
inary line gap of the PBC loops encircling the OBC spectrum on the
complex energy plane, where the horizontal and vertical axes are ER

and EI , respectively (inset). The imaginary gaplessness condition is
satisfied by the two systems. However, only the the case in (a) dis-
plays the non-Hermitian edge-burst effect � 1. The parameters are
S = 40, N = 91, and V = 5.

dissipated power than others. In some cases, the dissipation of
the extra power is predominantly acquired by the right edge,
leading to an enhanced edge-burst effect, as shown below.

To study the edge-burst phenomena, we numerically com-
pute the local decay probabilities Pj . To quantify the edge
burst, we use the relative height, defined as PN/Pmin, where
Pmin = min{PS, PS+1, . . . , PN } is the minimum of Pj between
the starting point S and the right edge. Note that PN/Pmin � 1
and PN/Pmin ≈ 1 serve as evidence for the existence and
absence of the edge burst, respectively [23]. This condition
will be referenced throughout this paper. We can also define
another ratio PN/PS∓1, which compares the decay probabili-
ties at the right edge and the neighboring site of the starting
point [24]. This ratio acts as a measure of the strength of
the edge burst. We say that the edge-burst effect is strong
when this ratio exceeds 1. Below, two distinct cases, one with
γR = γL = γ and the other with γR �= γL, are explored.

A. γR = γL = γ

Consider first the system with γR = γL = γ , leading to
Qj = 0. In this case, the total power lost from the system
equals the initial power. The system is characterized by left-
right symmetry and exhibits bipolar NHSE. Therefore, one
might intuitively expect that the local decay probability Pj at
site j peaks at the neighboring sites of the initially populated
site (where the loss rate at j = S is zero) and then decreases
exponentially in both directions as one moves away from this
site (with j being an odd number). However, this assumption
is not accurate. The emergence of a topological funneling
effect with a single focal point causes the initial wave to
propagate to the right, implying an asymmetric distribution
of Pj , leading to bigger losses on the right side of the starting
site S than on the left.

Let us now perform numerical computations to examine
the Pj distribution. In Fig. 5, we can see the asymmetric Pj

distributions. The Pj takes its maximum value near the starting
point and rapidly decrease in the bulk towards the edges.
Remarkably, a sharp peak occurs at the right edge in the first
case, indicating an edge burst, while Pj remain very small near
the right edge [see Fig. 5(a)]. The edge burst in this regime is
weak as the ratio PN/PS∓1 is smaller than 1. On the other hand,

a similar peak is not observed and the edge burst does not
appear in Fig. 5(b), although both cases satisfy the imaginary
gap closing condition and exhibit bipolar NHSE, as shown in
the insets of Fig. 5. As γ is decreased, it takes more time for
the initial excitation to reach the right edge, leading to more
losses in the bulk. Consequently, the second system with a
very small value of γ does not show the edge-burst effect.

B. γR �= γL

The edge-burst effect can be enhanced by amplifying the
ratio PN/PS∓1. This can be achieved by increasing γ while
leaving all other parameters fixed. However, the regime of
strong edge burst (PN/PS∓1 > 1) is not reachable through this
approach. An alternative way is to introduce a small nonre-
ciprocity (γR − γL > 0). Our approach to finding an instance
with a strong edge-burst effect is as follows. We start with a
symmetrical system (γR = γL) already displaying the edge-
burst effect and slightly reduce γL, while keeping all other
parameters unchanged. We remark that a small change of γL

slightly deforms the PBC loops, preserving the bipolar skin
phase. We then employ numerical simulations to investigate
whether there is an enhancement in the edge-burst effect.
Remarkably, such an enhancement is not primarily attributed
to the NHSE, but rather to the asymmetrical power generation
that eventually leads to more decay at the right edge than
near the starting points. In other words, an asymmetrical dis-
tribution of Qj results in a shift in the Pj distribution, favoring
an increased PN/PS+1 ratio. On the other hand, this method
has limitations. If the nonreciprocity γR − γL is not suffi-
ciently small, the power can grow indefinitely, meaning that
Pj also diverge. We therefore consider slight nonreciprocity
and sufficiently large V . In this case, the power experiences
rapid initial decay, followed by growth after a certain time,
ultimately dissipating entirely at large times.

To illustrate our approach, we start with a lattice with
N = 91, S = 40, and γR = γL = 0.2, and consider two spe-
cific cases at V = 1 and V = 4. First, we confirm that these
systems exhibit the weak edge-burst effect with PN/PS∓1 < 1.
To enhance the effect, we change γL to 0.18 and repeat the
numerical calculations with this slight change. Figures 6(a)
and 6(b) plot the distribution of local decay probabilities
among the whole lattice. Both figures show the enhanced
edge-burst effect, with the second one displaying the strong
edge-burst effect as PN/PS∓1 > 1. The insets show how the
power I (t ) changes over time. We see that they experience
an exponential decrease, followed by a gradual increase and
subsequent decrease, and become practically zero when t >

300. Remarkably, the total generated power
∑

j Q j becomes
higher as the loss rate V is larger. Therefore, increasing the
non-Hermiticity increase the total generated power. This can
enhance the PN/PS∓1 ratio as the generated power dissipates
more at the right edge. Figures 6(c) and 6(d) plot the corre-
sponding Qj distributions to see the asymmetrical local power
generation among the whole lattice. Notably, the entire power
generated at the lattice site j does not dissipate exclusively
from the same site. The wave packet, experiencing power
amplification from asymmetric couplings, moves towards
the right edge while concurrently undergoing decay along
the way.
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FIG. 6. Pj and the corresponding Qj at (a),(c) V = 1 and
(b),(d) V = 4. The local decay probabilities Pj at site j exhibit an
enhanced non-Hermitian edge-burst effect attributed to nonuniform
distribution of the decay of the added power,

∑
j Q j , resulting from

the asymmetry in the couplings. (b) Strong edge-burst effect since
the ratio PN/PS∓1 exceeds 1. The insets show the total power I (t ) as
a function of time. It decays rapidly and then makes a growth before
being entirely dissipated. The parameters are γL = 0.18, γR = 0.20,
S = 40, and N = 91.

IV. CONCLUSION

In conclusion, we consider a model featuring a lattice
structure with symmetric coupling at nearest neighbors and
asymmetric coupling at next-nearest neighbors with losses
at alternating sites. Our exploration of the edge-burst phe-
nomenon in a lossy lattice, exhibiting bipolar NHSE, has
revealed intriguing dynamics. For the lattice with symmet-
rical couplings, we observed the coexistence of skin and
extended states. Beyond the critical value, a line gap emerged,
accompanied by distinct PBC loops encircling OBC eigen-

values. This phenomenon introduces a distinctive behavior in
wave propagation.

We explore a topological phase transition from bipolar
NHSE to NHSE and calculate the phase transition point Vt

for our model. This topological phase transition alters the
localization characteristics of the eigenstates. The skin states,
localized at both edges, and extended states prior to the phase
transition become skin states localized at only one edge after
the phase transition occurs.

Our study demonstrated the occurrence of the topological
funneling effect with one focal point even in the case of bipo-
lar NHSE. We found that the edge-burst effect manifests, and
an asymmetric local decay rate appears, even when the skin
states are localized at both edges. To enhance the edge-burst
effect, we introduced a slight nonreciprocity in the couplings
of a system already exhibiting the edge-burst effect, emphasiz-
ing the crucial role of asymmetrical power generation rather
than relying solely on NHSE. However, this approach has
limitations in achieving a strong edge-burst regime, as the
total power may grow unboundedly. The asymmetrical local
power generation, as illustrated in the Qj distributions, signif-
icantly contributed to the overall enhanced edge-burst effect.
These findings illuminate the rich dynamics and phenomena
exhibited by non-Hermitian lattice systems.

The model proposed herein can be experimentally realized
in some systems such as electronic and photonic systems,
including photonic laser systems. In photonic lattices, asym-
metric couplings can be achieved through various engineered
structures, including tailored waveguide configurations and
coupled resonator arrays [27]. Similarly, in electronic lattices,
asymmetric coupling can arise from factors such as lattice
distortions and spin-orbit-coupling effects [28]. By leverag-
ing these experimental platforms, our proposed model opens
avenues to explore novel dynamical phenomena.
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