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Long-range interacting Fermi polaron
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We construct the simplest density functional for the problem of a single impurity interacting with a Fermi
gas via a long-ranged potential using the Thomas-Fermi approach. We find that the Fermi polaron is fully
bosonized in two dimensions, as the model results in the Landau-Pekar functional known from the Bose polaron
problem, and in its many-image extension in other dimensions. We discuss applications of our theory for the
two-dimensional exciton-polaron and the ionic polaron problem and compute the effective mass for these cases,
finding a self-trapping transition with order dependent on the dimensionality.
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I. INTRODUCTION

Polarons are quasiparticles that emerge from dressing of
impurities with the excitations of the quantum many-body
medium that they are embedded in. Their introduction was
motivated mainly by modeling the motion of electrons in
solids [1–4]. However, the idea of dressed states with modified
energy and effective mass is general regardless of the medium
nature [5]. Polarons are nowadays among the central concepts
in understanding quantum transport [6]. Experiments with
ultracold atomic gases have enabled the study of polarons in
both bosonic and fermionic media and provided the possibility
of tuning the interaction strength via Feshbach resonances, as
well as new detection schemes which have greatly advanced
the field [7].

One of the most intriguing aspects of the impurity prob-
lem is the calculation of the effective mass, an important
quantity characterizing the polaron along with its energy and
quasiparticle residue. For strong interactions, as well as for
strongly correlated media, the mass renormalization can be
exponentially large and diverge with the coupling constant
[8]. Furthermore, a self-localization effect occurs in some
approaches where the effective mass becomes infinite at finite
interaction strength [9–12]. It is still under debate whether
such transition can occur in realistic polaron models.

The simplest variational ansatz for the polaron wave func-
tion would consist of the free particle dressed with a single
medium excitation [13]. However, the interactions need not be
perturbative [14]. A full description of the system has to take
into account the possibility of forming few- and many-body
bound states and losing the quasiparticle picture, making fully
numerical treatment such as Monte Carlo methods, necessary
[15]. Field theoretical and variational approaches still do give
valuable insights into the nature of the system [16–18]. While
the polaron problem is actively investigated, most studies to
date have been devoted to the case of contact interactions
between the impurity and the bath. A particularly interesting
case occurs when the impurity-medium interaction is instead
long-ranged. This can be realized using, e.g., ions embed-
ded in cold gases [19,20] and in the bosonic case results in
the formation of many-body bound states [20,21]. Similar

phenomena could be expected for excitons in a Fermi sea
of electrons, as the electron-exciton interaction has the same
nature as the ion-atom one and exciton polarons have already
been observed [22–26]. Other possible examples include
dipolar interactions [27] and Rydberg impurities [28–30]. Ions
are important in this context since their position can be con-
trolled effectively using external fields. It is thus important to
study how their motion is affected by the surroundings. In this
work, we construct a simple model that takes the fermionic
nature of the bath and the nonzero range of the potential into
account in a natural way. It results in a series of interesting
effects, such as bosonization in two dimensions and the lo-
calization transition of dimension-dependent order, which we
connect to bound-state formation in the system. Importantly,
the model allows for a relatively simple extraction of the
effective mass, which follows the lines of the localization
transition.

II. THE MODEL

We consider a system of N free fermions of mass mF and
spin s and one impurity particle of mass mI in d dimensions
enclosed in a large box of volume Ld at zero temperature. The
impurity interacts with the fermions via a two-body potential
V which we assume to be bounded, to be symmetric, and to
vanish sufficiently fast at infinity, but at the same time to be
slowly varying, such that the system can be described using
the Thomas-Fermi approximation with the functional

H(ψ, ρ) = h̄2

2mI

∫
|∇ψ (x)|2dx + dεFρ

− 2
d

d + 2

∫
ρ(x)1+ 2

d dx

+
∫∫

ρ(x)V (x − y)|ψ (y)|2dxdy (1)

to be minimized with the normalization constraints∫
ρ(x)dx = N and

∫ |ψ (x)|2dx = 1, with
∫

dx always
denoting the multidimensional integral over the box. In the
above, ρ = NL−d is the density of the uniform gas, and

εF = (
�( d+2

2 )
2s+1 )

2
d

2π h̄2

mF
ρ2/d is the corresponding Fermi level,

while ψ is the wave function of the impurity, and ρ(x)
is the local density of fermions at point x. This approach
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appears natural in the context of long-range forces: in fact,
the system described by Eq. (1) is essentially a collection of
infinitesimally small boxes, each filled with the free Fermi gas
with local density ρ(x) having internal energy ∼ρ(x)1+ 2

d dx
due to the Fermi pressure and subject to an external potential
with a source whose position is smeared out due to the
quantum nature of the impurity,

∫ |ψ (y)|2V (x − y)dy. Since
Thomas-Fermi theory is asymptotically correct in the limit of
large atoms in quantum chemistry [31] where the electrons are
“tightly spaced,” it might be expected that Eq. (1) correctly
describes our problem in a suitable scaling limit.

We first optimize the functional in Eq. (1) over ρ at fixed
ψ . This immediately results in

ρψ (x) = ρ

(
μ − Vψ (x)

εF

) d
2

�[μ − Vψ (x)], (2)

where

Vψ (x) = (|ψ |2 ∗ V )(x) =
∫

V (x − y)|ψ (y)|2dy, (3)

� denotes the Heaviside � function, and μ is the chemical
potential, satisfying

ρ

∫ (
μ − Vψ (x)

εF

) d
2

�[μ − Vψ (x)]dx = N. (4)

The � functions can be removed, provided that the number of
fermions, and hence the chemical potential, are large enough.
The optimized ρψ can now be plugged back into Eq. (1),
which yields a nonlinear functional of ψ alone. In what fol-
lows, we shall perform this procedure in different dimensions
separately.

A. Bosonization in two dimensions

The resulting equations are particularly simple for d = 2.
In fact, for fixed N , we can easily determine μ from Eq. (2):

μ = εF + 1

L2

∫
Vψ (x)dx = εF + 〈V 〉 , (5)

where 〈V 〉 denotes the mean value of the potential, which is
independent of ψ if the box is suitably large compared to
the range of the potential, such that the integration might be
extended to infinity.

Using the resulting density profile as well as the expression
for the Fermi level εF in two dimensions, the total energy can
be written as

H(ψ, ρψ ) = EF

(
1 + 〈V 〉

εF

)2

+ EPek(ψ ), (6)

where EF = 1
2 NεF is the ground-state energy of the uniform

Fermi gas, and the Pekar functional EPek(ψ ) reads

EPek(ψ ) = h̄2

2m

∫
|∇ψ (x)|2dx

− gsmF

4π h̄2

∫∫
|ψ (x)|2V (2)(x − y)|ψ (y)|2dxdy,

(7)

where we introduced the spin degeneracy factor gs = 2s + 1
as well as the notation

V (2)(x) = V ∗ V (x) =
∫

V (x − y)V (y)dy . (8)

Equation (7) is precisely the well-known Pekar functional de-
scribing the semiclassical theory of impurities interacting with
bosonic fields [1], arising on top of the Fröhlich model which
provides an asymptotically correct theory for long-range inter-
actions [32]. Thus, at the semiclassical level, which provides
a description of the long-range case, the Fermi polaron in two
dimensions is essentially equivalent to the Bose polaron in
the same dimension (see Appendix D). This is not surprising,
given the similarities displayed by the corresponding ideal
gases in two dimensions, e.g., their virial expansions differ
only in one term [33].

B. Other dimensions—The polaronic Droste effect

In dimensions different than two, Eq. (2) for the chemical
potential cannot be solved as easily. However, a perturbative
expansion of the nonlinear functional may be applied in this
case in the regime when the local potential or its spatial varia-
tions are small, i.e., for |Vψ − 〈V 〉| � εF. Then μ ≈ εF + 〈V 〉
and one can solve for μ and find the energy by expanding
the density in |Vψ − 〈V 〉|/εF. We provide the details of this
calculation in Appendix C. The result is

H(ψ, ρψ ) = d

d + 2
NεF

+ N〈V 〉
(

1 + d〈V 〉
4εF

+ (d − 2)(d − 4)〈V 〉2

12ε2
F

)

+ EPek
(3) (ψ ), (9)

with the following generalized version of the Pekar functional:

EPek
(3) (ψ ) = h̄2

2m

∫
|∇ψ (x)|2dx

− d

4

ρ

εF

(
1 + (d − 2)(d − 4)〈V 〉

2dεF

)
W2(ψ )

+ (d − 2)(d − 4)

24

ρ

ε2
F

W3(ψ ), (10)

with the already encountered two-body interaction

W2(ψ ) =
∫

(Rd )×2
|ψ (x1)|2V (2)(x1 − x2)|ψ (x2)|2 (11)

and a newly emerging three-body interaction,

W3(ψ ) =
∫

(Rd )×3
|ψ (x1)|2|ψ (x2)|2|ψ (x3)|2V (3)(x1, x2, x3),

(12)
with the three-body potential

V (3)(x1, x2, x3) =
∫

V (x1 − y)V (x2 − y)V (x3 − y)dy. (13)

The main observation is that the three-body term appears
which is not present in the two-dimensional (2D) Pekar func-
tional for fermions, or for bosons in any dimensionality. The
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inclusion of further terms in the series in inverse powers of εF

yields a functional with the general structure

EPek
(∞)(ψ ) = h̄2

2m

∫
|∇ψ (x)|2dx

+
∞∑

k=1

ρ

εk
F

∫
Rd (k+1)

G(k)(x1, . . . , xk+1)
k+1∏
i=1

|ψ (xi )|2,

(14)

with appropriate k + 1-body kernels G(k)(x1, . . . , xk+1) de-
pending on V . In the pictorial language of Pekar’s theory,
the fermionic correlations lead to an emergence of infinite
mirror images of the impurity imprinted in the Fermi medium.
Borrowing from the fine arts language, we describe this phe-
nomenon as the polaronic Droste effect [34].

III. EFFECTIVE MASS AND LOCALIZATION

A. Definition of effective mass via frequency shifts

Apart from the computation of the ground-state energy of
the polaron, an important quantity to estimate is its effective
mass. We adopt an approach to the effective mass problem
inspired by Ref. [35]. The idea is to place the impurity particle
into a very shallow harmonic trap of low-frequency ω, such
that the Thomas-Fermi functional reads now

H(ψ, ρ; ω) = h̄2

2mI

∫
|∇ψ (x)|2dx + dεFρ

− 2
d

d + 2

∫
ρ(x)1+ 2

d dx

+
∫∫

ρ(x)V (x − y)|ψ (y)|2dxdy

+ mIω
2

2

∫
x2|ψ (x)|2dx. (15)

If the polaron is indeed formed and the impurity and the
gas behave as one entity with effective mass Meff , then the
difference between the ground-state energies of the functional
(15) at small ω and ω = 0 should be well described by
the ground-state energy of the Hamiltonian h̄2

2Meff
(−i∇x )2 +

mI ω
2

2 x2, namely, d
2 h̄ω

√
mI

Meff
. Accordingly, we define the effec-

tive mass as

Meff = lim
ω→0

d2mI h̄2ω2

4[ETF(ω) − ETF(0)]2
, (16)

with ETF(ω) being the minimum energy of the functional (15),
assuming the limit exists. In other words, we expect a shift
in the frequency of oscillations of the impurity immersed in
a Fermi gas as compared to the motion in vacuum, and we
attribute this shift to the mass renormalization. This directly
corresponds to possible experimental effective mass measure-
ments in ultracold atomic setups. In practice, we are going to
estimate ETF(ω) − ETF(0), e.g., by variational methods and
fit the results to a parabolic curve for sufficiently small ω. The
limit (16) can then be obtained from the value of the fitted
parameter in front of the linear term.

FIG. 1. Inverse effective mass of the two-dimensional Fermi po-
laron in units of the impurity mass as a function of the coupling
strength in units of 2h̄�/

√
gsmI mF . The mass diverges continu-

ously at critical coupling, and thus the self-trapping transition is of
second order.

B. Localization

To gain some insight into the problem, let us test the above
procedure on a simple example of a Gaussian-type potential
and trial wave function. It is instructive to follow the simple
calculations that emerge in this case: they are presented in
Appendix B. The results are summarized in Figs. 1 and 2. The
main conclusion here is the presence of a sharp localization
transition: the effective mass is finite for small couplings and
infinite for larger ones, with the divergence occurring at the
respective critical value of V0. Moreover, in d = 2 the diver-
gence is continuous while in d = 3 it is abrupt. Accordingly,
the transition is second order in two dimensions and first order
in three dimensions.

The behavior of the effective mass reflects the existence
or nonexistence of a minimizer for the respective Pekar func-
tional. In particular, we observe that in d = 2 the transition
takes place and a minimal value of the coupling is neces-
sary to induce binding, even though all two-body attractive
potentials have bound states in two dimensions. This is not
an artifact of the variational calculation and the particular
choice but a genuine property of the functional, anchored in its

FIG. 2. Inverse effective mass of the three-dimensional Fermi
polaron in units of the impurity mass, plotted against the coupling.
The solid lines present the results obtained from the Pekar functional
with three-body terms included, the dots indicate truncation to two-
body terms (no Droste effect). The densities are given in units of the
volume set by the potential range �3/2. As the effective mass jumps
to infinity discontinuously at critical coupling, the trapping transition
is of first order.
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nonlinearity. We provide a rigorous proof of this fact in
Appendix A, where we show that the Pekar functional

E (ψ ) = h̄2

2m

∫
Rd

|∇ψ (x)|2dx

− g
∫∫

Rd ×Rd

|ψ (x)|2η(x − y)|ψ (y)|2dxdy (17)

does not admit a bound state for g small enough and for
sufficiently fast decaying potentials η, in both two and three
dimensions. This is in contrast to the linear case where a
bound state always exists for negative potentials. The value of
the critical coupling g necessary for binding can be estimated
from the proof: trapping does not occur for g < g∗, which can
be written

g∗ = h̄2S(d )
2D

2m‖η‖d/2
, (18)

with ‖η‖d/2 = (
∫ |η(x)|d/2dx)2/d , for some explicit constants

S(d )
2D dependent on the dimensionality. In our problem, η =

V (2) = V ∗ V , where V is the original impurity-fermion po-
tential, while g = d

4
ρ

εF
. The proof gives the estimate g∗ ∼

h̄2

m‖V (2)‖d/2
. Assuming V comes with a characteristic strength V0

and range R, we have ‖V (2)‖d/2 ∼ V 2
0 Rd+2 and thus the critical

value of V0 can be estimated as

V0,c ∼
√

h̄2

2mRd+2g∗ =
√

εF

ρRd

h̄2

2mR2
=

√
εFTR

NR
, (19)

where NR = ρRd is the mean number of fermions in the range
of the potential and TR = h̄2

2mR2 is the characteristic kinetic
energy of the impurity self-trapped in volume Rd . Note that
both εF and NR increase with the density, with εF ∼ ρ2/d and
NR ∼ ρ; in three dimensions, the ratio results in a critical
coupling that decreases with the density while in d = 2 the
density cancels out.

Let us finally discuss how the transition found could be
linked to the well-known polaron-to-molecule transition in
Fermi polarons with contact interactions [13,36], with the
system behaving like a quasi-free-particle with a definite
effective mass for small couplings (polaronic phase) and
forming many-body bound states with the fermions for large
couplings, leading to the infinite value of the effective mass
under our definition. In fact, by Weyl’s law, the number of
bound states of an attractive potential is approximately given
by the classical phase-space volume corresponding to negative
energies [37]. In our case and with d = 3, this volume is pro-
portional to the integral

∫ |Vψ (x)|3/2dx. This integral scales
with the box volume as L−3/2 in the polaronic regime and is
thus very small; for the bound states to appear in the potential
Vψ forming a well for the fermions, ψ must be localized. This
supports the interpretation of the transition in terms of cluster
formation. In particular, in this model polarons and bound
clusters can coexist in three dimensions where the transition is
of first order but not in two dimensions where it is continuous.

FIG. 3. The inverse effective mass of the 2D exciton polaron as
a function of the electron to exciton mass ratio in the material, for
different values of the length scale b. Here, RX = √

C4mX /h̄2, with
mX being the exciton mass.

IV. APPLICATIONS

We now apply the model to two simple and experimentally
relevant cases in which the impurity-fermion pair consists of a
charge and a neutral polarizable entity, such that the underly-
ing two-body potential at long range comes from electrostatic
induction and decays as r−4. We use a regularized interaction
with a finite depth,

V (r) = − C4

(r2 + b2)2
, (20)

where b > 0 is the regularizing length scale, while C4 =
1
2 q2α, with q being the charge and α the polarizability of
the neutral object in question. This potential comes along
with the length and energy scales R∗ =

√
2mrC4/h̄2 and E∗ =

h̄2/(2mrR∗2), respectively, with mr denoting the reduced mass
of the impurity-fermion pair. Using a Feshbach resonance it
is possible to tune experimentally the scattering length of the
potential, which we model by tuning the value of b.

First we study the exciton-polaron problem in two dimen-
sions, i.e., a mobile exciton interacting with free electrons in
a 2D layer, taking the functional (7) with the potential (20)
and using Gaussian trial functions. Assuming that the exci-
ton polarizability is independent of its mass and neglecting
any external potentials, the relevant parameter quantifying the
coupling is given by the ratio of the effective masses of the
electron and the exciton in the material. In Fig. 3 we present
the effective mass of the exciton-polaron as a function of
the electron to exciton mass ratio at different values of the
regularizing scale b. As in the simple Gaussian model, we
encounter a self-trapping transition of second order.

Second, we use the 3D Pekar functional with the potential
(20) for the ionic Fermi polaron problem, again with a Gaus-
sian trial function and without the inclusion of many-body
terms. As we are interested principally in the computation of
the effective mass, the latter approximation should be enough
for our purpose, even at moderate densities (see Fig. 2). We
apply the theory for the case of equal masses as well as to
the experimentally more interesting mass-imbalanced case of
a Ba ion immersed in a cold gas of 6Li atoms [38]. The energy
of the equal mass case is depicted in Fig. 4(b) and is compared
to the result of Christensen et al. [20], who calculated the po-
laron energy within the ladder approximation. We note that the
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(a)

(b)

FIG. 4. (a) The inverse of the effective mass of the 3D ionic
polaron in the case where the impurity and the (polarized) fermions
are of equal mass. (b) The ground-state energy of the polaron. The
thin solid lines are the results of the ladder approximation at the same
densities [20]. Dimer formation in the two-body problem occurs at
b ∼ 0.6R∗ [20]. The densities are given in units of (R∗)−3.

two curves agree perfectly in the large-b limit where the po-
tential is very shallow and mean field theory should be strict.
For deeper potentials both approaches provide qualitatively
similar results. The effective mass again diverges for values
of b close to the ones corresponding to dimer formation in the
two-body problem, cf. Fig. 4(a), which marks the presence
of the self-trapping transition of first order. We remark that
recent Monte Carlo calculations of the effective mass of the
ionic polaron [39] display an abrupt increase for values of b in
the same range, validating the use of the semiclassical theory.
For the mass-imbalanced case we obtain similar results, with
a moderate mass increase of up to 3% in the polaron regime
for experimentally realistic parameter values.

V. SUMMARY

We have developed a basic theory of an impurity interact-
ing with a free Fermi gas via a long-range potential, applying
the Thomas-Fermi approximation for the gas density. We
found that in two dimensions this leads to the nonlinear
Pekar functional known from the bosonic counterpart of the
problem, describing a self-interacting impurity. In dimensions
other than two, a perturbative expansion gives rise to a new
functional with multiple self-interactions of the impurity with
its own images. Interestingly, we found that a localization
transition takes place in the system, as a particle forms either
a polaron with renormalized mass or an immobile many-
body bound state. The presence of such a transition marks a
boosted version of the smooth crossover between polarons and

many-body clusters which is likely to be found in the full
quantum treatment and in the laboratory. We expect our results
to act as useful benchmarks for future experiments and theo-
ries to follow, in particular, the measurements of the effective
mass in various dimensions and its dependence on the gas den-
sity and the impurity-fermion mass ratio. All these parameters
can easily be varied within our approach, while the model
itself remains open to further analysis and extensions such as
including thermal effects and nonequilibrium dynamics of the
impurity.
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APPENDIX A: PROOF OF THE LOCALIZATION
TRANSITION FOR THE PEKAR FUNCTIONAL WITH

REGULAR POTENTIALS

In the main text, we have shown results of simple varia-
tional calculations that revealed the self-trapping transition in
the Pekar functionals under study. Here we prove rigorously
that the transition is not an artifact of the variational method
but is inherent to the Pekar functional with two-body terms,
provided that the potential is sufficiently regular—we assume
that it is bounded and integrable in the proof, but it may be ex-
pected that these assumptions can be relaxed. In fact, we show
that whenever the interaction potential is weak enough the
energy cannot be strictly minimized using normalized wave
functions. This is different than in the case of the standard
quantum mechanical particle in a well: in d = 2, there is
always a bound state with negative energy for arbitrarily weak
potentials.

Theorem. Let g > 0 be a coupling constant and con-
sider the Pekar functional, defined for L2-normalized wave
functions that are in the H1(Rd ) class (which means that
both the function and its distributional gradient are square
integrable) as

E (ψ ) = h̄2

2m

∫
Rd

|∇ψ (x)|2dx

− g
∫∫

Rd ×Rd

|ψ (x)|2η(x − y)|ψ (y)|2dxdy (A1)

in d = 2 and d = 3, and assume that the interaction potential
is bounded and integrable, i.e., η ∈ L1(Rd ) ∩ L∞(Rd ). Then
there exists g∗ > 0 such that for g < g∗ the functional (A1)
has no minimizer in H1(Rd ), and its minimal possible energy
equals 0.

Proof. Let us first note that there exists a sequence of nor-
malized L2 functions ψ j such that lim j→ E (ψ j ) = 0. Indeed,
it is enough to consider ψ j (x) = j−d/4e−πx2/(2 j); then it can
be computed explicitly that lim j→∞

∫
Rd |∇ψ j (x)|2dx = 0,
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while, with the hat denoting the Fourier transform,

−
∫∫

Rd ×Rd

|ψ j (x)|2η(x − y)|ψ j (y)|2dxdy

=
∫

e− jπk2
η̂(k)dk → 0 (A2)

as j → 0, where the equality follows the Parseval’s identity,
and the limit is taken by dominated convergence. Thus, the
infimum of (A1) is at least 0. Next, we show that for suffi-
ciently small couplings, for all localized wave functions one
has E (ψ ) > 0, so that no minimizing bound state exists.

Let us first consider the case d = 2: then, using the
Cauchy-Schwarz inequality and Young’s inequality for con-
volutions ‖ f ∗ g‖r � ‖ f ‖p‖g‖q if p−1 + q−1 = 1 + r−1, 1 �
p, q, r � ∞ [40] for r = 2, p = 1, and q = 2, we can bound∫∫

Rd ×Rd

|ψ (x)|2v(x − y)|ψ (y)|2dxdy

� ‖ψ‖2
4‖η ∗ |ψ |2‖2 � ‖ψ‖4

4‖η‖1. (A3)

[here, ‖ f ‖p = (
∫ | f |pdx)1/p denotes the p-norm of a function

f ]. Moreover, the Sobolev inequality for gradients in d = 2
states that for all q � 2 there exists a constant S(2)

q such that
for all L2-normalized functions

‖∇ψ‖2
2 + 1 � S(2)

q ‖ψ‖2
q. (A4)

From this, it follows that

‖∇ψ‖2
2 �

(
S(2)

4

)2

4
‖ψ‖4

4. (A5)

In fact, for any ψ , let ψλ(·) = λψ (λ·) for some λ > 0.
Then ‖∇ψλ‖2

2 = λ2‖∇ψ‖2
2 and ‖ψλ‖2

4 = λ‖ψ‖2
4, and thus for

all λ > 0 and all ψ , the quadratic form λ �→ λ2‖∇ψ‖2
2 −

S4λ‖ψ‖2
4 + 1 is positive definite, from which Eq. (A5) fol-

lows. Combining this with the bound (A3), we have that

E (ψ ) � h̄2

2m
‖∇ψ‖2

2 − g‖η‖1‖ψ‖4
4

�
(

h̄2
(
S(2)

4

)2

8m
− g‖η‖1

)
‖ψ‖4

4, (A6)

which is strictly positive for all ψ if g < g∗ = h̄2S(2)
4

2

8m‖η‖1
. This

proves the statement for d = 2: no localized wave function
yields energy precisely 0 for g < g∗ while 0 must be the
infimum in this case by the previous argument.

The case of d = 3 is similar: instead of the bound (A5), we
use the standard Sobolev inequality for gradients in d = 3 to
bound the kinetic energy from below as

‖∇ψ‖2
2 � S(3)

6 ‖ψ‖2
6 (A7)

for some universal constant S(3)
6 > 0. For the interaction en-

ergy, we use the Young’s inequality in the different form [40]

∫∫
R3×R3

| f (x)|2η(x − y)|g(y)|2dxdy � ‖ f ‖p‖η‖q‖g‖r

(A8)

for (1/p) + (1/q + (1/r) = 2, p, q, r � 2. We choose p = 3,
q = 3/2, and r = 1 to find for f = g = |ψ |2∫∫

R3×R3
|ψ (x)|2η(x − y)|ψ (y)|2dxdy � ‖|ψ2|‖3‖η‖3/2

(A9)

as ‖|ψ |2‖1 = 1 since ψ is normalized. Since ‖|ψ2|‖3 = ‖ψ‖2
6,

the last two inequalities combined yield

E (ψ ) �
(

h̄2S(3)
6

2m
− g‖η‖3/2

)
‖ψ‖2

6, (A10)

which is again strictly positive for all ψ if g < g∗ = h̄2S(3)
6

2m‖η‖3/2
.

This completes the proof. �

APPENDIX B: SELF-TRAPPING WITHIN
THE GAUSSIAN ANSATZ

The previous Appendix is devoted to showing that the
self-trapping is a genuine feature of our model. With this
knowledge, we proceed to gain some insight into the details
of the transition on a simple example, using the Gaussian-type
potential which is commonly chosen as a model of finite-
ranged interaction,

V (x) = −V0 exp(−�x2), (B1)

with the coupling amplitude V0 > 0 and the inverse range
squared �.

Then a simple calculation shows that

V (2)(x) = πV 2
0

2�
exp

(
−�

2
x2

)
. (B2)

As indicated in the main text, we estimate the ground-state
energy of EPek using a one-parameter trial wave function,

ψu(x) =
(

2u

π

)d/4

exp(−ux2), u > 0. (B3)

We start with d = 2. The resulting energy is very easy to
calculate and reads

E (u) ≡ EPek(ψu) = h̄2

mI
u − gsmFV 2

0

8�h̄2

u

u + �
2

. (B4)

Already this simple approach leads to the occurrence of a
localization transition, i.e., the phenomenon that a bound state
appears only for sufficiently strong couplings. In fact, the
positive root of the derivative of E (u) is given by

u+ = 1

2

(
V0

2h̄

√
gsmI mF − �

)
(B5)

and appears if and only if [comp. (19)]

V0 � Vc = 2�h̄2

√
gsmF mI

. (B6)

Otherwise, the lowest energy attainable by means of ψu equals
0 and corresponds to the ground state of the free particle in the
box. Thus, for V0 < Vc, the surrounding gas does not localize
the particle. At V0 > Vc binding does occur, and the particle
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gets trapped by the surrounding medium. If we now again take
(B1) as the particle-impurity potential and define also

E (u; ω) = EPek(ψu) + mIω
2

2

∫
x2|ψu(x)|2dx,

(B7)
E0(ω) = inf

u>0
E (u, ω),

with ψu denoting the class of functions (B3), then the effective
mass in the Gaussian approach will be

MG
eff = lim

ω→0

d2mI h̄2ω2

4[E0(ω) − E0(0)]2
. (B8)

In two dimensions, it is then straightforward to find

E (u; ω) = h̄2

mI
u − gsmFV 2

0

8�h̄2

u

u + �
2

+ mIω
2

4u
. (B9)

The condition for the zero of the derivative

h̄2

m
− gsmFV 2

0

16h̄2

1(
u + �

2

)2 − mIω
2

4u2
= 0 (B10)

leads to the quartic equation

h̄2

m
u2

(
u + �

2

)2

− gsmFV 2
0

16h̄2 u2 − mIω
2

4

(
u + �

2

)2

= 0,

(B11)

whose unperturbed (ω = 0) nonnegative solutions are up = 0
in the unbound regime (V0 < Vc) and ub = u+ in the bound
(V0 > Vc) regime. In the unbound regime, we solve (B11) by
treating ω as small and by setting u = up + δ = δ, where δ

is the first-order correction to the unperturbed solution, and
retaining only leading order terms in δ and ω. This leads to

u =
mI ω
2h̄√

1 − (V0
Vc

)2
+ o(ω) (B12)

and the minimizing energy at small ω reads

E0(ω) =
√

1 −
(

V0

Vc

)2

h̄ω, (B13)

so that the effective mass equals

MG
eff = mI

1 − (V0
Vc

)2 (B14)

and diverges as the amplitude V0 approaches the localization
point. In contrast, beyond the localization point and at ω

small, it is easy to see the lowest-order approximate solution
of Eq. (B11) is b = b+ + δ, with δ ∼ ω2, and consequently
E0(ω) − E0(0) ∼ ω2. The limit (B8) is then infinite, and one
can say that the localized particle has infinite effective mass
under the definition adopted here.

Now we pass to the case d = 3 and study the (pure) Pekar
functional in three dimensions,

EPek
(2) (ψ ) = h̄2

2m

∫
|∇ψ (x)|2dx

− 3

4

ρ0

εF

∫∫
|ψ (x1)|2V (2)(x1 − x2)|ψ (x2)|2dx1dx2,

(B15)

which, with our choice of the potential and wave function,
evaluates to the function

E2(b) = 3

2

h̄2

mI
u − 3ρV 2

0

4εF

(
π

2�

) 3
2
(

2u

2u + �

) 3
2

. (B16)

Now, the two-body Gaussian functional (B16) admits a
simple calculation of the critical coupling strength for the
localized state to appear as a global minimum of the un-
trapped system. The condition for the zero of the derivative
of Eq. (B16) leads to the equation

(2u)1/2

(2u + �)5/2
= 2h̄2εF

3mIV 2
0 ρ�

(
2�

π

) 3
2

(B17)

that can be solved only if |V0| �
√

25
√

5
24 ( 2

π
)

3
2

h̄2�
5
2 εF

mI ρ
which

is the minimal value of |V0| for which metastable localized
states appear. The minimal value of |V0| required for stable
localization can be found by using Eq. (B17) together with
the condition E2(u) = 0, as the localized and delocalized state
coexist as stable minima at this value of V0. This gives (
compare the estimate Vc ∼

√
εFTR
NR

in the main text, wherein
the symbols are also explained)

|Vc| =
√(

6

π

) 3
2 h̄2�

5
2 εF

2mIρ
. (B18)

Unfortunately, the effective mass cannot be found explicitly,
as the relevant equation for small ω is a quintic one, rather
than quartic as in two dimensions, and thus it does not admit
a closed solution. It can be, however, computed numerically
from the slope of the energy difference E0(ω) − E0(0) at small
frequencies.

APPENDIX C: PERTURBATION EXPANSION
FOR THE DROSTE EFFECT

We shall give a few more details about the perturbation
expansion which leads to the polaronic Droste effect described
by the Pekar functional with many-body terms.

As pointed out in the main text, the regime we are inter-
ested in corresponds to situations where the chemical potential
is close to εF, which is its value for the free Fermi gas at zero
temperature. For simplicity, we shift the interaction potential
V → V − 〈V 〉 and work with a V that has a mean value of 0.
When considering the final result, one simply has to add a con-
stant term N〈V 〉 to the energy functional. Further, in order to
control the expansion, we substitute Vψ → λVψ where λ > 0
is meant to be a small dimensionless parameter measuring
the smallness of Vψ resulting either from the weakness of the
potential V itself or the large spread of the wave function ψ , in
which case Vψ is indeed small as we assume that V has a mean
value of 0. At the end of the expansion, λ is set equal to unity.
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Accordingly, we write

μ = εF

(
1 + λ

εF
μ0 +

(
λ

εF

)2

μ1 +
(

λ

εF

)3

μ2 + o[(λ/εF)4]

)

(C1)

and plug this into the formula for the optimal density profile
given ψ , i.e.,

ρψ (x) = ρ

(
μ − λVψ

εF

) d
2

(C2)

[the Heaviside function can be dropped since in the assumed
regime of validity of the expansion it clearly holds that μ >

λVψ (x) for all x]. The application of the generalized binomial
expansion

(1 + x)α =
∞∑

k=0

�(α + 1)

�(α + 1 − k)k!
xk ≡

∞∑
k=0

(
α

k

)
xk (C3)

with �(·) denoting the Euler � function yields

ρψ (x) = ρ

(
1 + λ

εF
D[μ0 − Vψ (x)]

+ λ

εF

2[
Dμ1 +

(
D

2

)
[μ0 − Vψ (x)]2

]
+

−
(

λ

εF

)3{
2

(
D

2

)
μ1[μ0 − Vψ (x)] + Dμ2

+
(

D

3

)
[μ0 − Vψ (x)]3

]
+ o[(λ/εF)4]

}
,

where we introduced D = d
2 for the sake of transparency.

Then
∫

ρψ (x)dx − N is a polynomial in λ. Since
∫

ρψ (x)dx =
N , all coefficients of this polynomial have to vanish, which
leads to

μ0 = 0,

μ1 = − 1

D

(
D

2

)∫
Vψ (x)2dx

Ld
,

μ2 = 1

D

(
D

3

)∫
Vψ (x)3dx

Ld
.

We plug these back into the density profile and compute the
resulting energy from the functional H(ρ,ψ ). With the use of
Eq. (C3), the internal energy of the fermions is then evaluated
as

d

d + 2
εFρ

− 2
d

∫
ρ(x)1+ 2

d dx

= d

d + 2
NεF + λ2

εF

d

d + 2

(
D′

2

)
D2

∫
Vψ (x)2dx

− λ3

ε2
F

[(
D′

3

)
D3 + 2

(
D

2

)(
D′

2

)
D

] ∫
Vψ (x)3dx

+ o
(
λ4ε−3

F

)
,

where D′ = 1 + 2
d . The interaction energy at the same order

reads

λ

∫
ρ(x)Vψ (x)dx = −λ2

εF
ρD

∫
Vψ (x)2dx

+ λ3

ε2
F

ρ

(
D

2

) ∫
Vψ (x)3dx + o

(
λ4ε−3

F

)
.

After simple manipulations, we arrive at the final expression

H(ψ, ρψ ) = h̄2

2mI

∫
|∇ψ (x)|2dx

− d

4

ρ

εF

∫
Ṽψ (x)2dx

+ (d − 2)(d − 4)

24

ρ

ε2
F

∫
Ṽψ (x)3dx + N〈V 〉,

(C4)

where we have put λ = 1 and denoted explicitly the shifted
potential Ṽψ = Vψ − 〈V 〉. By noting that

∫
V 2

ψdx = W2(ψ )
and

∫
V 3

ψdx = W3(ψ ), it is straightforward to arrive at the
form given in the main text. It is evident from the procedure
sketched that at higher orders in λ, many-body terms will
emerge from expressions like

∫
Vψ (x)kdx which appear at

higher orders in the binomial expansion of the energy.

APPENDIX D: SEMICLASSICAL THEORY
OF THE BOSE POLARON

In order to illustrate the point of our result in d = 2, which
we describe as the bosonization of the semiclassical Fermi
polaron, we recall the corresponding results for the Bose
polaron. We start with the Fröhlich Hamiltonian describing
an impurity of mass m immersed in a superfluid Bose gas,

H =
∫

h̄c|k|b†
kbkdk + h̄2

2m

( − ∇2
x

)
+

∫ ( |k|wk√
2mBh̄c|k|bkeikx + H.c.

)
dk, (D1)

where c is the critical velocity of the gas, wk is the Fourier
transform of the impurity-boson potential W , and mB is the
mass of the bosons. Such a Hamiltonian arises if one applies
the Bogoliubov approximation to the full quantum mechanical
many-body problem, and it is known to be asymptotically
correct in appropriate scaling regimes [32,41,42]. Its semi-
classical theory is provided by taking the expectation value
of H on product states of the type |ψ〉 ⊗ |z〉, where ψ is some
impurity wave function and |z〉 is a coherent state. Minimiza-
tion over all possible coherent states yields the functional

EPek
B (ψ ) = h̄2

2m

∫
|∇ψ (x)|2dx

− 1

2mBc2

∫∫
|ψ (x)|2W (2)(x − y)|ψ (y)|2dxdy,

(D2)

with W (2) = W ∗ W . As we see, the resulting semiclassi-
cal theory has the precise same structure as we found for
our model of the semiclassical Fermi polaron, provided that
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d = 2. It is, in fact, known that in this particular dimension
the difference between free fermions and free bosons is least
prominent; for example, their virial expansions are identical
up to one term [33]. It is known that the two systems map

exactly to each other provided that suitable interactions are
present [43]. Thus, our findings suggest that the Bose and
Fermi polarons in two dimensions should display certain sim-
ilarities not present in other dimensions.
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