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Level-spacing distribution of localized phases induced by quasiperiodic potentials
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Level statistics is an important quantity for exploring and understanding localized physics. The level-spacing
distribution (LSD) of the disordered localized phase follows Poisson statistics, and many studies naturally apply
it to the quasiperiodic localized phase. Here, we analytically obtain the LSD of the quasiperiodic localized phase,
and find that it deviates from Poisson statistics. Moreover, based on this level statistics, we derive the ratio of
adjacent gaps and find that for a single sample, it is a δ function, which is in excellent agreement with numerical
studies. Additionally, unlike disordered systems, in quasiperiodic systems, there are variations in the LSD across
different regions of the spectrum, and the presence of spectral correlations results in nonequivalence between
increasing the size and increasing the sample. Our findings carry significant implications for the reevaluation
of level statistics in quasiperiodic systems and a profound understanding of the distinct effects of quasiperiodic
potential-induced and disorder-induced localization.
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I. INTRODUCTION

Quantum localization has consistently been a significant
research area in condensed matter physics. This phenomenon
is widely present in disordered systems, caused by interfer-
ence from multiply scattered waves due to system disorder,
resulting in the exponential decay of the wave function and
the suppression of transport [1–4]. In addition to random
disorder, quasiperiodic potentials also induce localization, and
in recent years, they have garnered widespread interest in both
theoretical [5–15] and experimental [16–22] aspects, playing
a crucial role in enhancing our understanding of critical phases
[20–24], rich transport behaviors [25–29], many-body local-
ization (MBL) [30–32], low-dimensional Anderson transition
(AT), and mobility edges [5–19]. Furthermore, recently, moiré
materials have attracted considerable attention. Quasiperi-
odic modulations can manifest naturally in moiré materials
[33–37]. Specifically, by mapping strained moiré systems in a
uniform magnetic field to a one-dimensional (1D) quasiperi-
odic system [29,38], we can gain insights into some intriguing
properties of moiré materials.

The level-spacing distribution (LSD) of localized phases is
completely distinct from that of extended phases, allowing us
to use LSD to differentiate between extended and localized
phases [39,40]. For disordered systems, the energy levels of
the localized phase are uncorrelated, with no level repul-
sion, and their distribution follows Poisson statistics [39–41].
Extending the statistical patterns of level spacing for disorder-
induced localized phases to quasiperiodic-induced localized
phases seems natural. Additionally, the average of the
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adjacent gap ratio 〈r〉 is close to 0.387 [34,42–53], which is
in complete agreement with the results predicted by Poisson
statistics. Therefore, the LSD of quasiperiodic localization
systems, including the quasiperiodic localization in moiré
systems, is widely accepted to follow Poisson statistics in
both single-particle [34,42–49,54–58] and many-body sys-
tems [50–53,59]. However, a recent mathematical proof has
shown that the distribution of eigenvalues in quasiperiodic and
disordered localized phases exhibits significant differences
[60], implying that the patterns of energy-level spacings for
the two cases may also differ. Therefore, it is necessary to
reexamine the distribution of level spacings in quasiperiodic
systems. This is helpful for understanding various properties
of quasiperiodic systems, including moiré quasicrystals, as
well as distinguishing between quasiperiodic localization and
disordered localization.

In this paper, we take the Aubry-André (AA) model as an
example to investigate the LSD of the quasiperiodic localized
phase. We first compare the energy-level distribution, LSD
P(δE ) and the distribution of the adjacent gap ratio P(r) for an
Anderson localization (AL) phase induced by quasiperiodic
potentials with those induced by disorder. Then, we calculate
the number variance of different regions of the energy spec-
trum in the AA model [61] and compare it with the number
variance of the levels in the AL phase induced by disorder.
Such comparisons demonstrate the differences in the level
distributions between quasiperiodic potentials and disorder-
induced AL phases, intuitively and quantitatively showing
that the levels of the AL phase in quasiperiodic systems are
repulsive, meaning they are correlated, and therefore their
spacing distributions are not Poissonian. Finally, we analyt-
ically derive P(δE ), P(r), and 〈r〉 for the AA model’s AL
phase.
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FIG. 1. (a1)–(a4) show disorder-induced localization with W/J = 10, and (b1)–(b4) show localization induced by quasiperiodic potentials
with α = F22/F23, θ = 0.3π , and V/J = 10. The size of both systems is L = F23 = 28657. (a1) and (b1) Eigenenergies in ascending order,
and the index of energy mode iE runs from 1 to L. The green/red/green curves in (b1) correspond to the lowest/middle/highest 1/3 energies
of the middle region. (a2) and (b2) The distribution of energies (density of states). The purple data points in (b2) correspond to J = 0.
(a3) and (b3) Level-spacing statistics with δE = �E/〈�E〉 and 〈�E〉 is the mean level spacing. The red fitting curve in (a3) shows P(δE ) =
1.047e−1.065δE . The purple and light blue dashed lines in (b3) correspond to the fitting results using Eq. (8) (corresponding to J = 0) and Eq. (9)
(the fitting parameters corresponding to the branches κ = 1, 2, 3, 4 are Aκ = 0.092, 0.31, 1.701, 0.595, bκL = 1.182, 1.7, 2.071, 2.571, and
Cκ = 0.125, 0.099, −0.357, −0.079), respectively. (a4) and (b4) The distributions of P(r). The red curve in (a4) satisfies P(r) = 2/(1 + r)2.
Inset of (b4): The behavior P(r) with different sizes.

II. MODEL AND RESULTS

The AA model is the simplest nontrivial example with a
1D quasiperiodic potential, described by

H = J
∑

j

(c†
j+1c j + c†

j c j+1) +
∑

j

Vjc
†
j c j, (1)

where c j (c†
j ) denotes the annihilation (creation) operator at

site j, J is the nearest-neighbor hopping coefficient, and Vj =
V cos(2πα j + θ ) with V , θ , and α being the quasiperiodic
potential amplitude, the phase offset, and an irrational number,
respectively. We note that the LSD pattern is independent of
the specific values of α and θ . This model undergoes the AT at
V = 2J , with all eigenstates being extended for V < 2J and
localized for V > 2J [61]. For simplicity, we fix J = 1 and
set α = FN−1/FN with FN being the Fibonacci sequence (i.e.,
F1 = 1, F2 = 1, and FN = FN−1 + FN−2). As N approaches
infinity, α converges to (

√
5 − 1)/2. Unless otherwise stated,

we take the system size L = FN , and use open boundary con-
ditions.

We first compare the LSD of the localized phase in the
AA model with that induced by random disorder, as shown
in Fig. 1. For the disorder-induced localization, we con-
sider the above Eq. (1), with the on-site disorder Vj being
uniformly distributed in the interval [−W,W ]. We observe
that the energy spectrum of localized phases caused by dis-
order does not exhibit significant large gaps [Fig. 1(a1)].
Apart from a decrease in the density of states (DOS) at the
boundaries of the spectrum, the DOS across the spectrum
is uniformly distributed [Fig. 1(a2)]. As a contrast, the en-
ergy spectrum of quasiperiodic localized phases shows two

distinct large gaps, dividing the spectrum into three segments
[Fig. 1(b1)]. The numbers of states in each segment from
bottom to top are FN−2, FN−3, FN−2, and at the boundaries
of each segment, the DOS increases [Fig. 1(b2)]. Then we
compare the distribution of energy-level spacings, defined
as �En = En+1 − En, with the eigenvalues En listed in as-
cending order. In the disorder system, the level statistics
of localized phases are Poissonian, P(δE ) = 1

〈δE〉 exp(− δE
〈δE〉 )

[Fig. 1(a3)], where δE = �E/〈�E〉 and 〈δE〉 is the average
of δE . Based on the energy-level spacing, we can obtain the
ratio of adjacent gaps as rn = min(δEn,δEn+1 )

max(δEn,δEn+1 ) [62,63]. For Pois-
son statistics, one can derive that the distribution of r satisfies
P(r) = 2/(1 + r)2 [Fig. 1(a4)], which gives the average value
of r as 〈r〉 = ∫ 1

0 P(r)rdr = 2 ln 2 − 1 ≈ 0.387. However, for
the quasiperiodic localized phase, the energy-level spacing
noticeably deviates from Poisson statistics, as indicated by
the black data points in Fig. 1(b3). The distribution P(r) is
not 2/(1 + r)2 but rather takes on the form of a δ function
[Fig. 1(b4)].

Before deriving the distributions P(δE ) and P(r), we first
investigate the uniformity of level spacings across different
regions in the spectrum. Figure 2(a) displays three types of
spectra, corresponding to the localized phase in disordered
systems and the edge and middle regions in the middle seg-
ment of Fig. 1(b1). The distances between the energy levels
of the disordered system (blue lines) show significant fluctua-
tions and lack correlation, allowing levels to approach each
other arbitrarily closely. Similar properties are observed in
the boundaries of the quasiperiodic system’s energy spec-
trum (green lines). However, in the middle region of each
segment of the energy spectrum, level repulsion is observed,
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FIG. 2. (a) Examples of spectra. The blue uncorrelated energy
levels are obtained in the disordered AL phase. The green and red
energy levels respectively correspond to the edge and middle levels
of the middle region in Fig. 1(b1). Their corresponding averaged
number variances are shown in (b). The green/red dots are calculated
from the lowest/middle one-third spectrum of the middle region. The
black dots and blue curve are calculated from the full spectrum in
quasiperiodic and disordered systems. Here, we take 30 samples,
with each sample specified by choosing an initial phase θ . Other
parameters are the same as those in Fig. 1.

expressing the unlikelihood of levels being degenerate in
this system. This suggests that there is a correlation in the
energy spectrum of the localized phase in quasiperiodic sys-
tems. To characterize the uniformity of energy-level spacings,
we investigate the level number variance �2(ε), defined as
�2(ε) = 〈M2(ε)〉 − 〈M(ε)〉2, where 〈M(ε)〉 quantifies the av-
erage number of levels within the energy width ε on the
unfolded scale [64–67]. In the unfolded spectrum, where the
average spectral density is 1, 〈M(ε)〉 = ε [66,67], thus ε can
be replaced by 〈M〉, denoted by M for simplicity. For Poisson
statistics, the spectrum exhibits no correlations, resulting in a
number variance that is exactly linear with a slope of one, i.e.,
�2(M ) = M [blue dashed line in Fig. 2(b)]. Figure 2(a) shows
that the distribution of energy levels in the middle region of
each segment of the energy spectrum is more uniform, leading
to a smaller �2 [red dots in Fig. 2(b)], similar to �2(M ) ≈
2
π2 ln(2πM ) that is obtained from the Wigner-Dyson distri-
bution. For each segment’s boundary region [green dots in
Fig. 2(b)] and the overall energy spectrum [black dots in
Fig. 2(b)], when M is large, meaning that the number of
levels within the width ε is relatively high, the linear slope
of their respective �2 is greater than 1. This indicates that
their energy-level distribution is more uneven than the Poisson
distribution.

From the preceding discussion, one can see that the
LSD of the AL phase induced by quasiperiodic potentials
does not adhere to Poisson statistics. So, what type of sta-
tistical distribution does it exhibit? We now deduce the
LSD P(δE ) in the AA model’s AL phase. We set J = 0,
α = FN−1/FN , and fix θ , then the system’s eigenvalues are
Ej = V cos(2π jFN−1/FN + θ ), with j = 0, 1, 2, . . . , FN − 1
[Fig. 3(a)]. We introduce n, setting it equal to jFN−1 mod(FN ),
then En = −V cos[2πn/FN + θ + π ], and it is easy to verify
that the range of n is n = 0, 1, 2, . . . , FN − 1. Shifting the
labels of energies n = m − n0 with n0 = (θ + π − θ1)/( 2π

FN
),
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FIG. 3. Scheme of energy levels for (a) Ej and (b) E1,m and E2,m.
(c) Level spacings of the AA model with V = 10, α = FN−1/FN , and
L = 28 657. The black and purple dots correspond to the hopping
amplitudes J = 1 and J = 0, respectively. (d) Scheme of level spac-
ing as a function of x.

one can obtain

Em = −V cos

(
2π

m

FN
+ θ1

)
, m = 1, 2, . . . , FN . (2)

By selecting the appropriate value for n0, one can make
the range of θ1 satisfy θ1 ∈ [−2π/FN , 0) [68]. We then
separate the energy levels into two parts, as shown in
Fig. 3(b). For m = 1, . . . , FN/2, we denote the energies
by E1,m; for m = FN/2 + 1, FN/2 + 2, . . . , FN , we relabel
m → FN + 1 − m and denote the energies by E2,m, hence
E1,m = −V cos(2πm/FN + θ1) and E2,m = −V cos[2π (m −
1)/FN − θ1], with m = 1, 2, . . . , FN/2. It is convenient to
introduce variables xm = 2π (m − 1/2)/FN and y = π/FN +
θ1 ∈ [−π/FN , π/FN ), and then the energies become

E1(xm) = −V cos(xm + y),

E2(xm) = −V cos(xm − y), (3)

The energies are naturally ordered:

E1(xm) < E1(xm+1), E2(xm) < E2(xm+1). (4)

If 0 < y � π
FN

, the total energies are ordered by
E2(x1) < E1(x1) < E2(x2) < E1(x2) < · · · , thus �E1(xm) =
E1(xm) − E2(xm) and �E2(xm) = E2(xm+1) − E1(xm).
Combining Eq. (3), we can obtain that

�E1(xm) = 2V b1 sin(xm),

�E2(xm) = 2V b2 sin

(
xm + π

FN

)
, (5)

where b1 = sin y and b2 = sin(π/FN − y). When −π/FN <

y < 0, E1(x1) < E2(x1) < E1(x2) < E2(x2) < · · · , one can
obtain Eq. (5), and it still holds true, with the only difference
being that b1 = − sin y and b2 = sin(π/FN + y).

For the limit L → ∞, we set xm → x. We then con-
sider δE1(xm) = �E1(xm )

〈�Em〉 = �E1(xm )
2V/L , and combining Eq. (5), we
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obtain

δE1(xm) = b1L sin(xm). (6)

Similarly,

δE2(xm) = b2L sin

(
xm + π

FN

)
. (7)

We note that b1 and b2 are of the order of 1/FN , so b1L
and b2L are of the order of 1. Therefore, the distribution
of δE consists of two branches, as shown in Fig. 3(c), and
these two branches satisfy Eqs. (6) and (7), respectively.
Then one can calculate that the total number of states for
the energy smaller than δE is NP(δE1 � δE ) = 2NP[0 � x �
arcsin( δE

b1L )] = 2 arcsin( δE
b1L )

π
[see Fig. 3(d)]. Hence the probabil-

ity distribution is

P1(δE ) = dNP(δE1 � δE )

dδE
= 2

π
√

(b1L)2 − δE2
. (8)

Similarly, one can obtain P2(δE ) = 2

π
√

(b2L)2−δE2
. The total

probability distribution should be considered as the sum of
the two.

We previously discussed the case of V 	 J . For the general
case, it is challenging to derive its expression. From Eq. (8), it
can be seen that when δE = b1L, the distribution of δE is di-
vergent. From Eq. (6), it is evident that the point where P(δE )
diverges is the maximum of each branch of the δE distribu-
tion. When J = 0, there are two branches of δE . Therefore, as
δE increases, P(δE ) will diverge twice [purple dashed lines
in Fig. 1(b3)]. However, in general, there are more than two
branches of δE [black dots in Fig. 3(c)]. Hence, we speculate
that for AL induced by the quasiperiodic potential, the LSD in
the general case should satisfy a unified form

P(δE ) =
∑

κ

[
Aκ

π
√

(bκL)2 − δE2
+ Cκ

]

((bκL)2 − δE2),

(9)
where 
 is the step function [69], κ � 2 represents the
number of branches, and Aκ and Cκ are the undetermined
parameters that describe the scaling and translation of P(δE )
with J = 0. Here, we introduce parameters (Aκ , bκ ,Cκ ) that
depend on the strength of the quasiperiodic potential, refer-
encing the statistically unified form P(δE ) = A exp(−B δE

〈δE〉 )
for the LSD induced by disorder, with the fitting parameters
A and B changing with increasing disorder strength. We note
that although there is a summation over κ in Eq. (9), the
divergence behavior of P(δE ) is determined by the vicinity
of the maximum value of each branch of δE . The influence
of other branches is minimal. Therefore, without summation,
Eq. (9) can still fit the distribution of P(δE ) well [light blue
dashed lines in Fig. 1(b3)].

We further derive the distribution of the adjacent gap
ratio r through the use of the defining equation P(r) =∫

d (δEn, δEn+1)δ(r − min{δEn,δEn+1}
max{δEn,δEn+1} )p(δEn, δEn+1). For the

case of J = 0, δEn and δEn+1 respectively correspond
to the two purple lines in Fig. 3(c), which are de-
scribed by Eqs. (6) and (7). Considering π/FN → 0, δ(r −
min{δEn,δEn+1}
max{δEn,δEn+1} ) = δ(r − min{b1,b2}

max{b1,b2} ) can be brought outside the

FIG. 4. (a) Level-spacing distributions and (b) P(r) of AA model
with α = (

√
5 − 1)/2. Other parameters are the same as those in

Figs. 3(c) and 1(b4). (c) For α = (
√

5 − 1)/2 and α = FN−1/FN ,
r varies with different initial phases θ and the strength of the
quasiperiodic potential V . The green/red dots are calculated from the
lowest/middle one-third of the spectrum in the central region [see
Fig. 1(b1)], and the black dots are obtained from the entire energy
spectrum. (d) For α = (

√
5 − 1)/2 and α = FN−1/FN , 〈r〉 averaged

over 30 samples and all energy levels varies with changes in size.

integral, so

P(r) = δ

(
r − min{b1, b2}

max{b1, b2}
)

. (10)

Thus, the distribution P(r) is the δ function, as shown in
Fig. 1(b4), which is clearly different from the P(r) given
by Poisson statistics. When α = (

√
5 − 1)/2, the increasing

order of crossings between E1,m and E2,m as m increases
shown in Fig. 3(b) will be disrupted (see Supplemental
Material [70]), which leads to the number of branches of δE
exceeding 2, as shown in Fig. 4(a). Consequently, multiple
peaks appear in P(r), as depicted in Fig. 4(b). For the case of
J 
= 0, using perturbation theory, we can demonstrate that b1

and b2 in Eq. (5) need to be multiplied by the same factor [70].
Therefore, from Eq. (10), P(r) is independent of both J and V
in the AL phase. Additionally, the expressions for b1 and b2

include the initial phase θ , hence the peak positions of P(r)
depend on θ . From Fig. 4(c), we observe that the values of r
are independent of V and the position in the energy spectrum.
However, they depend on θ and on whether α takes the value
(
√

5 − 1)/2 or FN−1/FN .
Then we consider the sample average of r, which is

equivalent to average over y. We suppose 0 < y � π
FN

,

then 〈r〉 = FN
π

∫ π/FN

0 dy min{b1,b2}
max{b1,b2} . When L = FN → ∞, b1 =

sin y ∼ y and b2 = sin(π/FN − y) ∼ π/FN − y, so 〈r〉 =
FN
π

(
∫ π

2FN
0 dy y

π
FN

−y + ∫ π
FN
π

2FN

dy
π

FN
−y

y ) = 2 ln 2 − 1, as shown in

Fig. 4(d). When −π
FN

< y � 0, one can easily obtain the same
result. We note that although the result of 〈r〉 is the same as
that given by a Poisson distribution, it is not caused by Poisson
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statistics. When α = (
√

5 − 1)/2, we mentioned earlier that
the distribution of P(r) has multiple peaks, which is different
from the case of α = FN−1

FN
, where there is only a single peak.

Naturally, the aforementioned process of calculating 〈r〉 is
no longer applicable for the case of α = (

√
5 − 1)/2. Our

numerical results show that it is close to 0.4, distinct from
0.387 [Fig. 4(d)].

When the interaction is added, even with a fixed θ , the LSD
of the quasiperiodic MBL phase still follows Poisson statistics
[70], which is consistent with the results of previous studies
[50–53,59]. In general, the LSD of both the AL and MBL
phases induced by disorder obey Poisson statistics. The LSD
of the MBL phase induced by quasiperiodic potentials also
conforms to Poisson statistics. However, the LSD of the AL
induced by quasiperiodic potentials does not follow Poisson
statistics.

III. CONCLUSION AND DISCUSSION

We have derived the LSD of the quasiperiodic AL phase,
satisfying Eq. (9), which does not follow Poisson statistics. In
addition, we found more differences in the spectrum between
the quasiperiodic and disordered AL phases. Specifically, (1)
the former exhibits different degrees of uniformity in level
spacing across different spectral regions, and the overall dis-
tribution is even more uneven than a Poisson distribution,

whereas the latter shows a relatively uniform level distribution
across different spectral regions. (2) The distribution of P(r)
for the former is a δ function dependent only on the initial
phase, while the distribution of P(r) for the latter follows
P(r) = 2/(1 + r)2. (3) The sample-averaged value 〈r〉 for
the former depends on whether α = FN−1/FN or α = (

√
5 −

1)/2. Although, for the case of α = FN−1/FN , the obtained
〈r〉 is the same as that obtained from Poisson statistics, it does
not originate from Poisson statistics. Further, there are spatial
correlations in quasiperiodic systems, indicating that increas-
ing the number of samples is not equivalent to increasing the
size, which is in contrast to Poisson statistics. Thus, for the
quasiperiodic Anderson localized phase, there is no physical
basis for sampling averaging over r. The energy spectrum of
quasiperiodic systems can be experimentally determined in
various systems, such as semiconductor quantum dots [71] or
superconducting qubits [51].
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