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Predictive power of polynomial machine learning potentials for liquid states
in 22 elemental systems
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The polynomial machine learning potentials (MLPs) described by polynomial rotational invariants have been
systematically developed for various systems and used in diverse applications in crystalline states. In this study,
we systematically investigate the predictive power of the polynomial MLPs for liquid structural properties in
22 elemental systems with diverse chemical bonding properties, including those showing anomalous melting
behavior, such as Si, Ge, and Bi. We compare liquid structural properties obtained from molecular dynamics
simulations using the density functional theory (DFT) calculation, the polynomial MLPs, and other interatomic
potentials in the literature. The current results demonstrate that the polynomial MLPs consistently exhibit high
predictive power for liquid structural properties with the same accuracy as that of typical DFT calculations.
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I. INTRODUCTION

Molecular dynamics (MD) simulations are powerful tools
for performing atomistic simulations in a wide range of
applications. For MD simulations in liquid and liquidlike dis-
ordered states, empirical interatomic potentials such as pair
potentials (e.g., Lennard-Jones (LJ) potential [1]), embed-
ded atom method (EAM) potentials [2], and Stillinger-Weber
(SW) potentials [3] have been commonly employed [4–7].
Although the empirical interatomic potentials allow us to
significantly extend the simulation time and the number of
atoms in the simulation cell, their simplistic models often
restrict their application and target system, as will also be
demonstrated in this study. Ab initio MD (AIMD) can be an al-
ternative way to perform accurate atomistic simulations [8,9].
However, its high computational cost limits its application.

Machine learning potentials (MLPs) [10–29] have been
in increased demand for accurate and efficient large-scale
simulations that are prohibitively expensive using the den-
sity functional theory (DFT) calculation. The MLPs represent
interatomic interactions with systematic structural features
and flexible machine learning models such as artificial neural
networks, Gaussian process models, and linear models. Be-
cause the MLPs are typically developed from extensive DFT
datasets, they should have high predictive power for structures
close to those in the datasets. They have been applied to
efficient and accurate calculations for liquid states [18,30,31].

The polynomial MLP is an approach to develop MLPs that
are accurate for a wide variety of structures [32–34]. The
polynomial MLP is described as polynomial rotational invari-
ants systematically derived from order parameters in terms
of radial and spherical harmonic functions. Because simple
polynomial functions are employed instead of artificial neural
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networks and Gaussian process models, the descriptive power
for the potential energy is strongly dependent on their polyno-
mial forms. At the same time, efficient model estimations can
be achieved using linear regressions supported by powerful
libraries for linear algebra [34]. Moreover, the force and stress
tensor components in DFT training datasets can be considered
in a straightforward manner [34]. Even when considering the
force and stress tensor components as training data entries, it
is possible to efficiently estimate model coefficients using fast
linear regressions.

Following these advantages, polynomial MLPs have been
systematically developed for various systems. Various de-
veloped polynomial MLPs with different trade-offs between
accuracy and computational efficiency are available in the
Polynomial Machine Learning Potential Repository [35]. Cur-
rently, the repository contains MLPs for 48 elemental and 120
binary alloy systems. They have been used for applications
in crystalline states [32,33,36,37], which indicates that they
can enable us to accurately predict properties for various
crystal structures. In this study, we systematically investigate
the predictive power of polynomial MLPs for liquid states
in 22 elemental systems, i.e., Li, Be, Na, Mg, Al, Si, Ti, V,
Cr, Cu, Zn, Ga, Ge, Ag, Cd, In, Sn, Au, Hg, Tl, Pb, and Bi.
We compare the structural quantities commonly used to de-
scribe liquid structures computed using the DFT calculations,
the polynomial MLPs, and other interatomic potentials. The
current targets include elemental systems known to exhibit
anomalous melting behavior, such as Si, Ge, Sn, Ga, and Bi
[38–40]. As will be shown below, complex descriptions for the
potential energy using the MLPs are essential for accurately
predicting liquid structural quantities.

II. METHODOLOGY

A. Polynomial machine learning potentials

In this section, we present the formulation of the poly-
nomial MLP in elemental systems, which can be simplified
from the formulation for multicomponent systems [33,34].
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The short-range part of the potential energy for a structure,
E , is assumed to be decomposed as E = ∑

i E (i), where E (i)

denotes the contribution of interactions between atom i and its
neighboring atoms within a given cutoff radius rc, referred to
as the atomic energy. The atomic energy is then approximately
given by a function of invariants {d (i)

m } with any rotations
centered at the position of atom i as

E (i) = F
(
d (i)

1 , d (i)
2 , · · · ), (1)

where d (i)
m can be referred to as a structural feature for

modeling the potential energy. The polynomial MLP adopts
polynomial invariants of the order parameters representing the
neighboring atomic density as structural features and employs
polynomial functions as function F .

When the neighboring atomic density is described by ra-
dial functions { fn} and spherical harmonics {Ylm}, a pth-order
polynomial invariant for radial index n and set of angular
numbers, {l1, l2, . . . , lp}, is given by a linear combination of
products of p order parameters, expressed as

d (i)
nl1l2···lp,(σ ) =

∑
m1,m2,··· ,mp

c
l1l2···lp,(σ )
m1m2···mp a(i)

nl1m1
a(i)

nl2m2
· · · a(i)

nlpmp
, (2)

where the order parameter a(i)
nlm is component nlm of the

neighboring atomic density of atom i. The coefficient set
{cl1l2···lp,(σ )

m1m2···mp } ensures that the linear combinations are invari-
ant for arbitrary rotations, which can be enumerated using
group theoretical approaches such as the projection operator
method [32,41]. In terms of fourth- and higher-order poly-
nomial invariants, multiple linear combinations are linearly
independent for most of the set {l1, l2, · · · , lp}. They are dis-
tinguished by index σ if necessary.

Here, the radial functions are Gaussian-type ones ex-
pressed by

fn(r) = exp[−βn(r − rn)2] fc(r), (3)

where βn and rn denote given parameters. The cutoff function
fc ensures the smooth decay of the radial function. The current
MLP employs a cosine-based cutoff function expressed as

fc(r) =

⎧⎪⎨
⎪⎩

1

2

[
cos

(
π

r

rc

)
+ 1

]
(r � rc)

0 (r > rc).

(4)

The order parameter of atom i, a(i)
nlm, is approximately eval-

uated from the neighboring atomic distribution of atom i as

a(i)
nlm =

∑
{ j|ri j�rc}

fn(ri j )Y
∗

lm(θi j, φi j ), (5)

where (ri j, θi j, φi j ) denotes the spherical coordinates of neigh-
boring atom j centered at the position of atom i. Note
that this approximation for the order parameters ignores the
nonorthonormality of the Gaussian-type radial functions, but
it is acceptable in developing the polynomial MLP [32].

Given a set of structural features, D(i) = {d (i)
1 , d (i)

2 , · · · },
the polynomial function Fξ composed of all combinations of
ξ structural features is represented as

F1(D(i) ) =
∑

s

wsd
(i)
s ,

F2(D(i) ) =
∑
{st}

wst d
(i)
s d (i)

t ,

F3(D(i) ) =
∑
{stu}

wstud (i)
s d (i)

t d (i)
u , (6)

where w denotes a regression coefficient. A polynomial of the
polynomial invariants D(i) is then described as

E (i) = F1(D(i) ) + F2(D(i) ) + F3(D(i) ) + · · · . (7)

The current models have no constant terms, which means that
the atomic energy is measured from the energies of isolated
atoms. In addition to the model given by Eq. (7), simpler
models composed of a linear polynomial of structural features
and a polynomial of a subset of the structural features are also
introduced, such as

E (i) = F1(D(i) ) + F2
(
D(i)

pair ∪ D(i)
2

)
, (8)

where subsets of D(i) are denoted by

D(i)
pair = {

d (i)
n0

}
, D(i)

2 = {
d (i)

nll

}
. (9)

Note that the polynomial MLP is equivalent to a spectral
neighbor analysis potential (SNAP) [24] when the linear poly-
nomial model with up to third-order invariants is expressed as

E (i) = F1
(
D(i)

pair ∪ D(i)
2 ∪ D(i)

3

)
, (10)

where subset D(i)
3 is given as D(i)

3 = {d (i)
nl1l2l3

}. Similarly, the
current formulation includes a quadratic SNAP [25], which
is an extension of the SNAP. In addition, linear polynomial
models using polynomial invariants are analogous to the for-
mulation of the atomic cluster expansion [42].

Each of the polynomial MLPs was created from a training
dataset using PYPOLYMLP [34,43], and its prediction errors
for the energy, force components, and stress tensors were
estimated using a test dataset. The training and test datasets
for each elemental metal were generated as follows. First, we
fully optimized the atomic positions and lattice constants of
86 prototype structures [32] using the DFT calculation. They
comprise single elements with the zero oxidation state from
the Inorganic Crystal Structure Database (ICSD) [44], in-
cluding metallic close-packed structures, covalent structures,
layered structures, and structures reported as high-pressure
phases. Then, 13 000–15 000 structures were generated from
the optimized prototype structures and were randomly divided
into training and test datasets at a ratio of nine to one. Each
structure was constructed by randomly introducing lattice ex-
pansions, lattice distortions, and atomic displacements into a
supercell of an optimized prototype structure. No structural
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FIG. 1. Distribution of the energies of structures in the training and test datasets computed using the DFT calculation and those calculated
using the polynomial MLP, which has the lowest prediction error. The vertical axis range is fixed to 1.4 eV/atom, although structures with
energy values higher than the energy range are included in the datasets. The numerical values enclosed in the squares represent the root square
mean errors (RMSEs) for the energy, which are estimated using the test datasets.

data in liquid states, such as structural trajectories in MD
simulations at high temperatures, were used to develop the
polynomial MLPs.

Non-spin-polarized DFT calculations were performed for
structures in the datasets using the plane-wave-basis projector
augmented wave (PAW) method [45,46] within the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [47],
as implemented in the VASP code [8,48,49]. The cutoff energy
was set to 300 eV. The total energies converged to less than
10−3 meV/supercell. The allowed spacing between k points
was approximately set to 0.09 Å−1. The atomic positions and
lattice constants of the prototype structures were optimized
until the residual forces were less than 10−2 eV/Å. The
PAW potentials used in the DFT calculations are listed in
Appendix A, and these PAW potentials include scalar-
relativistic corrections. Spin-orbit coupling was not consid-
ered in all the elemental systems.

Regression coefficients of potential energy models were
estimated using linear ridge regression. The energy values
and force components in the training dataset were used as
observations in the regression. The ridge regularization pa-
rameter was optimized to minimize the prediction error for the
test dataset.

The accuracy and computational efficiency of the polyno-
mial MLP greatly depend on the input parameters, such as the
cutoff radius and the number of order parameters. Therefore, a
systematic grid search was conducted to find their optimal val-
ues in each system. As indicated in Ref. [32], the accuracy and
computational efficiency are conflicting properties; hence, a
set of Pareto-optimal MLPs with different trade-offs between
the accuracy and computational efficiency was obtained from
the grid search.

Figure 1 shows the distribution of the energies of structures
in the training and test datasets computed using the DFT
calculation and those calculated using the polynomial MLP,
which has the lowest prediction error. The polynomial MLP
reveals a narrow distribution of errors. Figure 2 shows the
absolute prediction errors of the cohesive energy for various
prototype structures. The polynomial MLP exhibits minor er-
rors for almost all prototype structures. These results indicate
that the polynomial MLP is accurate for many typical struc-
tures and their derivatives containing diverse neighborhood
environments and coordination numbers.

B. Computational procedures for MD simulations

Multiple Pareto-optimal MLPs developed using the above
procedure are available in the repository [34,35]. They show
different trade-offs between accuracy and computational ef-
ficiency. Although a polynomial MLP is generally chosen
from the set of Pareto-optimal MLPs for performing atomistic
simulations, we examine the accuracy of all Pareto-optimal
MLPs for liquid states.

We perform MD simulations using the polynomial MLPs
and the DFT calculation for elemental Li, Be, Na, Mg, Al, Si,
Ti, V, Cr, Cu, Zn, Ga, Ge, Ag, Cd, In, Sn, Au, Hg, Tl, Pb, and
Bi at temperatures close to and above their melting temper-
atures. We also employ empirical interatomic potentials and
other MLPs available in open repositories such as OpenKim
[51] and the interatomic potential repository [52].

The MD simulations were performed within the NVT en-
semble, employing the Nose-Hoover thermostat [53,54] to
control the temperature. MD simulations were carried out
using the LAMMPS code [55]. The current computational
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FIG. 2. Absolute prediction errors of the cohesive energy for 86 prototype structures in elemental Li, Si, Ga, Ge, Cd, In, Hg, and Bi. The
absolute prediction errors for the other systems can be found in the Supplemental Material [50].
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procedure for performing a single MD simulation is as fol-
lows. We first generate a cubic periodic cell with 125 atoms
arranged on a 5×5×5 regular grid. The cell volume is given
such that the cell density corresponds to the experimental den-
sity at its melting temperature, as reported in Ref. [56]. The
cell density for the elemental Hg is exceptionally given as 12.4
g/cm3. This cell density value was employed by Kresse and
Hafner [57]. The atomic configurations are then equilibrated
using a MD run for 3 ps at a temperature typically 700 K
higher than the experimental melting temperature to obtain a
snapshot in the liquid state. The MD time step is set to 3 fs.
The atomic configurations are further equilibrated from the
snapshot structure using a MD run for at least 3 ps at the
target temperature. Finally, we perform a MD run for 15 ps at
the target temperature and calculate the structural quantities
as ensemble averages over the MD trajectory.

For the AIMD simulations, non-spin-polarized DFT cal-
culations were performed using the plane-wave-basis PAW
method [45,46] within the PBE exchange-correlation func-
tional [47], as implemented in the VASP code [8,48,49]. The
cutoff energy was set to 400 eV. The integration in the re-
ciprocal space was performed at the � point only. The PAW
potentials listed in Appendix A were utilized to perform
AIMD simulations, and these PAW potentials include scalar-
relativistic corrections. These PAW potentials were the same
as those used for constructing the polynomial MLPs. The DFT
calculations were performed without considering spin-orbit
coupling.

C. Structural quantities for liquid states

1. Radial distribution function

The radial distribution function (RDF), denoted as g(r), has
been widely used to describe liquid structures quantitatively
[58,59]. The RDF characterizes the spatial distribution of
atoms as a function of distance r from a reference atom rela-
tive to the probability for a completely random distribution. In
practice, the RDF is approximately calculated as a histogram
with a given bin width. Here, we use the bin width of 0.1 Å to
evaluate the RDF.

2. Bond-angle distribution function

The bond-angle distribution function (BADF), denoted as
g(θ ), has been employed to analyze the local orientational or-
der in liquid and disordered states [60–62]. The BADF can be
defined as the probability distribution of bond angles formed
by two neighboring atoms within a given cutoff distance. In
this study, the cutoff distance is given as 1.4 times the distance
corresponding to the first peak in the RDF. Moreover, the
BADF is also practically evaluated as a histogram using the
bin width of one degree.

3. Running coordination number

The coordination number is often given as the integration
of the RDF up to the distance corresponding to the first
minimum in the RDF [8,38,61]. However, it is problematic
to precisely determine the distance of the first minimum in
some systems exhibiting flat first minima. In such a case, the
coordination number cannot be robustly estimated because

of the uncertainty of the first minimum position. Therefore,
we employ the running coordination number (CN) [59] as a
structural quantity, which is defined as

Ncn(r) = 4πN

V

∫ r

0
r̃2g(r̃)dr̃, (11)

where N is the number of atoms in the system and V is the
system volume. The running CN provides the average number
of atoms coordinating a given atom out to a distance r.

4. Bond-orientational order parameters

The bond-orientational order parameters (BOOPs) pro-
posed by Steinhardt et al. [63] have been used to characterize
the local orientational order in liquid and disordered states
[64–66]. The BOOPs are equivalent to second-order poly-
nomial invariants of spherical harmonics with any rotation.
Therefore, the definition of the BOOPs is similar to the
second-order polynomial invariants used in the polynomial
MLPs. The order parameter around the central atom i, Ql (i),
is given by second-order polynomial invariants of Qlm(i) as

Ql (i) =
√√√√ 4π

2l + 1

l∑
m=−l

| Qlm(i) |2, (12)

where Qlm(i) denotes the spherical harmonic functions Ylm

averaged over its neighboring atoms described by

Qlm(i) = 1

Nneigh

∑
j∈neighbor

Ylm(θi j, φi j ). (13)

Angles θi j and φi j give the azimuthal and polar angles of the
spherical coordinates of neighboring atom j centered at the
position of atom i. The BOOP of angular number l is then
defined as the average of Ql (i) over all atoms, expressed as

Ql = 1

N

N∑
i=1

Ql (i). (14)

We employ the ensemble average of the BOOP, 〈Ql〉, as a
structural quantity. The neighboring atoms are determined
using the cutoff distance given as 1.4 times the distance cor-
responding to the first peak in the RDF.

III. RESULTS AND DISCUSSION

A. Si and Ge

In elemental Si, we perform MD simulations at six tem-
peratures below and above its melting temperature of 1687 K
[67], i.e., 1600, 1750, 1900, 2050, 2200, and 2350 K, using
the Pareto-optimal polynomial MLPs, other interatomic po-
tentials in the literature, and the DFT calculation. In elemental
Ge, we also perform MD simulations at six temperatures
below and above its melting temperature of 1211 K [67], i.e.,
1150, 1300, 1450, 1600, 1750, and 1900 K.

We define the RDF error in a quantitative manner as

(RDF error) = 1

nbin

nbin∑
t=1

∣∣∣∣ gpot (rt ) − gDFT(rt )

[gpot (rt ) + gDFT(rt )]/2

∣∣∣∣, (15)

where gpot (rt ) and gDFT(rt ) are the frequencies of the single
bin centered at rt in the RDF histogram obtained using an
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FIG. 3. (a) Mean RDF errors of the polynomial MLPs in Si and
Ge. The mean RDF error was calculated by averaging the RDF errors
at the six temperatures. The computational time on the horizontal
axis is regarded as the model complexity of the polynomial MLP.
(b) RDFs and BADFs computed using the three polynomial MLPs,
(1), (2), and (3), highlighted in (a) at 1750 and 1300 K in Si and
Ge, respectively. The RDFs and BADFs at each polynomial MLP
are shifted upwards by the amounts of 1.0 and 0.01, respectively.
The black solid and orange dotted lines indicate the distribution
functions computed using the DFT calculation and the polynomial
MLP, respectively.

interatomic potential and that obtained using the DFT calcu-
lation, respectively. The number of bins is denoted by nbin.
This error metric is known as the symmetric mean absolute
percentage error [68]. In this metric, division by zero occurs
when both gpot (rt ) and gDFT(rt ) are equal to zero. Hence,
we exclude such bins to calculate the RDF error. Figure 3(a)
shows the mean RDF errors of the polynomial MLPs, calcu-
lated by averaging the RDF errors at the six temperatures.
As found in Fig. 3(a), the mean RDF error decreases as the
model complexity of polynomial MLP increases, and there
is a strong correlation between the mean RDF error and the
prediction error for the test dataset.

Figure 3(b) shows the RDFs and BADFs computed using
the three polynomial MLPs highlighted in Fig. 3(a) at 1750
and 1300 K in Si and Ge, respectively. They are compared

with the RDFs and BADFs obtained using the DFT calcula-
tion. The RDFs computed using other polynomial MLPs are
shown in the Supplemental Material [50]. As seen in Fig. 3(b),
the RDFs and BADFs obtained using MLP (1), showing the
largest mean RDF error among the three MLPs, are slightly
different from those obtained using the DFT calculation. On
the other hand, the RDFs and BADFs calculated using the
other MLPs almost overlap with those obtained using the DFT
calculation.

Figure 4 shows the RDFs and BADFs calculated using the
polynomial MLPs at the six temperatures in Si and Ge, as
well as those obtained using the DFT calculation. The running
CNs and BOOPs are also calculated at 1750 and 1300 K in
Si and Ge, respectively. Here, the polynomial MLP showing
the lowest mean RDF error is employed for each system. In
Fig. 4, the structural quantities calculated using the empirical
interatomic potentials of the Tersoff potentials [69,70] and the
modified EAM (MEAM) potentials [71,72] are also shown for
comparison. In addition, we calculate the structural quantities
using the other MLPs of the quadratic SNAPs [73] that are
available in the interatomic potential repository for Si and Ge
[51,52] and similar to the polynomial MLPs [34,35].

In elemental Si, the structural quantities computed using
the polynomial MLP are consistent with the DFT struc-
tural quantities at temperatures below and above the melting
temperature. The structural quantities calculated using the
quadratic SNAP [73] are also close to the DFT structural
quantities. However, the predictive power of the quadratic
SNAP decreases at temperatures close to the melting tem-
perature. More quantitatively, the RDF errors computed using
the polynomial MLP and the quadratic SNAP at the lowest
temperature among the six temperatures are 0.021 and 0.105,
respectively, while those at the highest temperature among
the six temperatures are 0.018 and 0.058, respectively. In
temperatures close to the melting temperature, more complex
descriptions of the potential energy should be required than
those at higher temperatures, where the detailed shape of the
potential energy is less important. Regarding the empirical
potentials, the structural quantities computed using the Tersoff
[69] and MEAM [71] potentials are similar to but inconsistent
with the DFT structural quantities. In particular, ghost second
peaks are recognized in the RDFs, and the peak intensities
of the BADFs differ from those of the DFT calculation. In
addition, the running CNs slightly deviate from those of the
DFT calculation, and the BOOPs are overestimated for small
l values.

In elemental Ge, the structural quantities computed using
the polynomial MLP agree with the DFT structural quantities
at all six temperatures. The structural quantities calculated
using the quadratic SNAP [73] are also close to the DFT
structural quantities. However, the predictive power of the
quadratic SNAP decreases at temperatures close to the melt-
ing temperature, as seen in the case of Si. The RDF errors
computed using the polynomial MLP and the quadratic SNAP
at the lowest temperature among the six temperatures are
0.051 and 0.125, whereas those at the highest temperature
among the six temperatures are 0.033 and 0.059, respectively.
Regarding the empirical potentials, the structural quantities
computed using the Tersoff [70] and MEAM [72] poten-
tials fail to reconstruct the peak positions and intensities of
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FIG. 4. RDFs, BADFs, running CNs, and BOOPs obtained from MD simulations using the polynomial MLPs in elemental Si and Ge.
The polynomial MLP showing the lowest mean RDF error is employed for each system. The structural quantities calculated using the DFT
calculation, the Tersoff potentials [69,70], the MEAM potentials [71,72], and the quadratic SNAPs [73] are also shown for comparison. The
RDFs and BADFs at each temperature are shifted upwards by the amounts of 1.0 and 0.01, respectively. The running CNs and BOOPs were
calculated at 1750 and 1300 K in Si and Ge, respectively, which are close to their melting temperatures. The black solid and orange dotted
lines indicate the structural quantities computed using the DFT calculation and the polynomial MLP, respectively. In the legend, Poly. MLP
and Quad. SNAP stand for polynomial MLP and quadratic SNAP, respectively.
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the RDFs and BADFs. The running CNs calculated using
the Tersoff and MEAM potentials exhibit plateaus at around
3.0 Å and 3.5 Å, respectively, and these r values corre-
spond to the first minimum positions in the RDFs. These
plateaus are not found in the running CN of the DFT cal-
culation. The BOOPs calculated using the MEAM potential
exhibit two peaks, which differ from the BOOPs obtained
using the DFT calculation. The current polynomial MLPs
are confirmed to exhibit high predictive power for the liquid
structural properties in these systems. On the other hand,
the empirical potentials fail to accurately predict the liquid
structural properties.

Note that we regard liquid structural quantities obtained
from our DFT calculations as the correct ones throughout this
study and then compare structural quantities calculated using
various interatomic potentials. However, it is challenging to
fairly compare the predictive powers of the current polyno-
mial MLPs and interatomic potentials developed elsewhere
because different training datasets are regarded as the correct
datasets. When an interatomic potential is developed from a
DFT training dataset, the interatomic potential depends on the
computational method and conditions of the DFT calculation,
including the selection of the exchange-correlation functional
and PAW potential. Also, some interatomic potentials were
developed using experimental training data. Such interatomic
potentials can include deviations from our DFT calculations.
We have employed typical computational settings for the DFT
calculation; hence, it may be fair to say that the present poly-
nomial MLPs can predict liquid structural properties with the
same accuracy as those of typical DFT calculations.

B. Li, Be, Na, and Mg

Figures 5–8 show the structural quantities calculated from
MD simulations using the polynomial MLPs for Li, Be, Na,
and Mg, respectively. The RDFs and BADFs are computed
at three temperatures above the melting temperatures of 454,
1560, 371, and 923 K [67] in elemental Li, Be, Na, and Mg,
respectively. The running CNs and BOOPs at the lowest tem-
perature among the three temperatures, which is the closest
to the melting temperature, are also shown. The structural
quantities of the polynomial MLPs are consistent with the
DFT structural quantities in Li, Be, Na, and Mg.

In elemental Li, the RDFs of the MEAM potential [74]
slightly deviate from those of the DFT calculation. How-
ever, the other structural quantities of the MEAM potential
and all structural quantities of the quadratic SNAP [73] are
compatible with the DFT structural quantities. In elemental
Na, the structural quantities of the EAM [77] and MEAM [78]
potentials are close to the DFT structural quantities. In ele-
mental Mg, the EAM potentials [79,80] and DFT calculation
yield consistent structural quantities.

Although the empirical potentials in Li, Na, and Mg ac-
curately predict the liquid structural quantities, the structural
quantities computed using the empirical potentials of the
EAM [75] and MEAM [76] potentials are inconsistent with
the DFT structural quantities in Be. Although the EAM and
MEAM potentials qualitatively predict correlations in the
RDFs, the peak intensities in the RDFs differ from those of
the DFT calculation. Also, three peaks recognized between

FIG. 5. Structural quantities obtained from MD simulations us-
ing the polynomial MLP in elemental Li. The polynomial MLP
showing the lowest mean RDF error was employed. The structural
quantities calculated using the DFT calculation, the MEAM potential
[74], and the quadratic SNAP [73] are also shown for comparison.
The RDFs and BADFs shown in the top-left and top-right panels,
respectively, were obtained at three temperatures above the melting
temperature. The RDFs and BADFs at each temperature are shifted
upwards by the amounts of 1.0 and 0.01, respectively. The running
CNs and BOOPs shown in the bottom-left and bottom-right panels,
respectively, were calculated at the lowest temperature among the
three temperatures, which was closest to the melting temperature.
The black solid and orange dotted lines indicate the structural quan-
tities computed using the DFT calculation and the polynomial MLP,
respectively. In the legend, Poly. MLP and Quad. SNAP stand for
polynomial MLP and quadratic SNAP, respectively.

FIG. 6. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, the EAM potential [75], and the MEAM
potential [76] in elemental Be.
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FIG. 7. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, the EAM potential [77], and the MEAM
potential [78] in elemental Na.

45 and 135 degrees in the BADFs of the EAM potential are
not found in those of the DFT calculation. The shape of the
BADFs calculated using the MEAM potential does not ex-
hibit such ghost peaks, but the peak intensities of the MEAM
potential and the DFT calculation are different. In addition,
the running CNs and BOOPs computed using the EAM and
MEAM potentials differ from those computed using the DFT
calculation.

The RDFs computed using all other Pareto-optimal poly-
nomial MLPs at the lowest temperature among the three
temperatures are shown in the Supplemental Material [50].
Most of the polynomial MLPs yield accurate RDFs, except for
simplistic polynomial MLPs. Although here we demonstrate

FIG. 8. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, and the EAM potentials [79,80] in
elemental Mg.

FIG. 9. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, EAM potential [81], and MEAM potential
[82] in elemental Ti.

only the liquid quantities calculated using the polynomial
MLP with the lowest mean RDF error, the above discussion
of the predictive power for liquid structures is independent of
the selection of the polynomial MLP.

C. Ti, V, and Cr

Figures 9–11 show the structural quantities calculated from
MD simulations at three temperatures using the polynomial
MLPs and other empirical potentials for Ti, V, and Cr, re-
spectively. The RDFs and BADFs are computed at three
temperatures above the melting temperatures of 1941, 2183,
and 2180 K [67] in elemental Ti, V, and Cr, respectively. The
running CNs and BOOPs at the lowest temperature among

FIG. 10. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, EAM potential [83], and MEAM potential
[84] in elemental V.
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FIG. 11. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, EAM potential [85], and MEAM potential
[84] in elemental Cr.

the three temperatures, which is the closest to the melting
temperature, are also shown. The structural quantities of the
polynomial MLPs agree with the DFT structural quantities.
The RDFs calculated using other polynomial MLPs are shown
in the Supplemental Material [50] and indicate that most of
the polynomial MLPs have high predictive power for liquid
structural properties.

The EAM [81] and MEAM [82] potentials exhibit simi-
lar structural quantities in elemental Ti. However, the peak
intensities of the RDFs and BADFs slightly differ from the
DFT ones. In elemental V, the RDFs of the EAM [83] po-
tential slightly deviate from those of the DFT calculation,
while the MEAM [84] potential achieves accurate predictions
for all structural quantities. The running CN and BOOPs of
the MEAM potential [84] are close to the DFT structural
quantities in elemental Cr. However, the peak intensities of
the RDFs and BADFs slightly differ from those computed
from the DFT calculation. The EAM potential [85] shows less
accurate structural quantities than the MEAM potential.

D. Cu, Ag, and Au

Figures 12–14 show the structural quantities calculated
from MD simulations at three temperatures using the poly-
nomial MLPs and other interatomic potentials for Cu, Ag,
and Au, respectively. The RDFs and BADFs are computed
at three temperatures above the melting temperatures of 1358,
1235, and 1337 K [67] in elemental Cu, Ag, and Au, respec-
tively. The running CNs and BOOPs at the lowest temperature
among the three temperatures, which is the closest to the
melting temperature, are also shown. The structural quantities
of the polynomial MLPs are comparable to the DFT structural
quantities in Cu, Ag, and Au. The RDFs calculated using other
polynomial MLPs are shown in the Supplemental Material
[50] and indicate that most of the polynomial MLPs have high
predictive power for liquid structural properties.

FIG. 12. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, the MEAM potential [86], and quadratic
SNAP [73] in elemental Cu.

In elemental Cu, the structural quantities of the MEAM
potential [86] agree with the DFT ones. The quadratic SNAP
[73] also accurately reconstructs the DFT structural quantities.
In elemental Ag and Au, all the empirical potentials [81,87–
89] yield accurate structural quantities.

E. Zn, Cd, and Hg

Figures 15–17 show the structural quantities calculated
from MD simulations at three temperatures using the poly-
nomial MLPs and other empirical potentials for Zn, Cd,
and Hg, respectively. The RDFs and BADFs are computed
at three temperatures above the melting temperatures of
693, 594, and 234 K [67] in elemental Zn, Cd, and Hg,

FIG. 13. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, and the EAM potentials [81,87] in
elemental Ag.
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FIG. 14. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, and the EAM potentials [88,89] in
elemental Au.

respectively. The running CN and BOOPs at the lowest tem-
perature among the three temperatures, which is the closest
to the melting temperature, are also shown. The structural
quantities of the polynomial MLPs are consistent with the
DFT structural quantities. The RDFs calculated using other
polynomial MLPs are shown in the Supplemental Material
[50] and indicate that most of the polynomial MLPs have high
predictive power for liquid structural properties.

In elemental Zn, the LJ potential [90] is a simple model
with potential energy solely depending on the distance be-
tween two atoms; hence, it fails to reconstruct the peak
positions of the RDFs, the peak intensities of the BADFs, and
the running CN of the DFT calculation. The MEAM potential

FIG. 15. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, the LJ potential [90], and MEAM
potential [91] in elemental Zn.

FIG. 16. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, the EAM potential [92], and BO potential
[93] in elemental Cd.

[91] shows structural quantities better than the LJ potential,
but fails to reconstruct the peak positions of the RDFs and the
peak intensities of the BADFs, similarly to the LJ potential. In
elemental Cd, the BO potential [93] fails to accurately predict
the peak positions of the RDFs and the peak intensities of the
BADFs. On the other hand, structural quantities computed us-
ing the EAM potential [92] agree well with the DFT structural
quantities. In elemental Hg, the accuracy of the LJ potential
[90] for the structural quantities is worse than in Zn, and,
in particular, the LJ potential fails to reconstruct the BOOPs.
The SW potential [94] also fails to predict the DFT structural
quantities.

FIG. 17. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, the LJ potential [90], and SW potential
[94] in elemental Hg.
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FIG. 18. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, the EAM potential [88], and MEAM
potential [95] in elemental Al.

F. Al, Ga, In, and Tl

Figures 18–21 show the structural quantities calculated
from MD simulations at three temperatures using the
polynomial MLPs and other empirical potentials for Al, Ga,
In, and Tl, respectively. The RDFs and BADFs are com-
puted at three temperatures above the melting temperatures
of 933, 303, 430, and 577 K [67] in elemental Al, Ga, In,
and Tl, respectively. The running CNs and BOOPs at the
lowest temperature among the three temperatures, which is
the closest to the melting temperature, are also shown. The
structural quantities of the polynomial MLPs agree with the
DFT structural quantities. The RDFs calculated using other
polynomial MLPs are shown in the Supplemental Material

FIG. 19. Structural quantities calculated using the DFT calcu-
lation, the polynomial MLP, the MEAM potential [96], and BO
potential [97] in elemental Ga.

FIG. 20. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, and MEAM potential [98] in elemental
In.

[50] and indicate that most of the polynomial MLPs have high
predictive power for liquid structural properties.

In elemental Al, although the RDFs of the MEAM poten-
tial [95] slightly differ from those of the DFT calculation,
the other structural quantities of the MEAM potential and
all structural quantities of the EAM potential [88] are con-
sistent with the DFT structural quantities. In elemental Ga,
the MEAM potential [96] cannot accurately reproduce all
structure quantities calculated using the DFT calculation. The
RDFs, BADFs, and running CNs computed using the BO
potential [97] are less accurate than those computed using the
MEAM potential. In elemental In, the MEAM potential [98]
results are close to the DFT structural quantities. In elemental
Tl, the LJ potential [90] shows incorrect structural quantities.

FIG. 21. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, and the LJ potential [90] in elemental Tl.
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FIG. 22. Structural quantities calculated using the DFT cal-
culation, the polynomial MLP, and MEAM potentials [78,99] in
elemental Sn.

G. Sn, Pb, and Bi

Figures 22–24 show the structural quantities calculated
from MD simulations at three temperatures using the poly-
nomial MLPs and other empirical potentials for Sn, Pb, and
Bi, respectively. The RDFs and BADFs are computed at
three temperatures above the melting temperatures of 505,
601, and 544 K [67] in elemental Sn, Pb, and Bi, respec-
tively. The running CNs and BOOPs at the lowest temperature
among the three temperatures, which is the closest to the
melting temperature, are also shown. The structural quantities
of the polynomial MLPs are consistent with the DFT struc-
tural quantities. The RDFs calculated using other polynomial
MLPs are shown in the Supplemental Material [50] and indi-

FIG. 23. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, and EAM potentials [81,100] in elemental
Pb.

FIG. 24. Structural quantities calculated using the DFT calcula-
tion, the polynomial MLP, LJ potential [90], and MEAM potential
[101] in elemental Bi.

cate that most of the polynomial MLPs have high predictive
power for liquid structural properties.

Two MEAM potentials [78,99] exhibit running CNs and
BOOPs similar to those of the DFT calculation in elemental
Sn. However, the RDFs and BADFs of the MEAM po-
tentials slightly differ from those of the DFT calculation.
In elemental Pb, one EAM potential [81] can accurately
predict structural quantities, while another EAM potential
[100] shows less accurate structural quantities. In elemental
Bi, the LJ potential [90] fails to reconstruct all structural
quantities of the DFT calculation. On the other hand, the
running CN and BOOPs computed using the MEAM po-
tential [101] almost overlap with those obtained using the
DFT calculation. However, the MEAM potential cannot ac-
curately reproduce the RDFs and BADFs calculated using the
DFT calculation.

H. RDF errors

Table I summarizes the RDF errors computed using in-
teratomic potentials at the lowest temperature among our
temperature settings. In all the systems, the RDF error for
the polynomial MLP is the smallest, ranging approximately
from 0.01 to 0.05. In elemental Li, Al, Cu, Ag, Cd, and Au,
the values of the RDF errors are less than 0.06 for some
interatomic potentials other than the polynomial MLP. These
values of the RDF error are comparable to the mean RDF error
shown in Fig. 3(a). As can be seen in Figs. 3(a) and 3(b),
the interatomic potentials that exhibit RDF errors less than
0.06 accurately reproduce the RDFs obtained from our DFT
calculations. In elemental Na, Mg, Si, V, Ge, In, and Pb, some
interatomic potentials other than the polynomial MLP exhibit
RDF errors ranging from 0.06 to 0.14. The accuracy of these
potentials corresponds to that of simplistic polynomial MLPs
with low computational costs. The empirical potentials show
RDF errors larger than 0.14 in elemental Li, Be, Si, Ti, Cr, Zn,
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TABLE I. RDF errors computed using interatomic potentials at the lowest temperature among our temperature settings. Poly. MLP and
Quad. SNAP stand for polynomial MLP and quadratic SNAP, respectively.

Element Potential RDF error Element Potential RDF error Element Potential RDF error

Li Poly. MLP 0.007 Cr Poly. MLP 0.011 Sn Poly. MLP 0.035
Quad. SNAP [73] 0.036 MEAM [84] 0.141 MEAM(1) [99] 0.175

MEAM [74] 0.183 EAM [85] 0.380 MEAM(2) [78] 0.189
Be Poly. MLP 0.030 Cu Poly. MLP 0.014 Au Poly. MLP 0.014

MEAM [76] 0.339 Quad. SNAP [73] 0.033 EAM(1) [88] 0.041
EAM [75] 0.418 MEAM [86] 0.097 EAM(2) [89] 0.064

Na Poly. MLP 0.022 Zn Poly. MLP 0.041 Hg Poly. MLP 0.018
MEAM [78] 0.135 MEAM [91] 0.210 SW [94] 0.402
EAM [77] 0.147 LJ [90] 0.431 LJ [90] 0.438

Mg Poly. MLP 0.017 Ga Poly. MLP 0.019 Tl Poly. MLP 0.019
EAM(2) [80] 0.128 MEAM [96] 0.288 LJ [90] 0.685
EAM(1) [79] 0.130 BO [97] 0.361

Al Poly. MLP 0.008 Ge Poly. MLP 0.051 Pb Poly. MLP 0.028
EAM [88] 0.058 Quad. SNAP [73] 0.125 EAM(1) [81] 0.089

MEAM [95] 0.118 Tersoff [70] 0.377 EAM(2) [100] 0.176
MEAM [72] 0.491

Si Poly. MLP 0.021 Ag Poly. MLP 0.016 Bi Poly. MLP 0.023
Quad. SNAP [73] 0.105 EAM(1) [87] 0.040 MEAM [101] 0.158

Tersoff [69] 0.305 EAM(2) [81] 0.063 LJ [90] 0.650
MEAM [71] 0.342

Ti Poly. MLP 0.012 Cd Poly. MLP 0.015
MEAM [82] 0.221 EAM [92] 0.037
EAM [81] 0.288 BO [93] 0.320

V Poly. MLP 0.014 In Poly. MLP 0.013
MEAM [84] 0.096 MEAM [98] 0.073
EAM [83] 0.156

Ga, Ge, Sn, Hg, Tl, and Bi. These potentials fail to accurately
predict the RDFs.

As pointed out in Sec. III A, interatomic potentials other
than the polynomial MLPs sometimes include systematic de-
viations from our DFT calculations because of the use of
different training datasets. However, some empirical poten-
tials yield RDFs that are totally different from RDFs obtained
using our DFT calculations with typical computational set-
tings. On the other hand, the polynomial MLPs exhibit minor
RDF errors in all the elemental systems, which indicates
that the polynomial MLPs can predict liquid structural prop-
erties with the same accuracy as those of reasonable DFT
calculations.

IV. CONCLUSION

We examined the predictive power of the polynomial
MLPs for structural properties in liquid states of 22 elemental
systems. Structural quantities such as the RDF and BADF
were used to compare the predictive power of the polynomial
MLP and other interatomic potentials. The current polynomial
MLPs were systematically developed from diverse crystal
structures and their derivatives. No structural data in liquid
states, such as structural trajectories in MD simulations at high
temperatures, were used as training datasets. Nevertheless,
they consistently exhibited high predictive power for the liq-
uid structural properties in all 22 elemental systems of diverse
chemical bonding properties. On the other hand, empirical
potentials failed to predict liquid structural properties in many

elemental systems where complex descriptions of the poten-
tial energy are required, such as Si, Ge, and Bi. Thus, we can
conclude that the polynomial MLPs enable us to efficiently
and accurately predict structural and dynamical properties not
only in crystalline states, but also in liquid and liquidlike
disordered states.
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APPENDIX A: SELECTED PAW POTENTIALS

Table II summarizes the electronic configurations of
selected PAW potentials that are considered as valence elec-
trons. These PAW potentials were used to construct DFT
datasets and perform AIMD simulations in this study.

APPENDIX B: COMPARISON WITH
EXPERIMENTAL PROFILES

1. Si, Ga, Ge, and Bi

Here, we compare the structure factors and RDFs com-
puted using interatomic potentials such as the polynomial
MLP with experimentally reported ones. Figure 25 shows
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FIG. 25. (a) Structure factors computed using interatomic potentials such as the polynomial MLPs in elemental Si, Ga, Ge, and Bi,
along with experimental structure factors revealed by x-ray and neutron diffraction investigations [102–107] (Si [102,103], Ga [104,105],
Ge [102,103], Bi [106,107]. (b) RDFs obtained using interatomic potentials in elemental Si, Ga, Ge, and Bi, along with experimental RDFs
revealed by x-ray and neutron diffraction investigations [102–107].

the structure factors and RDFs investigated in x-ray and
neutron diffraction experiments in elemental Si, Ga, Ge,
and Bi [102–107]. Experimental structure factors at similar
temperatures are comparable in each system. However, the
structure factor profiles show non-negligible differences. Sim-
ilarly, experimental RDFs at almost the same temperatures
are close to each other, but the first-peak intensities and the
positions of the second peaks are inconsistent. Although ex-
perimental structure factors and RDFs are not uniquely given,
we compare the structure factors and RDFs computed us-
ing the interatomic potentials with the experimental ones. In
the Supplemental Material [50], the RDFs obtained using the
polynomial MLPs are compared with those obtained using
DFT calculations, reported in the literature [57,108–120].

Figure 25 shows the structural factors and the RDFs ob-
tained from MD simulations at 1703, 326, 1233, and 553 K,

TABLE II. Electronic configurations of selected PAW potentials
that are considered as valence electrons.

Element Valence states Element Valence states

Li 2s1 Ga 4s24p1

Be 2s2 Ge 4s24p2

Na 3s1 Ag 4d105s1

Mg 3s2 Cd 4d105s2

Al 3s23p1 In 5s25p1

Si 3s23p2 Sn 5s25p2

Ti 3d24s2 Au 5d106s1

V 3d34s2 Hg 5d106s2

Cr 3d54s1 Tl 6s26p1

Cu 3d104s1 Pb 6s26p2

Zn 3d104s2 Bi 6s26p3

which are close to the melting temperatures, in elemental
Si, Ga, Ge, and Bi, respectively. They were computed us-
ing the polynomial MLPs, quadratic SNAPs, and empirical
interatomic potentials. In the MD simulations, we employed
the simulation cell with 2744 atoms and the computational
procedures described in Sec. II B. When using the quadratic
SNAP [73] for the elemental Ge, we exceptionally employed
the simulation cell with 216 atoms because several hundred at-
tempts of MD simulations with larger simulation cells failed.
The structure factor was obtained by Fourier transforming the
corresponding RDF using

S(q) = 1 + 4πN

V

∫ Lbox/2

0
r2[g(r) − 1]

sin(qr)

qr
dr, (B1)

where Lbox represents the simulation box length. This integral
was evaluated using a histogram of the RDF with a bin width
of 0.1 Å.

The structure factors of the polynomial MLP and quadratic
SNAP [73] in elemental Si are similar to the experimen-
tal structure factors. However, they do not reconstruct the
experimental structure factors around the first peak. On the
other hand, the structure factors obtained using the polyno-
mial MLP in elemental Ga and Ge are consistent with the
experimental structure factors. Although the polynomial MLP
overestimates the peak intensities in elemental Bi, the struc-
ture factor calculated using the polynomial MLP is similar to
the experimental one. The RDFs computed using the poly-
nomial MLP and quadratic SNAP [73] are similar to the
experimental RDFs in elemental Si. However, they slightly
overestimate the interatomic distances in the experiments.
In elemental Ga, the RDF obtained using the polynomial
MLP agrees well with the experimental RDFs. In elemen-
tal Ge, the first-peak position and the RDF at distances
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FIG. 26. Structure factors computed using the polynomial MLPs along with experimental structure factors revealed by x-ray diffraction
investigations [121,122].

larger than 5 Å are consistent with the experimental ones.
In contrast, the second peak in the experiments is not
clearly observed in the RDF for the polynomial MLP. The

second peak is recognized in the RDF for the quadratic
SNAP [73], while its position is different from the experi-
mental ones. In elemental Bi, the RDF computed using the

FIG. 27. RDFs obtained using polynomial MLPs along with experimental RDFs revealed by x-ray diffraction investigations [121].
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polynomial MLP is similar to, but slightly different from
the experimental RDFs in terms of peak intensity. Thus, the
polynomial MLPs can derive the RDFs close to the experi-
mental RDFs within the range of deviations included in the
experimental observations.

2. Other systems

Figure 26 shows the structure factor profiles revealed by
x-ray diffraction investigations in the other elemental systems
at temperatures close to the melting temperatures [121,122].
However, no experimental structure factors are available for
elemental Be. Figure 26 also shows the structure factors
computed using the polynomial MLPs. The computational
procedure is the same as explained in Appendix B 1. In
elemental Li, Na, Cu, Cd, and Al, the structure factor pro-
files calculated using the polynomial MLPs agree with the
experimental ones. In elemental Mg, Ag, Au, Zn, Hg, In,
Tl, Sn, and Pb, the first-peak intensities of the experimental
and computational structure factor profiles are slightly dif-
ferent. However, the polynomial MLPs yield structural factor
profiles that are almost the same as the experimental ones.
In elemental V and Cr, the structure factors at wave numbers
larger than 4 Å−1 slightly differ from the experimental ones.

In elemental Ti, the structure factor profile of the polynomial
MLP is different from the experimental one investigated by
Waseda [121]. However, it is consistent with the experimental
one later investigated by Lee et al. [122].

Figure 27 shows the RDFs revealed by x-ray diffraction in-
vestigations in the 17 elemental systems at temperatures close
to the melting temperatures [121]. The RDFs computed using
the polynomial MLPs are also shown. The computational pro-
cedure is the same as described in Appendix B 1. In elemental
Li, Na, Mg, Cu, Au, Cd, Al, and Tl, the RDFs computed using
the polynomial MLPs are consistent with the experimental
RDFs. In elemental Cr, Zn, and In, the RDFs calculated using
the polynomial MLPs are similar to the experimental RDFs,
while the first-peak intensities of the RDFs differ from those
of the experimental RDFs. The interatomic distances and peak
intensities in elemental V, Ag, Hg, Sn, and Pb are slightly
different from the experimental ones. In elemental Ti, the
polynomial MLP fails to reproduce the experimental RDF
[121]. However, this experimental RDF was obtained from the
structure factor profile that is incompatible with the structure
factor profile computed using the polynomial MLP, as shown
in Fig. 26. On the other hand, the polynomial MLP has been
shown to be capable of reconstructing the other experimental
structure factor profile in elemental Ti [122].
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