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Universal properties of single-particle excitations across the many-body localization transition
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Understanding the nature of the transition from the delocalized to the many-body localized (MBL) phase is an
important unresolved issue. To probe the nature of the MBL transition, we investigate the universal properties of
single-particle excitations produced in highly excited many-body eigenstates of a disordered interacting quantum
many-body system. In a class of one-dimensional spinless fermionic models with random disorder, we study
the finite-size scaling of the ratio of typical to average values of the single-particle local density of states and
the scattering rates across the MBL transition. Our results indicate that the MBL transition in this class of one-
dimensional models of spinless fermions is continuous in nature. For various ranges of interactions in the system,
the critical exponent ν with which the correlation length ξ diverges at the transition point Wc, ξ ∼ |W − Wc|−ν ,
satisfies the Chayes-Chayes-Fisher-Spencer (CCFS) bound ν � 2/d where d is the physical dimension of the
system. We also discuss why the critical exponent obtained from finite-size scaling of the conventional diagnostic
of many-body localization, the level spacing ratio, strongly violates the CCFS bound while the single-particle
density of states and scattering rates are consistent with the CCFS criterion.
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I. INTRODUCTION

The role of disorder in quantum many-body systems has
been a major focus of research in condensed matter physics
for several decades. Anderson localization is an astonishing
example of a disorder-driven phenomenon in which a non-
interacting quantum system can become diffusionless in the
presence of strong enough disorder [1]. Almost two decades
ago, Anderson localization was generalized for the case of
interacting quantum systems [2,3] which is known as many-
body localization (MBL) [4]. In the MBL phase, a subsystem
of an isolated quantum system does not thermalize with the
rest of the system serving as its bath [4–6] and the system
has strong memory of initial states [7–16]. Even highly ex-
cited states of an isolated MBL system obey an area law of
entanglement entropy [4,6] and the system has a slow growth
of the subsystem entanglement in a quench protocol [16–18].
Although the MBL phase has been rigorously proved to exist
in strongly disordered 1-dimensional spin chains with short-
range interactions [19], broad agreement about the nature of
the transition from the delocalized phase to the MBL phase
has been elusive. We provide strong evidence in favor of a
continuous transition from the delocalized phase to the MBL
phase in this work.

The MBL transition is an atypical transition which does
not necessarily follow the standard paradigm used to classify
phase transitions. It is not easy to identify the local order
parameters that can characterize the delocalization to MBL
transition. This makes it crucial to search for criteria that can
provide hints toward the nature of the MBL transition. One
such criterion is given by the Chayes-Chayes-Fisher-Spencer
(CCFS) bound on the critical exponent ν with which the corre-
lation length ξ diverges at the transition point [20]. According

to the CCFS criterion, for all systems with quenched random
disorder that undergo a continuous transition including Ander-
son localization transition, ν � 2/d , where d is the physical
dimension for the system, irrespective of whether there is an
analogous transition in the clean system [20,21]. In fact, the
finite-size scaling of the Anderson localization transition for
the noninteracting model (d � 3) has been shown to satisfy
the CCFS bound for the critical exponent [23–27] and one
would expect it to hold true even for the MBL transition.

In the context of MBL, some phenomenological real-space
renormalization group studies predicted a critical point at the
MBL transition with the critical exponent ν ∼ 3 [28–32] that
satisfies the CCFS bound. One major source of concern has
been that the finite-size scaling analysis for the conventional
characterizations of the MBL phase, such as level spacing
ratio and entanglement entropy, give the critical exponent
ν � 1 violating the CCFS bound [6,33–35]. There are only
a few exceptions, such as the Schmidt gap, which has been
shown to be consistent with the CCFS criterion [36–38]. The
violation of the CCFS bound, as well as the disparity be-
tween phenomenology and numerical calculations, prompted
an avalanche-based [39,40] renormalization group approach
[41–43] that predicted a Kosterlitz-Thouless (KT) like transi-
tion and has been explored in some recent numerical studies
[44–46]. In short, there is no agreement on the nature of the
delocalization to MBL transition, so it is essential to iden-
tify appropriate physical observables that can characterize the
MBL transition.

With this motivation, in this work we investigate single-
particle excitations obtained via single-particle Green’s func-
tions in real space calculated in highly excited many-body
eigenstates across the MBL transition. Green’s functions in
real space have been widely utilized to analyze Anderson
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localization in noninteracting models [47], but single-particle
Green’s functions have only recently received attention in the
analysis of the MBL phase [48]. We analyze the finite-size
scaling of the local density of states (LDOS) and the scattering
rates. We demonstrate that the ratio of the typical to average
value of the local density of states as well as the scatter-
ing rates both indeed adhere to the single-parameter scaling
X [L,W ] ∼ X̄ ((W − WC )L1/ν ) with the critical exponent satis-
fying the CCFS inequality for a finite value of Wc. Notably, we
observe a good quality scaling collapse with ν � 2/d for the
ratio of the typical to average value of the LDOS as well as the
scattering rates not only for the system with nearest-neighbor
interactions but also for a whole class of one-dimensional
models with power-law interactions of different ranges and
nearest-neighbor hopping. Though generally a power-law di-
verging correlation length at the transition point is associated
with a continuous transition, for a dynamical transition like
the MBL transition this may not always be true [49]. But
the physical quantities that we explore in this work, namely,
single-particle local density of states and their scattering rates,
seem to decay continuously at the MBL transition and also
satisfy the CCFS criterion. Therefore, we will associate the
term “continuous transition” with the CCFS criterion in this
work which is also consistent with the nomenclature in some
of the earlier renormalization group studies on MBL [28–32]
and numerical works on MBL transition [6,33–35], as well
as with the original CCFS paper. Finite-size scaling of the
eigenlevel spacing ratio, on the other hand, does not satisfy
the CCFS bound of the critical exponent which is consistent
with earlier studies [6,33–35].

The rest of the paper is organized as follows. In Sec. II we
describe the class of models investigated in this work and the
method used to analyze the MBL transition. In Sec. III we
present the results of our numerical analysis and the details of
the finite-size scaling. Finally we conclude with discussion on
open questions and subtle issues in Sec. IV.

II. MODEL AND METHOD

We study a class of one-dimensional models of spinless
fermions in the presence of random disorder and power-law
interactions. The Hamiltonian of the models studied is

H = −t
∑

i

[c†
i ci+1 + H.c.] +

∑
i

εini +
∑

i j

Vi jnin j (1)

with periodic boundary conditions. Here, the on-site potential
εi ∈ [−W/t,W/t] (uniformly distributed) with W as the dis-
order strength. We study power-law interactions with Vi j =

V
|ri−r j |α , where α fixes the range of interactions. We have
considered α = 1, 2, and 3 in this study. We also consider
the limit of the very short range interactions by studying
the case of nearest-neighbor interactions with Vi,i+1 = V and
Vi j = 0 for | j − i| > 1. In the entire analysis the strength of
interactions has been fixed to be V = t (= 1) and the system
is half filled. We study the model using exact diagonalization,
for several system sizes from L = 12 to L = 18. For each
value of α we use [15 000–50] realisations of disorder for
L = [12–18] to calculate the averages of the LDOS and scat-
tering rates. For the system with nearest-neighbor interactions,

we use [15 000–200] realizations of disorder for L = [12–18],
respectively.

We study the Green’s function in the nth eigenstate
Gn(i, j, τ ) = −ι�(τ )〈	n|{ci(τ ), c†

j (0)}|	n〉, where i, j are
lattice site indices and τ is real time. Fourier transform of the
Green’s function to frequency space results in the Lehmann
representation of Gn(i, j, ω) as shown here:

Gn(i, i, ω+) =
∑

m

|〈	m|c†
i |	n〉|2

ω + iη − Em + En
+ |〈	m|ci|	n〉|2

ω + iη + Em − En
.

(2)
The associated self-energy is �n(ω) ≡ G−1

0 (ω) − G−1
n (ω)

where G0(ω) and Gn(ω) are Fourier transforms of the
noninteracting and interacting Green’s function matrices, re-
spectively. The LDOS ρn(i, ω) and scattering rate are obtained
from the imaginary part of the Green’s function and the
self-energy respectively as ρn(i, ω) = (− 1

π
)Im[Gn(i, i, ω +

ιη)] and �n(i, ω) = −Im[�n(i, i, ω + ιη)]. The broadening η

should be of the order of but larger than the typical spac-
ing between the adjacent eigenvalues for all the parameters
considered in the study [50–54]. In the thermodynamic limit,
in the localized phase the typical value of the LDOS scales
proportionally to η while in the delocalized phase the typical
LDOS is independent of η. For a finite-size system, this inde-
pendence of typical LDOS in the delocalized phase is seen for
a range of η between the average value of the level spacing of a
system of size L and the average level spacing of the system of
size equal to the correlation length, and in the thermodynamic
limit, the two length scales merge approaching zero [55–58].
We followed this approach and explored the η dependence of
the typical DOS, details of which are provided in Appendix A.
By checking representative values of disorder and system
sizes, we found that for 0.0075 � η � 0.03, the typical value
of LDOS is independent of the broadening η in the delocalized
phase and we presented the results for η = 0.01.

The transition from the delocalized to the MBL phase
is seen in the disordered averaged Green’s function calcu-
lated for the midspectrum eigenstates with rescaled energy
εn = En−Emin

Emax−Emin
∼ 0.5. This is because many-body states in the

middle of the spectrum require the largest strength of disorder
to get localized [4], and if one restricts the analysis only to the
ground state, as was done in several earlier works for higher-
dimensional disordered interacting systems [59,60], it would
not be possible to capture the physics of the MBL transition.
Further, we analyze the ratio of typical to average value of the
LDOS and scattering rates. Here, the typical value is obtained
by calculating the geometric average over the lattice sites,
energy bin, and various independent disorder configurations.

III. RESULTS

In this section we present results for LDOS and scattering
rates for various range of interactions in the system. For sys-
tems with power-law interactions the typical value of the local
density of states has a peak around ω = μeff where μeff =∑L/2

| j−i|=1
1

| j−i|α (for V = 1) is the effective chemical potential
of the system under the assumption that the disorder-averaged
system will respect particle-hole symmetry (details in
Appendix B). Thus, for the power-law interacting case we
have shown the scaling of the ratio of the typical to average
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FIG. 1. Probability distribution function of the logarithm of the local density of states ρ(ω ∼ μeff ) for a few values of disorder W . For
weak disorder, P( ln(ρ )) is close to a normal distribution. As the disorder strength increases, the peak of the distribution shifts toward smaller
values, and the width of the distribution increases. The data shown are for power-law interacting system with α = 1. The right panel shows the
probability distribution function P( ln[�(μeff )]) for the scattering rates.

value of LDOS and the scattering rate for ω ∼ μeff . For the
system with nearest-neighbor interactions we have shown re-
sults for ω = 0. The LDOS ρtyp(ω) and the scattering rate
�typ(ω) are very flat around ω = 0 over a width of around 2W ,
and μeff for nearest-neighbor interaction is V/2. Thus, effec-
tively the behavior of LDOS and scattering rate at ω = μeff

and ω = 0 is almost the same for the system with nearest-
neighbor interactions.

Probability distribution functions. We first look at the prob-
ability distribution functions for the LDOS and scattering
rates. Figure 1 shows the probability distribution function of
ln[ρ(μeff )] for various values of disorder W for the power-law
interacting system with α = 1. For weak disorder P( ln(ρ))
is close to a normal distribution; that is, LDOS obeys the
log-normal distribution but for larger values of disorder,
the distribution deviates from log-normal distribution signif-
icantly. This shows that both the physical quantities under
consideration in this disordered interacting system are asym-
metrically distributed with long tails and the typical value is
a more appropriate distinguishing characteristic of such dis-
tributions. This is in analogy to the noninteracting Anderson
model, where the typical value of the local density of states
acts as the order parameter across the localization transition
rather than its average value [47,61]. As the disorder strength
increases, the peak of P( ln(ρ)) shifts to more negative values
and the tail becomes broader. This is reflected in smaller
values of the typical LDOS compared to the average value
of the distribution as W increases. Right panel of Fig. 1 shows
the probability distribution of ln[�(μeff )] which is closer to
log-normal distribution even for larger values of the disorder
strength.

Typical LDOS and scattering rates for power-law interac-
tions. In the weak-disorder limit, for any range of interactions,
single-particle excitations are extended. Panel (a) of Fig. 2
shows the ratio of the typical to average value of the LDOS
ρ(ω) for the system with power-law interactions with α = 1.
For weak disorder, the typical value of the LDOS is of the
order of the average LDOS while for large values of W in

the MBL phase the typical value of the LDOS becomes van-
ishingly small for all values of ω (as shown in Appendix B)
though the corresponding average value is still finite. The ratio
of typical to average value of LDOS increases with the system
size for weak disorder while for very large disorder it be-
comes essentially independent of the chain size. Interestingly,
at the disorder value W � ∼ 7.1t where the ratio shows very
weak dependence on the system size, it also becomes constant
with respect to disorder W within numerical precision. Thus,
the single-particle excitations capture the basic features of
delocalization to MBL transition even for systems with var-
ious ranges of interactions. Below we perform the finite-size
scaling of the ratio of LDOS and scattering rates in order to
investigate the nature of the MBL transition.

Finite-size scaling analysis. We assume that the charac-
teristic length scale diverges with a power law at the MBL
transition point ξ ∼ |W − WC |−ν . As a result a normalized
observable X obeys the scaling X [δ, L] ∼ X̄ (δL1/ν ) with δ =
W − Wc. To have a quantitative estimate of the scaling col-
lapse, we calculate the cost function for the quantity {Xi}
[44,62]:

CX =
∑Ntotal−1

j=1 |Xj+1 − Xj |
max{Xj} − min{Xj} − 1. (3)

Here Ntotal is the total number of values of {Xi} for vari-
ous values of disorder W and system sizes L. We arrange
all Ntotal values of {Xi} according to increasing values of
(W − WC )L1/ν . Ideally CX should be zero for a perfect data
collapse but for the finite-size data that we have, we look
for a minimum of the cost function in the (Wc, ν) plane. We
study the ratios of typical to average LDOS and scattering
rates introduced earlier using a single-parameter scaling form
(X [δ, L] ∼ X̄ (δL1/ν )), which has also been used to study scal-
ing properties of other quantities relevant in context of MBL
[6,33–35]. As we will show shortly, this scaling ansatz results
in very good scaling collapse for these quantities.
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FIG. 2. Panel (a): The ratio of the typical to average local DOS ρtyp(ω = μeff )/ρavg(ω = μeff ) as a function of the disorder strength W
for α = 1. The ratio is of order 1 for W � Wc and for W > Wc, it is vanishingly small. Panel (b): The cost function CX [in Eq. (3)] for
X = ρtyp(ω = μeff )/ρavg(ω = μeff ) as a function of the critical disorder strength Wc and the correlation length exponent ν. Panel (c): The ratio
of the typical to average value of local DOS ρtyp(ω = μeff )/ρavg(ω = μeff ) plotted as a function of scaled disorder strength (W − Wc )L1/ν for
Wc = 7.66t and ν = 2.62 corresponding to the region of the cost function shown in the middle panel with the minimum value of Cx . The
bottom three panels depict the same quantities for α = 3. The calculations are done in the middle of the energy band for a rescaled energy bin
ε ∈ [0.495, 0.505].

The computation of the cost function has numerical uncer-
tainties which are inherited from the errors in our raw data.
These errors in the cost function evaluation can be determined
using standard error propagation methods. They can be used
to obtain an estimate and uncertainty of both the critical pa-
rameters. Furthermore, we can also estimate the confidence
intervals of the parameters by developing a bootstrap-like
resampling method of our data by using subsets of disorder
configurations for each length scale. In Appendix D we pro-
vide details of such analyses using both of these approaches
along with the details of error estimation and minimization of
the cost function.

The cost function for the ratio of typical to average values
of the LDOS is shown in panel (b) of Fig. 2 for α = 1.
CX decreases as the value of the parameter Wc is increased
from 5t , having a minimum around 7.66t and ν ∼ 2.62. With
further increase in Wc and ν, CX shows a slow increase. The
finite-size scaling collapse shown in panel (c) of Fig. 2 has
been made for Wc = 7.66t and ν = 2.62 though any point in
the (Wc, ν) plane corresponding to the minimum region of the
cost function within the error bars would give a good quality
scaling collapse (details in Appendix D). The bottom panel
in Fig. 2 shows similar plots for α = 3. One can see that the
finite-size scaling and the minimization of the cost function

provide a critical point Wc ∼ 7.90t which is slightly larger
than the transition point obtained for α = 1. This is consistent
with earlier works on disordered spin chains with long-range
ZZ couplings [37,64]. The critical exponent ν ∈ [2.87, 2.90]
with 95% confidence interval (details in Appendix D). In
fact, the critical exponent ν continues to satisfy the CCFS
criterion even for α = 0.5 (results not shown here). We also
studied the finite-size scaling of the ratio of typical to average
value of scattering rates and obtain the critical exponent ν > 2
satisfying the CCFS criterion as that from the LDOS, details
of which are provided in Appendix C.

For a fixed disorder strength as the range of interac-
tion increases, ρtyp(μeff ) and �typ(μeff ) decrease indicating
enhanced effect of disorder and stronger tendency toward
localization for smaller values of α as shown in Fig. 3.
This fascinating effect of the range of interactions is seen
in LDOS and scattering rates at all frequencies as shown in
Appendix B. This is consistent with earlier observations of
enhanced tendency toward localization in terms of increased
return probability and reduced density imbalance in the long-
time limit of long-range interacting fermionic MBL systems
[63]. This is also qualitatively consistent with the studies on
long-range ZZ coupling in disordered spin chains [37,64–68].
We would like to emphasize that despite the fact that we
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FIG. 3. Panel (a): Typical values of scattering rates �typ(μeff ) vs W for a range of α values. For a fixed disorder strength W , as the range
of interactions increases, �typ(μeff ) decreases indicating more localized single-particle excitations for smaller α values. Panel (b): Typical
values of LDOS ρtyp(μeff ) vs W for various α values. All quantities are shown for L = 18 and are computed for states in the middle of the
eigenspectrum for a rescaled energy ε ∈ [0.495, 0.505].

do observe signatures of a more stable MBL phase in the
presence of longer-range interactions in terms of more lo-
calized single-particle excitations, one should proceed with
caution when making inferences regarding the slight drift of
the transition point Wc toward smaller values with increase in
the range of interactions. Since in exact diagonalization there
is a limitation of the maximum system size that can be studied,
finite-size scaling over these systems sizes cannot provide a
transition point with better precision especially for systems
with long-range interactions. Nevertheless, our results are
in qualitative consistency with earlier studies on long-range
MBL systems [37,63,65–68]. At this point, we would like to
mention that there are issues related to stability of the MBL
phase in the presence of long-range interactions arising due to
the presence of rare thermal bubbles in systems with random
disorder [69]. But these effects are significant for α � 2d as
discussed in detail earlier [68].

Typical LDOS and scattering rates for nearest-neighbor in-
teractions. Further, we analyze the LDOS and scattering rates
for the system with nearest-neighbor interactions. Figure 4
shows the finite-size scaling for the ratio of the LDOS and
scattering rates. The cost function for the ratio of the LDOS
has a minimum around Wc ∼ 7.96t and ν ∼ 2.76. For the ratio

of the scattering rates, the cost function has a minimum at very
close but slightly off values of Wc ∼ 7.81t and ν ∼ 2.32. This
shows that for all ranges of interactions studied, the LDOS and
the scattering rates of the single-particle excitations satisfy the
CCFS bound. This is because the single-particle excitations
are exponentially unlikely to be excited in the MBL phase
at large scales though excitations typically propagate up to
large length scales in the delocalized phase. This feature of
the single-particle excitations and the associated LDOS is
basically the property required from a finite-volume event in
the CCFS argument [20] to identify the characteristic length ξ

and to prove the bound on ν.
Additionally, motivated by renormalization group calcu-

lations based on the “avalanche scenario” [41–43], we also
performed the Kosterlitz-Thouless (KT) scaling for all the
physical quantities under consideration for various ranges of
interactions assuming that the correlation length diverges as
ξKT = exp(b/

√|W − Wc|). Based on the calculation of the
cost function, we believe that LDOS and scattering rates do
not obey the KT scaling as shown in Appendix E. This is
indeed expected based on the adiabatic continuity between
Anderson insulator and the MBL phase. For the Anderson
model the typical value of LDOS continuously vanishes at

FIG. 4. Panel (a): The cost function in Wc-ν plane for the ratio of the typical to average LDOS for nearest-neighbor interacting system.
Panel (b): The ratio of the typical to average LDOS ρtyp(ω = 0)/ρavg(ω = 0) plotted as a function of the scaled disorder strength (W − Wc )L1/ν .
The critical disorder Wc ∼ 7.96t and the exponent ν ∼ 2.76 are obtained by minimizing the cost function CX [in Eq. (3)]. Panel (c): The cost
function in Wc-ν plane for the ratio of the typical to average scattering rates for nearest-neighbor interacting system. Panel (d): The ratio of the
typical to average value of the scattering rate �typ(ω = 0)/�avg(ω = 0) as a function of the scaled disorder (W − Wc )L1/ν . All quantities are
computed for states in the middle of the eigenspectrum for a rescaled energy ε ∈ [0.495, 0.505].
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FIG. 5. Panel (a) shows the level spacing ratio as a function of disorder W for various system sizes for the system with nearest-neighbor
interactions. Here rn has been calculated for middle of the many-body eigenspectrum for a rescaled energy bin ε ∈ [0.495, 0.505]. The cost
function CX for the level spacing ratio has been shown in panel (b). The cost function has a minimum for Wc ∼ 5.31 and ν ∼ 0.65. In panel
(c) we have shown the scaling collapse using Wc = 5.31t and ν = 0.65.

the localization transition point as (Wc − W )β where β is
proportional to the correlation length critical exponent ν [61].
One should expect a similar trend of LDOS across the de-
localization to MBL transition. Since for the noninteracting
Anderson insulator, the correlation length diverges as a power
law with the critical exponent satisfying the CCFS criterion
[23–27], one would expect that the same should hold true for
the interacting MBL phase. Our numerical analysis of LDOS
and scattering rates is consistent with this expectation.

Finite-size scaling of level spacing ratio. We also analyzed
the behavior of the level spacing ratio, which is frequently
used to study the MBL transition. The level spacing ratios
rn are defined in the usual way rn = min(δn,δn+1 )

max(δn,δn+1 ) , where δn =
En+1 − En. Figure 5 shows the plot of disorder-averaged rn

vs disorder W for various system sizes for the system with
nearest-neighbor interactions. The level spacing ratio obeys
Wigner-Dyson statistics for weak disorder and in the very
strong disorder limit it obeys the Poissonian statistics. The
cost function for level spacing ratio in the Wc-ν plane has a
very different pattern compared to the LDOS and scattering
rates studied above. For the level spacing ratio, cost function
has a minimum at much smaller value of W lsr

c ∼ 5.31t and
ν ∼ 0.65. With further increase in Wc and ν the cost function
shows a rapid increase. Note that the Wc obtained here is
close to the Wc obtained from the KT scaling but the value
of the cost function for the KT scaling is larger indicating
better quality of scaling collapse for the power-law diverging
correlation length as shown in Appendix E. A similar trend
for the cost function of the level spacing ratio is seen for
the system with power-law interactions. For all the ranges
of interactions studied, we found ν < 1. Thus, the critical
exponent ν obtained from the finite-size scaling of the level
spacing ratio strongly violates the CCFS criterion, in complete
contrast to the LDOS and scattering rates.

Although the ratio of typical to average LDOS and the scat-
tering rate scale with a single parameter such that the critical
exponent ν � 2/d with a finite value of the transition point,
the level spacing ratio scales with a critical exponent that is

much smaller than 2/d . The most reasonable and physically
plausible explanation for this is that different physical quan-
tities approach the thermodynamic limit in different ways.
According to our scaling analysis, the transition in level spac-
ing ratio takes place at a disorder value W lsr

c that is smaller
than the disorder value at which Green’s function quantities
undergo transition Wc with W lsr

C < Wc. A difference in transi-
tion point based on the analysis of different physical quantities
has been seen in many earlier works. For example, in some
works the transition point from the level spacing ratio was
found to be much smaller than that obtained from time evo-
lution of the density imbalance [12] or time evolution of the
correlation function and the mean square displacement [70].
This difference in transition points was explained in terms of
the rare-region effects which appear in systems with random
disorder [71]. This is also consistent with recent work [72] that
proposed various “landmarks” between the MBL phase in the
thermodynamic limit and the finite-size disordered systems.
However, within our current analysis, one can also not rule out
the possibility that the level spacing ratio and single-particle
excitations may continue to exhibit two distinct transitions
even in the thermodynamic limit, and if it is so the CCFS
criterion may not apply at W lsr

c for the transition from ergodic
to some intermediate nonergodic phase because it describes
how the correlation length diverges at the transition from the
localized to the extended states. But we believe that this is the
least plausible scenario.

IV. CONCLUSIONS AND DISCUSSION

The MBL transition involves many higher excited states
and entails a transition from the delocalized phase, where
eigenstates are extended and obey a volume law of entangle-
ment, to the localized side, where eigenstates are localized and
obey an area law of entanglement. This makes the MBL tran-
sition unique and very different from the known transitions
in condensed matter systems, and understanding the nature of
the MBL transition is thus central to the problem. We present
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strong evidence in favor of a continuous delocalization to
MBL transition where the correlation length exponent obeys
the CCFS criterion. This is especially significant in light of
recent disagreements and controversies regarding the nature
of the MBL transition and the stability of the MBL phase.
Though for an out-of-equilibrium transition a diverging corre-
lation length may not always be associated with a continuous
transition [49], the metric we have analyzed here, namely, the
ratio of typical to average LDOS and scattering rates, indeed
goes to zero continuously at the MBL transition point and can
be used to characterize the delocalization to MBL transition.
These results are in striking similarity to the noninteracting
Anderson model, where the typical LDOS vanishes at the
localization transition point continuously along with the di-
vergent length scale at the transition [61]. Our analysis also
demonstrates that the MBL phase exists in a system with
uniform long-range interactions and nearest-neighbor hop-
ping, which is consistent with existing theoretical [37,63–68]
and experimental studies [73,74]. The MBL transition in sys-
tems with uniform long-range interactions is also continuous
in nature.

Our findings suggest that there is a strong adiabatic
continuity between the interacting MBL phase and the non-
interacting Anderson insulator in the strong-disorder limit.
Regardless of the range of interactions, the strongly disor-
dered interacting MBL phase has single-particle excitations
even in highly excited many-body eigenstates not only close to
the Fermi energy but even far from it. The concept of adiabatic
continuity in disordered interacting systems was first proposed
by Anderson [75] though it was argued much later that disor-
dered systems with short-range interactions can have localized
single-particle excitations [2,3]. Our quantitative findings of-
fer evidence in favor of localized single-particle excitations
even in the presence of long-range interacting MBL phase.

Our numerical analysis demonstrates that the ratio of typi-
cal to average LDOS and the scattering rate scale with a single
parameter such that the critical exponent ν � 2/d with a
finite value of the transition point. In complete contrast to this
the conventional diagnostics of the MBL transition, namely,
the level spacing ratio scales with a critical exponent that is
much smaller than 2/d . Intriguingly, the exponent obtained
from the finite-size scaling of level spacing ratio is quite close
to the one obtained from the scaling of the local self-energy in
the Fock space for the MBL phase [76]. This may be because
the model in Eq. (1) maps onto an effective Anderson model
on Fock space and poles of the Fock space propagator are
the eigenvalues of the Hamiltonian. Deep in the localized
phase, perturbative corrections to eigenvalues from the hop-
ping terms are directly related to the Feenberg self-energy [1]
of the effective Anderson model on Fock space. The effective
Anderson model does not live on a one-dimensional chain but
on a complicated Fock graph whose connectivity varies from
node to node. For most of the basis states in the middle of
the graph, the connectivity scales with physical size of the
chain L. Thus, it might be possible that the critical exponent
of the correlation length in the Fock space obeys a modified
generalized CCFS criterion ν � 4/L rather than the standard
one, which is written in terms of the physical dimension d of
the system. Indeed, the critical exponent obtained from level
spacing ratio is also close to the correlation length exponent

for the Anderson model on random regular graphs [77,78].
But this is not the case for the Green’s function quantities
which involve single-particle excitation energies. This shows
that while some physical quantities, like the level spacing
ratio, seem to follow the critical exponent of the correlation
length in the Fock space, others, like the single-particle LDOS
studied in this work, and recently explored spatial tempera-
ture fluctuations in weakly open MBL systems [79], stick to
the system’s physical dimension and follow the conventional
CCFS bound.

Our work presents a thorough analysis of the universal
properties of single-particle excitations across the MBL tran-
sition in a class of models with varying range of interaction
and provides clear and strong evidence in favor of a con-
tinuous delocalization to MBL transition. Interestingly, both
the quantities studied in this work, namely, the single-particle
LDOS and scattering rates, can be measured in experiments.
The search for additional physical quantities that can shed
more light on the nature of the MBL transition is unquestion-
ably critical.
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APPENDIX A: THE CHOICE OF BROADENING η

IN THE GREEN’S FUNCTION

The typical value of LDOS and scattering rate depends on
η and how we fix η is crucial to the physics of the system. In
the case of the noninteracting Anderson model, a well defined
recipe for appropriate η is known as explained in Sec. II. We
followed the same method here to fix the broadening for the
study of LDOS and scattering rates. We studied η dependence
of LDOS for a range of disorder values and for various sys-
tem sizes. Figure 6 shows ρtyp(ω = μeff ) vs η for L = 16
and L = 14 and various values of disorder. ρtyp(ω = μeff )
increases with η for the strongly disordered phase while in
the delocalized phase ρtyp(ω = μeff ) is almost independent of
η for η between 0.0075 and 0.03. Based on this analysis, the
infinitesimal η is chosen to be 10−2 in our work for various
disorder values and system sizes, where we see η-independent
behavior of typical DOS in the delocalized phase.

APPENDIX B: FREQUENCY DEPENDENCE OF LDOS
FOR VARIOUS RANGES OF INTERACTIONS

Figure 7 shows the typical value of LDOS ρtyp(ω) vs ω for
various disorder values and a couple of system sizes. As the
disorder strength increases, ρtyp(ω) decreases for all the values
of ω and in the MBL phase ρtyp(ω) becomes vanishingly small
for all ω values. For systems with power-law interactions the
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FIG. 6. ρtyp(ω = μeff ) vs η for various values of W and L. Left panel shows ρtyp(ω ∼ μeff ) vs η for weak-disorder regime for two system
sizes. In the delocalized regime, for any η > 0.0075, ρtyp(ω = μeff ) is independent of η. The right panel shows ρtyp(ω = μeff ) in the localized
regime where ρtyp increases monotonically with η. Thus, 0.0075 < η < 0.035 provides a legitimate regime of η to work with. The data shown
are for the case of power-law interactions with α = 1.

typical value of the local density of states has a peak around
ω = μeff where μeff = ∑L/2

| j−i|=1
1

| j−i|α (for V = 1) is the ef-
fective chemical potential of the system under the assumption
that the disorder-averaged system will respect particle-hole
symmetry. Thus, for the power-law interacting case we have
shown scaling of ratio of typical to average value of LDOS
and scattering rate for ω ∼ μeff .

In MBL systems, the range of interactions has an intriguing
effect on single-particle excitations. Single-particle excita-
tions become more localized for a fixed disorder strength as
the range of interactions increases, which lowers the typical
values of LDOS. Further, reduced value of typical LDOS
implies a weaker scattering among the excitations, longer
lifetime of excitations, and hence a smaller typical value of the
scattering rate. Thus, the effect of disorder is enhanced as the
range of interaction increases. This is indeed what is shown in
Fig. 8 where we have plotted ρtyp(ω = μeff ) vs ω for various
values of disorder, W , and for various ranges of interactions.

APPENDIX C: FINITE-SIZE SCALING OF
SINGLE-PARTICLE SCATTERING RATES

In the main text in Fig. 1 we analyzed the finite-size scal-
ing of single-particle LDOS for the system with power-law

interactions. We now present details of the finite-size scaling
for the scattering rates. In Fig. 9, in the top row we present
the data for the system with α = 1. In the top left panel we
show the ratio of typical to average value of the scattering rate
�typ(ω)/�avg(ω) obtained from the middle of the many-body
eigenspectrum and ω = μeff . In sharp similarity to the LDOS,
the ratio of typical to average value of the scattering rate is of
order 1 for weak disorder and becomes vanishingly small and
size independent for very large values of disorder. In order to
determine the nature of the transition, we did the finite-size
scaling. As mentioned in the main paper, we calculated the
cost function CX to quantify the finite-size scaling collapse.
In the top middle panel we show the color plot of the cost
function in the Wc-ν plane. CX is very large for small values
of Wc for any value of ν considered. For slightly larger values
of Wc, CX has a nonmonotonic dependence on ν such that
CX first decrease as ν increases, attains a minimum, and then
starts increasing again. The best minimum obtained in the
range of parameters considered occurs for Wc ∼ 7.77t and
for ν ∼ 2.67. More details about the minimum of the cost
function are given in Appendix D. The rightmost panel in
the top row shows the scaling collapse as a function of the
scaled disorder (W − Wc)L1/ν with Wc = 7.77t and ν = 2.67.
We would like to emphasize that the ratio of typical to average

FIG. 7. ρtyp(ω) vs ω for various values of the disorder strength W for the system with power-law interactions with α = 1. ρtyp(ω) is peaked
at ω ∼ μeff where μeff is the chemical potential of the system.
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FIG. 8. Top panels show plots of ρtyp(ω) vs ω for various values of disorder, W , and for various ranges of interactions for L = 14. Peak
in the ρtyp(ω) vs ω curves gets suppressed as the range of interaction increases indicating that ρtyp(ω ∼ μeff ) is smaller for systems with
longer-range interactions for a fixed disorder strength W . Bottom row shows similar data for L = 16.

scattering rate obeys the single-parameter scaling and shows a
good-quality data collapse for the value of the exponent ν � 2
which satisfies the CCFS inequality. In the lower row of Fig. 9
we have shown similar plots for α = 3 which correspond to a
shorter range of interactions. As shown here the critical point
WC and the critical exponent ν are almost independent of the
range of interactions.

APPENDIX D: STATISTICAL ANALYSIS, ERROR
ESTIMATION, AND COST-FUNCTION MINIMIZATION

In this section, we provide details of the standard error
on the ratio of typical to average values of the quantities we
have studied. Let Xi with i = 1 . . . NC be the variables for a
given set of parameters in the Hamiltonian under study. Here,
i corresponds to various sets of X obtained for a large number
of many-body eigenstates (NE ) lying in the energy bin for
which the data have been calculated, the number of lattice
sites L, and the number of disorder configurations Nd such
that N = NE × L × Nd . Standard error around the arithmetic

mean Xavg of X is given by �X =
√∑N

i=1(Xi−Xavg )2

N = σ√
N

. Here
σ is the standard deviation. Thus, the error bars around the
mean are Xavg ± �X .

The geometric standard error around Xtyp is given by

�Xtyp = exp

⎛
⎜⎝

√∑N
i=1(ln Xi − ln Xtyp)2

N

⎞
⎟⎠. (D1)

The maximum and minimum values of the typical value Xtyp

are X max
typ = Xtyp × �Xtyp to X min

typ = Xtyp/�Xtyp. Since we are
interested in the ratio of typical to average values of the

quantity Xtyp/Xavg, the range of the ratio is [
X max

typ

Xavg−�X ,
X min

typ

Xavg+�X ].
The percentage relative error is of order 0.13% for weak
disorder and less than 2% for very large disorders for the ratio
of typical to average LDOS and scattering rates. We further
calculated the error bars on the cost function using the error
bars on the ratios of LDOS and scattering rates. Let Xi for
i ∈ [1, Ntotal] be the set of data points used in evaluation of
the cost function as in Eq. (2) of the main paper. Statisti-

cal error in C is given by �C = �X1+2
∑Ntotal−1

i=2 �Xi+�XNtotal
Xmax−Xmin

+
(�Xmax+�Xmin )

∑Ntotal
i=1 |Xi+1−Xi|

(Xmax−Xmin )2 + �C(2) which, upon ignoring the

second-order term in error, �C(2), gives the relative error in C
as �C

C ∼ �Cnum
Cnum

+ �Cdeno
Cdeno

where Cnum/deno are the numerator or
denominator in Eq. (2) of the main paper.

So far we have shown density color plots of the cost
function, which is a function of (Wc, ν). Here we describe
how we determine the range of Wc and ν for which the cost
function has a global minimum. We performed a simultaneous
minimization of the cost function in (Wc, ν) plane using a
two-dimensional sorting algorithm and obtain the transition
point and critical exponent corresponding to the minimum
Cmin of the cost function. Further, we identified the region
in the Wc-ν plane corresponding to the minimum of the cost
function including statistical error in evaluation of the cost
function |CX − Cmin| � �C where �C is the estimate of sta-
tistical error in evaluation of the cost function that we have
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FIG. 9. Panel (a) shows the ratio of the typical to average values of the scattering rate �typ(ω)/�avg(ω) at ω = μeff , as a function of disorder
W for various system sizes and α = 1. Panel (b) shows the cost function CX calculated for X = �typ(ω = μeff )/�avg(ω = μeff ) in Wc-ν plane.
The cost function has a minimum around Wc ∼ 7.77 and ν ∼ 2.67. Panel (c) shows the scaling collapse for �typ(ω = μeff )/�avg(ω = μeff )
as a function of the scaled disorder (W − Wc )L1/ν for Wc = 7.77t and ν = 2.67. Similar trend of the scattering rates, the corresponding cost
function, and the scaling collapse is seen for α = 3 in the bottom-row panels. Scattering rate �(ω) has been computed for states in the middle
of the eigenspectrum for a rescaled energy bin E ∈ [0.495, 0.505].

described above. We obtained the average value of Wc and
ν as well as the standard error in Wc and ν over this region.
Below we provide details of the average values of transition
points and critical exponents along with their standard errors
obtained from this procedure for various physical quantities
studied.

For the level spacing ratio for the system with nearest-
neighbor interactions, we found that average value of the
transition point 〈Wc〉 = 5.31 and the standard error in the
transition point is σW = 0.0018. Similarly, the average value
of the critical exponent 〈ν〉 = 0.65 and the standard er-
ror σν = 0.0013. Thus with 95% confidence interval Wc ∈
[5.309, 5.316] and ν ∈ [0.650, 0.655]. Table I presents results
of a similar analysis done for the LDOS for various ranges of
interactions.

TABLE I. Critical parameters obtained from the finite-size scal-
ing of LDOS ρtyp/ρavg.

Range of interaction 〈Wc〉 σW 〈ν〉 σν

Nearest neighbor 7.96 0.025 2.76 0.016
α = 3 7.90 0.012 2.89 0.007
α = 1 7.67 0.016 2.62 0.012

In the table σW is the standard error in estimation of Wc

and σν is the standard error in ν. Thus, with 95% confidence
interval ν ∈ [2.729, 2.793] for the nearest-neighbor case and
also for power-law interactions ν > 2 with a higher than 99%
confidence interval. For the ratio of typical to average value of
scattering rates, analysis of the cost function gives the values
for Wc and ν shown in Table II.

Finite-size scaling of the scattering rate ratios also shows
that the critical exponent ν > 2 with higher than 99% confi-
dence interval for all the ranges of interactions studied.

Confidence intervals based on resampling. Till now in this
Appendix we have provided error estimates of the critical
parameters using error propagation analysis of the cost func-
tion. We now provide an alternative evaluation of confidence
intervals for the same parameters using a χ2 analysis of our

TABLE II. Critical parameters obtained from the finite-size scal-
ing of �typ/�avg.

Range of interaction 〈Wc〉 σW 〈ν〉 σν

Nearest neighbor 7.80 0.021 2.32 0.012
α = 3 7.78 0.022 2.65 0.015
α = 1 7.77 0.042 2.67 0.010
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FIG. 10. The left panel shows the behavior of the minimum of χ2
reduced of the polynomial fit of the scaling function (we use a sixth-order

polynomial) as a function of the correlation length exponent for a typical bootstrap sample. The middle panel shows the data collapse using
Wc, ν at the minimum of χ 2

reduced in the left panel, which are the critical parameters for this sample. The right panel depicts the probability
density of ν values produced by using 1000 bootstrap samples. We use α = 1 and W ∈ [5.5, 8.5] for this figure.

scaling collapse and resampling of our data in the spirit of a
bootstrap analysis.

We use the cost function analysis we have done till now
to first identify the likely location of a critical region. For
each lattice size and the relevant disorder strength for that
region, we evaluate statistically independent values of the
order parameter by using a number of subsets of the available
disorder realizations. This provides us with a value and error
estimate of the order parameter. We then fit the scaling col-
lapse plot for this data to a polynomial function and identify
the best collapse by minimizing the reduced χ2 for the fit,
χ2

reduced ≡ 1
Ndeg

∑
i

(Yi−yi )2

δyi
2 , as a function of Wc, ν. Here yi and

δyi are the original data and the corresponding errors and Yi

is the value obtained from the fit and Ndeg the number of
degrees of freedom for the fit. This minimization gives us the
values of (Wc, ν) for this sample. We repeat this procedure
multiple times (i.e., generate many bootstrap samples) to get
independent evaluations of the critical parameters and thence
their errors and confidence intervals. Figure 10 depicts typical
results of such an analysis for α = 1.0.

For the depicted case we used the data for all the lengths
with disorder strengths in the range of W ∈ [5.5, 8.5] for
α = 1. For a given bootstrap sample the available disorder
realizations are divided into 10 blocks for L = 12, 14, 16 and
into 5 blocks for L = 18. We use 1000 bootstrap samples
for evaluation of the critical parameters and fit the scaling
function for each sample to a polynomial of order 6. The
mean and standard deviation of the evaluated ν values are
[2.88, 0.15] and the same for the Wc values are [8.45, 0.1].
As is clear from the figure and these numbers, the value of ν

is greater than 2 with a higher than 99% confidence interval.
As of now we cannot rule out the possibility that the

critical point might be farther away from the largest disorder
strength that we have studied. In line with this, we note that
these values of critical parameters do change somewhat if
we choose a different critical region, a different order for
the polynomial fit, etc. However, in all such cases we have

analyzed we always get ν to be greater than 2 (with similar
accuracy) as we found above. So, while a very accurate de-
termination of the critical disorder strength or a very precise
value of the correlation exponent will certainly need a much
more extensive analysis with more lattice sizes and disorder
strengths, we expect the ν > 2 result to be robust and to hold
quite generally.

APPENDIX E: KOSTERLITZ-THOULESS SCALING

In this section we present results for the Kosterlitz-
Thouless (KT) scaling of various physical quantities that we
have explored in this work. We assume that the correlation
length diverges as

ξKT ∼ exp

(
b√|W − Wc|

)
. (E1)

We arranged the values for ratio of observable Xi according
to increasing values of s L

ξKT
where s = sgn(W − Wc). The

arranged values of Xi are used to evaluate the cost function
defined in Eq. (2) of the main text. Figure 11 shows the
color plots of the cost function for the ratio of typical to
average value of LDOS in the (b,Wc) plane. Ideally parameter
b should be of order unity, but for no finite small value of the
parameter b could we find a minimum of the cost function
for any range of interaction as shown in Fig. 11. The cost
function keeps decreasing slowly as b increases all the way up
to b = 20 or so. We believe that this is an indication of the fact
that KT scaling does not work properly for the quantities like
LDOS and scattering rates. This analysis shows that though
for level spacing ratio both the KT scaling and power-law di-
verging correlation length ansatz seem to provide a reasonably
good scaling, albeit the minimum of the cost function being
higher for the KT scaling, quantities describing single-particle
excitations in the systems do not obey the KT scaling ansatz
further confirming our claim that single-particle excitations
contain the signature of a continuous delocalization to MBL
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FIG. 11. Top row shows the cost function color plots in the (b-Wc ) plane. The first and the second plot in the top row are the cost functions
for the KT scaling of the ratio of typical to average density of states for systems with nearest-neighbor interactions and power-law interactions
with α = 1, respectively. The corresponding cost-function minimum CW

min vs b is shown in the bottom layer. There is no finite value of b of
order unity for which the cost function attains a minimum; rather CW

min keeps decreasing slowly as b is increased all the way up to very large
values like b = 20. The third panel shows the cost function for the level spacing ratio for the system with nearest-neighbor interactions, for
which the transition point Wc ∼ 5.3t is very close to the one obtained from power-law divergence of the level spacing ratio but the minimum
of the cost function, which is at b = 1.6, is more than that for the power-law diverging correlation length as shown in the third bottom panel.

transition which satisfies the CCFS criterion. For level spacing
ratio, we do find a transition point Wc ∼ 5.3 from the KT
scaling which is close to the one obtained from the finite-size
scaling assuming a power-law diverging correlation length
with the cost function minimum occurring at b ∼ 1.6. But the

minimum value of the cost function is higher than that for
the power-law diverging correlation length indicating that the
power-law divergence provides a better scaling collapse for
the level spacing ratio as shown in third panel of the bottom
row of Fig. 11.
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