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Anomalous localization in spin chains with tilted interactions
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(Received 8 February 2024; revised 27 May 2024; accepted 4 June 2024; published 20 June 2024)

Quantum simulators of lattice gauge theories involve dynamics of typically short-ranged interacting particles
and dynamical fields. Elimination of the latter via Gauss law leads to infinite range interactions as exemplified
by the Schwinger model in a staggered formalism. This motivates the study of long-range interactions, not
necessarily diminishing with the distance. Here we consider localization properties of a spin chain with
interaction strength growing linearly along the chain as for the Schwinger model. We generalize the problem
to models with different interaction ranges. Using exact diagonalization we find the participation ratio of all
eigenstates, which allows us to quantify the localization volume in Hilbert space. Surprisingly, the localization
volume changes nonmonotonically with the interaction range. Our study is relevant for quantum simulators of
lattice gauge theories implemented in state-of-the-art cold atom/ion devices, and it could help to reveal hidden
features in disorder-free confinement phenomena in long-range interacting systems.
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I. INTRODUCTION

Localization, or more generally nonergodicity, for inter-
acting many-particle systems has been a subject of intensive
research under the umbrella term many-body localization
(MBL) following the seminal works in Refs. [1,2] (for
reviews, see [3–5]). MBL breaks the conventional understand-
ing of thermalization as expressed via the Eigenstate Thermal-
ization Hypothesis (ETH) [6–8]. While nonergodic dynamics
have been associated with the presence of disorder in the
system, either fully random [1,2,9] or quasiperiodic [10,11],
recently localization without disorder has been drawing a lot
of attention. The latter happens in the presence of energy con-
straints, e.g., linear tilt (dc field) or harmonic traps [12–22];
gauge-field-induced confinement [23–29]; in the presence of
other species of particles that effectively induce random en-
vironment [30,31]; in the presence of flatbands [18,20,32];
etc. The study of long-range, e.g., dipolar interaction effects
on such models also has a rich history [33–40], with recent
progress being related to experimental progress in the cooling
and trapping of dipolar matter [41–43].

Simulations of lattice gauge theories in different cold-
atom settings have developed rapidly recently [44–46] due to
progress in various experimental platforms [47–50]. In many
of the proposed implementations, the particles reside in the
sites of the lattice while fields live on its bonds [44]. Such a
model is typically assumed to have short-range interactions
among particles and dynamical gauge fields. The presence
of the local Gauss law provides a restriction on particles and
fields and is used to eliminate the dynamical fields. The price
to pay is that the resulting interaction among the particles
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becomes infinitely long-ranged (see Appendix A for an ex-
ample of the Schwinger model). These dynamics may have
unexpected properties if viewed from a general point of inter-
acting many-body physics. Here, in the absence of disorder,
one expects, on the basis of ETH [7,8], the dominance of
ergodic motion even for short-range interactions. The longer
range should lead to even faster ergodization. Instead, for the
lattice gauge models one often observes nonergodic dynamics
resulting, e.g., in the appearance of confinement [23–29] as
well as the existence of unusually regular states embedded
in otherwise ergodic typical eigenstates—the so-called many-
body quantum scars [26,27,51–53].

Inspired by these developments, we introduce in this ar-
ticle a one-dimensional (1D) spin chain model in which the
interaction strength is inhomogeneous and, in particular, in-
creases with the distance along the lattice. While typically the
interaction strength decays as a power law or exponentially
with the distance [38,54], we consider the case in which it
grows linearly, not only with respect to the relative distance
but also with the explicit location of spins. In that way, it also
differs from the 1D Coulomb model in the continuum where
interaction strength grows with the relative distance between
charge densities only [55].

The model is motivated by lattice gauge theory and in
particular the implementation of the Schwinger model on the
lattice [56,57]. As described in detail in Appendix A, this
connection appears when the range of interactions matches
the system size. In the other extreme, the model with nearest-
neighbor interactions (dependent, however, on the position)
may be realized for spinless fermions by appropriately adapt-
ing the interactions via, e.g., a Feshbach resonance controlled
magnetic field [58]. A similar model with nearest-neighbor
linearly growing interaction has been studied recently [59].
We consider below the whole family of models with different
interaction ranges.
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By numerical full diagonalization using the Quspin python
library [60,61], we study the localization volume, i.e., the
participation ratio (PR) in Hilbert space spanned by the eigen-
states of a spin-half σ z operator, as a function of the range of
interactions and their strength. As we shall see, the structure
of the density of states of our model makes the analysis
of the gap ratio (and its mean), a typical measure in MBL
studies [4,5], not very informative. That is due to an approxi-
mate Hilbert space fragmentation in the interaction-dominated
regime [62–64].

Because of the stronger interactions, the hopping or spin-
flip is less probable, and Hamiltonian eigenstates appear more
similar to the spin-aligned states or the eigenstates of σ z

operators. The alignment is expected to become more ro-
bust and locally conserved as we move from left to right
of the chain with linearly growing interaction strength. This
phenomenon is similar to the Hilbert space fragmentation
leading to the presence of almost conserved local oper-
ators [62–64]. Therefore, stronger interactions reduce the
Hilbert space occupation, i.e., the localization volume of in-
dividual eigenstates—as observed in our work and as reported
recently [59]. This happens irrespective of the range of in-
teractions. On the other hand, a long range of interactions
enhances long-range correlations between spins. Therefore,
one always expects to see an increase in the localization
volume with an increase of interaction range. Surprisingly,
however, we observe that the localization volume reduces
upon increasing the range, and after an intermediate range it
starts to grow again. Such a nonmonotonic behavior was not
reported before in any clean (disorder-free) lattice model. We
explain this phenomenon by moving from a spin picture to a
particle occupation picture. We show that there is an interplay
between the fragmentation induced by two-body interac-
tions and an effective tilt potential induced by longer-ranged
interaction.

The paper is organized as follows. We introduce our model
and the measures studied in Sec. II. Section III is dedicated to
our numerical full diagonalizations, the extraction of relevant
results for clean systems with various ranges of interactions,
and an explanation of the results. Section IV is dedicated to
the effect of quasiperiodic additive disorder on clean systems.
We conclude in Sec. V. Appendix A describes the connec-
tion of our clean Hamiltonian with the lattice gauge theory.
Appendix E discusses the Hilbert space fragmentation for
perturbative hopping and outlines the Schrieffer-Wolff trans-
formation to derive effective Hamiltonians.

II. MODEL

Here we define the spin-half Hamiltonian on a 1D finite
chain with various ranges of tilted ZZ interaction,

HR = −t
L−2∑
n=0

(σ+
n σ−

n+1 + σ−
n σ+

n+1)

+ U
R∑

l=1

L−(l+1)∑
n=0

(n + l )σ z
nσ z

n+l , (1)

where the range R can take any value from the inte-
ger set {1, 2, 3, . . . , L − 2, L − 1}. We use the notation

σ+
n = (0 1

0 0

) = (σ−
n )†, σ z

n = 1
2

(1 0
0 −1

)
for all lattice site n. U

is the interaction strength parameter, while t is the hopping
amplitude set to unity from now on.

Note that the interaction strength in the model (1) depends
not only on the relative distance l = (n + l ) − n between
spins but also on the spins’ location. The nearest-neighbor
case of our model, R = 1, is similar to the recently stud-
ied Hamiltonian in Ref. [59]. On the other hand, for R =
L − 1 our model is similar to the lattice Schwinger model
of staggered spinless fermions after integrating out the elec-
tromagnetic gauge degrees of freedom—see Appendix A for
details. For arbitrary R the model may be, in principle, realized
using cold ion quantum simulator architecture [65]. For that
reason, as well as having in mind possible Schwinger model
realizations in quantum simulators [45], we discuss mostly
systems with a moderate size L.

Still it is also interesting to consider the thermodynamic
limit of the model. While for short-range interactions (R
small) such a limit seems straightforward, it is by no means so
when R approaches L. In this limit, the Hamiltonian (1) seems
to be superextensive. To remedy this problem, one can modify
the interaction strength as U = Ũ/R for R close to L and
consider the properties of the Hamiltonian at fixed Ũ . In such
a Kac-like rescaling, a growing range of interaction is now
balanced by an effective reduction of interaction strength [66].
This case resembles the extensivity problem for the model of
cold atoms coupled by the cavity mode leading to an effec-
tive all-to-all interaction [67–69]. Interestingly, in the case of
the lattice gauge theory, the long-range interactions between
matter particles appear after integrating out the electric flux
using Gauss’s law, which is local. Therefore, Kac’s rescaling
does not naturally arise in such cases, and we will not analyze
it here.

The Hamiltonian [Eq. (1)] possesses two obvious sym-
metries: It commutes with and hence dynamically conserves
associated eigenvalues of (i) total magnetization operator∑L−1

n=0 σ z
n and (ii) the product of all spin-flip operators∏L−1

n=0 σ x
n . We consider an even number of lattice sites and

only a zero magnetization sector
∑L−1

n=0 σ z
n = 0 such that the

total number of spin-up equals the total number of spin-down.
This corresponds to the maximum Hilbert space dimension
compared to other magnetization sectors, and it is similar
to the half-filled spinless fermions. The zero magnetization
sector can be divided into two mutually orthogonal vector
spaces concerning the Z2 symmetry induced by the product
of spin-flip operators: they consist of “linear superpositions”
of

∏L−1
n=0 σ z

n eigenstates which are either symmetric, having
eigenvalue +1, or antisymmetric, having eigenvalue −1, un-
der the action of

∏L−1
n=0 σ x

n . The total number of basis states |s j〉
in the symmetric sector is equal to that in the antisymmetric
sector. Therefore, the Hilbert space dimension of one of the
sectors is

D = L!

2[(L/2)!]2
. (2)

We consider the symmetric sector only while analyzing the
clean system. For the system size L = 18 and 16, D =
24 310 and 6435, respectively. We numerically diagonalize
the full Hamiltonian in this sector for different R, U , and for
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different chain lengths L with open boundary conditions. We
concentrate on the second participation entropy [70] for the
eigenvector |ψE 〉 at each eigenenergy E ,

S (E ) = − ln

⎛
⎝ D∑

j=1

∣∣〈s j |ψE 〉∣∣4

⎞
⎠, (3)

calculated in the {|s j〉} basis defined above. For the mutually
unbiased basis represented by the set {|s j〉 : 1 � j � D} and
the set of eigenvectors {|ψE 〉} represented in this basis, each
basis vector contributes with the same weight to |ψE 〉 in a fully
ergodic system, implying S (E ) = lnD [71]. In the opposite
case with a singly occupied |ψE 〉 = |s j〉 state, S (E ) = 0. This
implies S (E )/ lnD ∈ [0, 1]. Therefore, the S (E ) captures
the localization volume in symmetric spin-space with zero
magnetization.

III. NUMERICAL RESULTS

To take care of the energy dependence of our problem,
we follow the by now standard procedure [72] and scale the
energy eigenvalues, E , as

ε = (E − Emin)/(Emax − Emin) ∈ [0, 1]. (4)

Figure 1 shows the number of states at different energies
with the variation of range for L = 18 and U = 1.2. Two
observations follow. First, with the increase of the range of
interactions, the maximum of the density shifts first to smaller
ε values, then it comes back near to the center again, and, for
still larger R, it moves towards ε = 1. Second, for intermediate
R, distinct peaks appear in the N profile, which indicates that
the interaction term in the Hamiltonian becomes dominant.
In the limit of t/U → 0, the spectrum splits trivially into ex-
ponentially many subsets of degenerate states corresponding
to discrete values of the interaction in the spin bases—see
Appendix E for details. In the presence of tunneling the de-
generacy is lifted, leading still, however, to a multipeaked
density of states (e.g. Fig. 1). This behavior resembles to
some extend an approximate Hilbert space fragmentation ef-
fect [62–64] similar to that observed for strongly interacting
dipoles in optical lattices [36]. In the latter case, the Hilbert
space fragmentation was due to taking nearest-neighbor and
next-nearest-neighbor interactions into account. For larger R,
the peak heights as well as the number of peaks in a distribu-
tion reduce with an increase of R.

To analyze the energy-resolved participation entropy, we
consider 10 bins in ε. We average the entropy over all eigen-
values within each bin. Figure 2 shows that maximal S for a
given R appears, as might be anticipated, near the maximum
peak in the density in Fig. 1 for all R. Interestingly, however,
for almost all energies at some intermediate values of R, the
localization volume in spin Hilbert space, i.e., the participa-
tion entropy, is lower as compared to the values for shorter
and longer ranges. The energy value ε at which maximum
localization volume occurs increases with the increase of the
range for longer R, while the trend is inverted around R = 3.
For the system sizes L = 14, 16, 18 we found that the critical
value R for which the trend is inverted remains almost the
same.

FIG. 1. Envelope plots of the histograms of the number of states
N (ε) as a function of ε [Eq. (4)] for different R as indicated in the
panels, while U = 1.2 and L = 18 for all subplots. 100 bins are used
during histogram analysis for all cases. The insets are the same plots
as in the main panels but on a log-linear scale.

Next, we focus on the peak density of states by considering
the following set of eigenvalues:

Z = {ε : ln[N (ε)] � 0.9 max{ln[N (ε)]}}. (5)

The natural logarithm is taken to smooth the distributions—
compare the insets and main plots in Fig. 1 for details. The
participation entropy averaged over all eigenstates that belong
to Z , labeled as SZ , is plotted as a function of U and R
in Fig. 3. The nonmonotonic or anomalous behavior of the
localization volume as a function of range for almost all U
and all system sizes is visible. As shown in more detail in
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FIG. 2. Participation entropy S/ lnD averaged over the energies
within each bin in energy histogram (Fig. 1) as a function of scaled
energy and range. U = 1.2, L = 18. The dashed line connects the
circular-marked data points, which signify the energy values ε for
which the N take maximum values in Fig. 1.

Fig. 3(b) at a fixed interaction strength U , a minimum of SZ

occurs at some intermediate range R = Rc, and the Rc shifts to

FIG. 3. (a) Participation entropy SZ/ lnD, i.e., S/ lnD aver-
aged over the set Z [Eq. (5)], as a function of U and R. L = 18.
(b) SZ/ lnD for different system sizes L = 14(D = 1716), 16(D =
6435), 18(D = 24 310), and different U .

FIG. 4. (a)–(d) SZ/ lnD as a function of interaction parameter
U � 0.05 for various L and R. The crossing point at each subplot
is associated with the ergodic-to-nonergodic transitions. (e) The
transition interaction parameter Uc as a function of range extracted
from different L combinations. (f) Averaged Uc over all combinations
in (e).

larger values with an increase of system size L. On the other
hand, for a fixed L, an increase of U shifts the Rc to smaller
values. The thermodynamic behavior of Rc will be discussed
near the end of Sec. III B.

A. Localization transition analysis

We now compare the participation entropies for different
system sizes in units of lnD to extract possible system-
size-independent crossing points similar to the analysis done
in [70].

We plot SZ/ lnD as a function of interaction parameter U
for different ranges and system sizes in Figs. 4(a)–4(d): only
four R cases are shown for convenience. The crossing point for
different L appears approximately at the same point U = Uc

for any fixed R. A closer inspection reveals that it also shows
a nonmonotonic behavior with R. For small R the crossing
point happens for smaller values of U , it shifts to larger U
at intermediate ranges, and for longer ranges it again moves
to smaller U values. The crossing points are associated with
the ergodic-to-nonergodic transitions [70]. We conjecture that
the crossing point Uc → 0 when R → ∞, which is possible at
L → ∞, and it signifies the appearance of nonergodic behav-
ior for arbitrarily small U in massless clean Schwinger-like
models. To calculate the value of Uc for each R � 13, we con-
sider three crossing points of three pairs of curves: (i) SZ/ lnD
for L = 14 and L = 16, (ii) SZ/ lnD for L = 14 and L = 18,
and (iii) SZ/ lnD for L = 16 and L = 18. Numerically, the
crossing point is defined as the data coordinate (U,SZ/ lnD)
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FIG. 5. SZ/ lnD as a function of interaction parameter U for
different L keeping the ratio R/L = 1/2.

where the absolute value of the difference of SZ/ lnD for two
different L is the minimum. The result is depicted in Figs. 4(e)
and 4(f), which clearly capture a nonmonotonic behavior with
R. For stronger U we have shown the participation entropy
plots in Appendix B.

The anomalous effect is also visible in the mean gap ratio
statistics as described in Appendix C.

We extract the interaction strength corresponding to the
transition, Uc = Uc(R), based on the comparison among dif-
ferent system sizes for fixed R, which is the standard practice
for small R. Since the range R may take any integer value up to
(L − 1), another way to address the transition is by comparing
SZ/ lnD for different system sizes at fixed R/L ratios. Be-
cause of the discrete nature of R, such an analysis requires data
from different L that are typically larger than accessible in
exact diagonalization. Therefore, the functional dependence
Uc = Uc(R/L) remains an open problem. We could present
such an analysis for the R/L = 1/2 case as shown in Fig. 5. It
is qualitatively similar to Figs. 4(a)–4(d).

B. Discussion

To explain the anomalous localization behavior, it is con-
venient to switch from the spin language to an equivalent
spinless fermion (or hardcore boson) description. We define
the particle number operator at site n as N̂n = σ z

n + 1
2 , relating

the spin-up (spin-down) state to the presence (absence) of a
particle. Only single occupancy at a lattice site is possible.
Note that these spinless fermions are different from particles
(or antiparticles) appearing in the staggered Schwinger picture
discussed in Appendix A. The σ±

n operators are transferred
into creation/annihilation operators for particles, and the first
line in Eq. (1) gives the standard kinetic energy term (describ-
ing hopping). The interaction part becomes

Hin = U
R∑

l=1

L−(l+1)∑
n=0

(n + l )σ z
nσ z

n+l

= U
R∑

l=1

L−(l+1)∑
n=0

(n + l )N̂nN̂n+l

− U

2

R∑
l=1

L−(l+1)∑
n=0

(n + l )(N̂n + N̂n+l ), (6)

FIG. 6. The ratio of dimension of the largest degenerate subspace
= Dgmax and Hilbert space dimension D as a function of system
size L and interaction range R in the log-linear scale. The energy
distributions are based on the two-body interacting Hamiltonian only
(without hopping and tilted potential parts). The insets indicate the
total number of clusters = Ncl as functions of L for various R with
the same color lines as in the main plots.

where we neglected the additional constant interaction en-
ergy term. The first term above is the two-body interaction
operator. The second term strongly resembles the tilted po-
tential present in recent studies of disorder-free many-body
localization [12–14,19,73]. We use the term “tilted potential”
referring to the single-particle potential term in the last line
of Eq. (6), and “two-body interaction part” to discuss the
first term in Eq. (6). The tilted interaction stands for the full
ZZ-interactions term in Eq. (1).

Two-body interaction part. The two-body interactions di-
vide the available energy space into several clusters consisting
of energy degenerate configurations. Different clusters are
separated by energy ∼U . This leads to fragmented Hilbert
space [25,62–64], which will be discussed in the following.
We focus on the half-filled configurations, which are relevant
for our work. The important fact about the two-body inter-
acting terms is that any particle at the right position (n + l )
has the same energy of interaction as any particle at the left
site (n + r) < (n + l ) for different r while the relative dis-
tance between them is (l − r). In other words, the interaction
operators U (n + l )N̂nN̂n+l and U (n + l )N̂n+rN̂(n+r)+(l−r) for
a nonzero r in Hamiltonian (6) lead to the same interaction
energy U (n + l ). Therefore, the absolute position of the left
particle does not influence the two-body interaction term for
a fixed position of the right particle at any relative distance.
For example, if we represent the presence of a particle by
“•” and the absence of a particle by “◦”, the half-filled states
|• ◦ ◦ ◦ ••〉 and |• ◦ ◦ • ◦•〉 for R = 2 are degenerate having
interaction energy = 5U , and both of them have only one
interacting pair. The presence of a particle in between the
interacting pair (in the second example) changes the energy
configuration, i.e., |◦ ◦ ◦ • ••〉 for R = 2 has three interacting
pairs, and the total energy = 14U . Similarly, the two interact-
ing pair configurations |• ◦ • ◦ •◦〉 and |◦ • • ◦ •◦〉 for R = 2
are degenerate, with energy = 6U . Changing R changes the
distributions of the clusters.

For a typical range R, the number of such clusters grows
exponentially with L, as identified in Fig. 6 for moderate
system sizes. The cluster with maximum dimension = Dgmax

is exponentially smaller than the total dimension D of the
Hilbert space of zero magnetization. All the curves decay as
≈0.8L with an increase in system size, indicating strong frag-
mentation. Because of the absence of spin-flip symmetry in
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FIG. 7. The tilted potential [Eq. (7)] as a function of lattice site
n. The plots are for various ranges in units of U for fixed system size
L = 18.

the particle occupation language, we consider the symmetric
and antisymmetric spaces together, i.e., here D is twice the
dimension of the symmetric space [Eq. (2)].

Tilted potential part. The tilted effective potential part in
the particle picture for a general R reads

VR = −U

2

R∑
l=1

L−(l+1)∑
n=0

(n + l )
(
N̂n + N̂n+l

)

= −U

2

R∑
l=1

[
l−1∑
n=0

(n + l )N̂n +
L−1∑

n=L−l

nN̂n

+
L−(l+1)∑

n=l

(2n + l )N̂n

]

= −U
L−1∑
n=0

(Rn)N̂n + U

2

R−1∑
n=0

n(R − n)N̂n

+ U

4

R∑
n=0

[2nL + n(n − 1)]N̂L−R+n−1. (7)

For convenience, we denote VR/U as
∑L−1

n=0 V (n)N̂n. In the
last two lines of the above expression (7), while changing
the double index sums to single index sums, we have omit-
ted the extra additive term = −(UL/4)

∑R
l=1 l , which comes

from the total magnetization or particle number conservation:∑L−1
n=0 N̂n = L/2 for even L. For a detailed derivation, see

Appendix D.
It is important to note that, after representing the single-

particle potential in terms of single index sums, it contains
both the linear and square terms in the site number. That
complicates its analysis. The presence of the linearly tilted
potential may induce another type of fragmentation in Hilbert
space due to an approximate conservation of the dipole mo-
ment, as extensively discussed already [62,63]. Such a clean
situation almost occurs for R = 1; compare Fig. 7(a). How-
ever, the potential becomes quite different for a general R
forming first a triangular-like well with the minimum shift-
ing close to the center of the lattice and changing its shape
completely for longer ranges; cf. Fig. 7. The VR effectively
consists of three parts: the central region, and two sets asso-
ciated with the sites near the two edges. Three different tilted
parts become prominent for R � 9. Instead of linear tilt, they

FIG. 8. (a) Number of clusters or fragmented parts Ncl as a
function of R at L = 18. (b) The ratio of dimension of the largest
degenerate space = Dgmax and Hilbert space dimension D in log-
linear scale as a function of R at L = 18. Blue curves are in the
absence of hopping and tilted potential, while red curves are in the
absence of hopping only.

resemble two concave curves (left and central) and one convex
curve (right). For longer R � 13, the central region grows and
the potential resembles a single concave quadratic curve.

Simultaneous effect of two-body interaction and the tilted
potential. In the absence of hopping, Hilbert space fragmen-
tation divides the whole system into several disconnected
parts [62–64], while correlations exist among states inside
each fragmented part upon turning on perturbative hopping
t/U—see Appendix E for a related discussion when |t/U | 

1. This fragmentation picture will be approximately valid
when U � t . In the presence of the tilted potential up to R � 6
when the positive gradient part of the potential (∂V/∂n > 0)
grows with an increase in R [Figs. 7(a) and 7(b)], the number
of fragmented subspaces Ncl grows with R; cf. the red and blue
curves in Fig. 8. Beyond R > 8, an increase of R shrinks the
positive gradient part in the tilted potential, which increases
the number of states inside each fragmented part and the total
number of fragmented parts Ncl reduces; cf. the red and blue
curves in Fig. 8. A similar effect is also visible from the
growing subpeak volumes in the number of state distributions
in Figs. 1(b) and 1(c). This qualitatively explains the decay
of participation entropy SZ with an increase in R for R < 7
and the growing SZ beyond R � 7 with an increase of R, e.g.,
Fig. 3 for a fixed U . Note that the blue curves in Fig. 8 are
without the restriction to the spin-flip symmetric subspace, as
compared to the red curves. In the spin language without the
hopping term ≡ the red curves, the energy of any eigenstate
from symmetric space will be the same as that of its antisym-
metric partner eigenstate. Therefore, for the red curves, Ncl

and the ratio Dgmax/D will be the same with and without the
symmetric space restriction.

In Fig. 3 the critical R = Rc increases with system size L at
fixed U , while at the same time it decreases with U at fixed L.
To make any proper conclusion, we require data from many
larger system sizes (numerically inaccessible), because of the
discreteness of the possible values of R. Nevertheless, we can
try to estimate Rc from the analytical expression Eq. (7) for
the tilted potential, which is valid for arbitrary R and L. We
consider the perturbative |t/U | regime. The highest number
of fragmented subspaces appears around R = 6 in Fig. 8. Near
the same order of R ≈ 8, the triangular potential well formed
by the tilted potential is prominent in Fig. 7, i.e., when the
length of the lattice regions Lp, where the tilted potential
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FIG. 9. Length of the part of the lattice Lp where the tilted po-
tential has positive gradient as a function of R for different system
sizes L.

has a positive gradient ∂V/∂n > 0, takes the maximum value.
Figure 9 shows the length of the part of the lattice equal to
Lp, where the tilted potential has a positive gradient as a func-
tion of R for different system sizes L = 500, 750, 1000. The
L − Lp part of the lattice contains a nonpositive gradient of
the tilted potential. It is evident that the Lp reaches maximum
when R/L ≈ 0.5. Therefore, we expect at the thermodynamic
limit Rc/L � 0.5. This is a rough estimation, and extra mod-
ifications will come from two-body interaction parts and the
hopping, over the effect of triangular potential.

On the other hand, we observe an ergodic-to-nonergodic
transition in Figs. 4(e) and 4(f) where Uc < 1. In this case,
the hopping strength t = 1 in the original Hamiltonian is
relatively larger than the gaps between nearest fragmented
clusters discussed above. This leads to mixing between dif-
ferent fragmented parts of the Hilbert space. Therefore, the
previous explanation based on the fragmentation at the limit
|t/U | 
 1 will hardly work in this context. We keep the ex-
planation for the nonmonotonic behavior of Uc(R) as an open
question.

IV. THE PRESENCE OF QUASIPERIODIC DISORDER

The clean Hamiltonian is a diagonal matrix in its eigen-
basis. In general, an additive disorder potential will not be
diagonal in the same basis, and it will carry some off-diagonal
parts that will act as tunneling between the eigenbasis states
of the clean Hamiltonian. Therefore, disorder can enhance the
localization volume in accessible Hilbert space compared to
the clean localized system provided the latter is strongly local-
ized. When the disorder strength becomes comparable to the
gaps between nearest energy eigenvalues of the clean system,
the localization volume reaches maximum. This is usually
true when the disorder is weak compared to the hopping and
potentials of the clean Hamiltonian—cf. a similar result in a
flatband system [74]. When the disorder becomes stronger,
the eigenstate properties change completely, and one expect
to see Anderson-localization-like phenomena. A similar fea-
ture can happen for our model. To understand the anomalous
localization behavior better and to check its robustness, we
add quasiperiodic disorder on the original clean Hamiltonian

[Eq. (1)]. The new Hamiltonian reads

Hdis = HR + W

2

L−1∑
n=0

cos(2πβn + πϕ)σ z
n , (8)

where β is the golden ratio = (
√

5 + 1)/2, and the site-
independent phase ϕ is a random number picked from a
uniform distribution ∈ [0, 1]. This model is related to the
truncated Schwinger model in the presence of disordered mass
or chemical potential [Eq. (A1)]. Note that such on-site dis-
order breaks the spin-flip symmetry that was present in the
clean Hamiltonian. Therefore, in the disorder case, instead
of considering only the symmetric sector, we consider sym-
metric and antisymmetric blocks together, i.e., the dimension
of the Hilbert space is now D = (L!)/[(L/2)!]2. The additive
disorder term changes the structure of the potential function;
cf. VR [Eq. (7)]. Although it is impulsive to think that the
disorder with homogeneous strength W is negligible for the
major right part of the chain because of the large tilted po-
tential, it is not true in general. In the presence of a linear
potential, the eigenenergy levels are separated by a certain
gap. Without interaction even in the presence of hopping, the
eigenstates are localized around each lattice site. This is true
irrespective of the location of the lattice site. The main point
of interest comes when the disorder connects these different
energy levels. In this case, the local potential from the lin-
ear part is not important as it can always be scaled down
by subtracting an irrelevant constant potential; only the en-
ergy gap is important. For example, the eigenstate properties
are the same for the two Hamiltonians H = F

∑L−1
n=0 nN̂n +

hopping part and H = F
∑L−1

n=0 (n − L/2)N̂n + hopping part.
The gap between nearest energy levels is F . The localization
properties of the system start to change when the disorder
strength W ∼ F [75]. Complexity arises through the presence
of two-body interaction and the nonlinear part of the tilted
potential [Eq. (7)].

For computational convenience, we choose L = 14 and
U = 1.2 and show the participation entropies S as a function
of disorder strength W for variation of interaction ranges in
Fig. 10. The shown plots of S are averaged over the set Z
[Eq. (5)] and scaled by the logarithm of the Hilbert space
dimension lnD.

Figure 10 reveals that the same anomalous behavior of
localization volume observed for the clean system is preserved
at weaker disorder for all ranges. Introducing disorder with
W = 0.1 on the clean system reduces the localization volume
or S for all ranges of interaction. For stronger disorder, the
system comes up with more exotic anomalous behaviors. For
R � 8 [Figs. 10(a) and 10(b)] we see an initial increase of
localization volume with an increase of W , and a decrease
of it upon a further increase of W. In the approximate frag-
mentation picture, the disorder induces a transition between
different parts of the fragmented Hilbert space, which results
in growing correlations between them and the corresponding
enhancement of the localization volume. The peaks occur
when the disorder induces resonance. The increase of S is
more prominent for the ranges R ∈ {1, 3, 4, . . . , 8} when the
fragmentation-induced localization is observed in Fig. 3. The
required W increases for longer R as the energy required to
induce resonance between different fragmented sectors in-
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FIG. 10. Participation entropy SZ which is averaged over the
set Z and over 150 random realizations of angle ϕ, as a function
of W and R. L = 14, U = 1.2, D = 3432. Each inset is the same
as the corresponding main plot but with error bars having vertical
lengths two times the standard deviations calculated over the random
realizations. Only two alternative data points are plotted in the insets
for better visibility. In the last subfigure (d) we exclude the W = 0
cases.

creases. For a very strong disorder, the system starts to show a
monotonically decreasing localization volume, which is simi-
lar to the disorder-induced many-body localization.

The spectral gap analysis is shown in Fig. 11. For the
longest R = (L − 1) the system is in the ergodic regime for
smaller W , while for larger W it starts to enter into the
nonergodic regime. For all other ranges at some intermediate
value of W , we see either an increase of rZ or a slowdown in
the transition from a maximum to minimum value. We relate
this phenomenon with the disorder-induced local ergodicity

FIG. 11. Spectral gap ratios averaged over the set Z and over 150
random realizations of angle ϕ, as a function of W and R. L = 14,
U = 1.2. Each inset is the same as the corresponding main plot but
with error bars having vertical lengths two times the standard devi-
ations calculated over the random realizations. Only two alternative
data points are plotted in the insets for better visibility. We do not
include W = 0 cases here.

or correlation between different fragmented sectors. For very
large W , the system is near to a many-body localized regime.

V. CONCLUSION

We have discussed the localization properties of a 1D
XXZ spin model with ZZ interaction strength dependent on
the location of interacting spins for different ranges of in-
teractions. Our model resembles a lattice Schwinger model
(quantum-electrodynamics with a zero time-component of
the gauge potential) with a truncated range of interaction.
The work shows that the localization properties do not change
monotonically with the change of interaction range as one
may naively expect. We explain this nonmonotonic behavior
as an interplay between approximate Hilbert space frag-
mentation [62–64] and an effective tilt potential induced by
longer-ranged interaction. We were able to consider moder-
ate system sizes so the exact scaling of the critical range of
interaction Rc for which the localization volume is minimum
remains an open question. Based on the nature of the tilting
potential, we roughly estimate a linear behavior: Rc/L � 0.5,
and an additional dependence from the hopping and two-body
interaction terms may arise. The nonmonotonic effect remains
unchanged in the presence of weaker disorder potentials. Our
work contributes to the important question of many-body
system properties under long-range interactions, which has
an increasing physical relevance. It helps us to understand
the nature of Coulomb-type interaction as well as the lattice
gauge theory models in one dimension. The truncated or finite
range of interactions may be associated with the presence of a
charge screening or shielding effect.

In the future, we would like to extend to a higher-
dimensional lattice where the nature of the interaction could
change from linear to logarithmic or in different ways [55]. In-
troduction of sublattice structure and gauge potential flux can
introduce different phenomena that need to be investigated.

It is known that the usual XXZ model is simulatable
by ultracold Rydberg atoms interacting by van der Waals
forces [76], where the atom states are mapped to spin-up
and -down states. Tuning the van der Waals coefficients for
different sets of two Rydberg atoms, we could map the inho-
mogeneous linearly growing ZZ long-range interactions while
keeping the hopping term short-ranged [Eq. (1)]. One could
use the recently implemented XXZ setups in cold 7Li atoms in
optical lattices [77] where anisotropic ZZ interaction param-
eters can be set by locally controlling the applied magnetic
field. It may also be possible to implement our model using a
trapped ion-based digital quantum simulator [78].
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APPENDIX A: SIMILARITY OF OUR HAMILTONIAN
WITH THE MODIFIED LATTICE SCHWINGER MODEL

The lattice Schwinger Hamiltonian for the staggered
spinless fermions with the electromagnetic gauge potential
reads [56,57]

HSch = −i
L−2∑
n=0

(
ψ†

n eiφn,n+1ψn+1 − ψ
†
n+1e−iφn,n+1ψn

)

+ U
L−1∑

n=−1

E2
n,n+1 +

L−1∑
n=0

mn(−1)nψ†
n ψn. (A1)

It controls the dynamics of spinless fermion and antifermion
fields ψn coupled to U(1) gauge boson fields φn,n+1, which
act as vector potential with the temporal gauge, and En,n+1 is
the corresponding electric field and conjugate momentum of
φn,n+1. In the lattice representation, fermion fields are located
at lattice sites n while gauge fields are at the links between
sites. For the clean system we consider the massless case:
mn = 0. The presence and absence of particles (or antiparti-
cles) form two possibilities at each site n, i.e., Hilbert space
of dimension 2. The dynamical fermionic charge operator is
defined as

Fn = ψ†
n ψn − 1

2
[1 − (−1)n]

(
1 0
0 1

)
, ψ†

n ψn =
(

1 0
0 0

)

⇒ Fn=even = ψ†
n ψn, Fn=odd = −ψnψ

†
n . (A2)

In this notation, the particle can only sit at an even site and it
is annihilated by operator ψ , while the antiparticle can sit at
the odd site only and it is annihilated by operator ψ†. In the
presence of background static charges qn, the discrete Gauss
law reads

(En,n+1 − En−1,n − Fn)|
〉 = qn|
〉, (A3)

where |
〉 are the only allowed physical states. If we set

qn = − (−1)n

2
, (A4)

the Gauss law becomes

En,n+1 − En−1,n = 1

2

(
1 0
0 −1

)
= σ z

n . (A5)

The Jordan-Wigner transformation [79]

ψn =
n−1∏
j=0

[
2ie−iφ j, j+1σ z

j

]
σ−

n , (A6)

with Pauli spin matrices σ+
n = (0 1

0 0

)
, σ−

n = (0 0
1 0

)
, and σ z

n ,
causes the hopping part of the Hamiltonian to become

−
L−2∑
n=0

(σ+
n σ−

n+1 + σ−
n σ+

n+1), (A7)

which is the XX part of the usual XXZ spin chain model.

For our work, we modify the gauge field energy term of the
lattice Schwinger model with link gn dependent terms

U
L−1∑

n=−1

gnE2
n,n+1. (A8)

The hopping part [Eq. (A7)] and potential [Eq. (A8)] to-
gether form the modified lattice Schwinger Hamiltonian.

If we choose E−1,0 = 0 from Gauss law [Eq. (A5)], we
obtain

E0,1 = σ z
0 ⇒ E1,2 = σ z

1 + σ z
0

⇒ · · · ⇒ En,n+1 =
n∑

j=0

σ z
j . (A9)

Therefore, the energy term becomes

L−1∑
n=0

gnE2
n,n+1 =

L−1∑
n=0

gn

⎛
⎝ n∑

j=0

σ z
n

⎞
⎠

2

= g0
(
σ z

0

)2 + g1
(
σ z

0 + σ z
1

)2

+ g2
(
σ z

0 + σ z
1 + σ z

2

)2

+ · · · + gL−1

⎛
⎝L−1∑

j=0

σ z
j

⎞
⎠

2

. (A10)

We use the fact the (σ z
j )2 is proportional to the identity

and hence can be treated as an additional constant and is
unimportant, therefore up to these additional constants

L−1∑
n=0

gnE2
n,n+1 = 2σ z

0σ z
1

L−1∑
j=1

g j + 2
[
σ z

0σ z
2 + σ z

1σ z
2

] L−1∑
j=2

g j

+ 2
[
σ z

0σ z
3 + σ z

1σ z
3 + σ z

2σ z
3

] L−1∑
j=3

g j

+ · · · + 2

[
L−2∑
n=0

σ z
nσ z

L−1

]
gL−1. (A11)

To produce our model Hamiltonian [Eq. (1)] with the longest
range of ZZ interaction R = L − 1, we need to set

L−1∑
j=p

g j = p

2
; p = 1, 2, . . . , L − 1

⇒ g1 = g2 = · · · = gL−2 = −1

2
, gL−1 = L − 1

2
. (A12)

This is the gauge energy term in a lattice Schwinger Hamilto-
nian in the presence of a defect at a boundary. In the case of a
total zero magnetization sector, Eq. (A9) implies EL−1,L = 0.
Therefore, the defect will not appear in the potential part (A8).
For the shorter interaction range R < (L − 1), the Hamilto-
nian [Eq. (1)] represents a truncated version of the modified
Schwinger Hamiltonian.

APPENDIX B: PLOTS OF SZ FOR THE EXTENDED U

Figure 12 shows SZ for the extended U .
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FIG. 12. (a)–(d) SZ/ lnD as a function of interaction parameter
U � 0.05 for various L and R for the clean system.

APPENDIX C: MEAN GAP RATIO STATISTICS

The mean gap ratio [9,80–82] is a most useful and fre-
quently used measure to distinguish between ergodic and
localized dynamics in many-body systems. We define the
dimensionless gap ratio of two subsequent spacings between
eigenvalues εα ,

rα = min{εα+1 − εα, εα − εα−1}
max{εα+1 − εα, εα − εα−1} , (C1)

with α being the index of the sorted eigenvalues in ascending
order. The mean of rα in the eigenvalue interval studied is
rGOE ≈ 0.53 for the ergodic case and rPOI ≈ 0.386 for the
localized regular region [80]. Figure 13 shows the spectral gap
ratio r averaged over all α for which εα, εα±1 belong to the set
Z (5) as a function of U for different ranges. We labeled it as
rZ . The crossing points Uc in Figs. 4(e) and 4(f) correspond
to the rZ values corresponding to the entrance of the system
from the ergodic regime to the nonergodic regime.

APPENDIX D: DC FIELD POTENTIAL PART [EQ. (7)]
OF THE INTERACTING HAMILTONIAN

FOR A CLEAN SYSTEM

Here we derive the form of the tilted potential term for
general R after checking the expressions for a few special
ranges.

a. R = 1

We have

V1 = −U

2

L−2∑
n=0

(n + 1)(N̂n + N̂n+1)

= −U

2
N̂0 − U

2
(L − 1)N̂L−1 − U

2

L−2∑
n=1

(2n + 1)N̂n

= UL

2
N̂L−1 − U

2

L−1∑
n=0

2nN̂n − UL

4
, (D1)

FIG. 13. (a)–(d) Spectral gap ratio r averaged over the set Z as
a function of U for various L and R. 100 bins are used for all cases.
Subfigures (e), (f) are for L = 18 only.

where in the last term we used the total spin zero condition,
which implies a half-filled lattice

∑
n N̂n = L/2.

b. R = 2

We have

V2 = V1 − U

2

L−3∑
n=0

(n + 2)(N̂n + N̂n+2)

= −U

2
[2N̂0 + 3N̂1 + (L − 1)N̂L−1 + (L − 2)N̂L−2]

− U

2

L−3∑
n=2

(2n + 2)N̂n + V1

= −UL

2
− U

2
[N̂1 + (L − 3)N̂L−1 + (L − 4)N̂L−2]

− U

2

L−3∑
n=2

2nN̂n + V1

= −U

2
[3N̂1 + (2L − 5)N̂L−1 + (3L − 8)N̂L−2]

− U

2

L−3∑
n=2

4nN̂n

= U

2
[N̂1 + (2L + 1)N̂L−1 + LN̂L−2] − U

2

L−1∑
n=0

4nN̂n.

(D2)

In the penultimate line, we omitted the constant terms.
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c. R = 3

We have

V3 = V2 − U

2

L−4∑
n=0

(n + 3)(N̂n + N̂n+3)

= −U

2

⎡
⎣3N̂0 + 4N̂1 + 5N̂2 +

3∑
p=1

(L − p)N̂L−p

⎤
⎦

− U

2

L−4∑
n=3

(2n + 3)N̂n + V2

= −U

2

⎡
⎣N̂1 + 2N̂2 +

3∑
p=1

(L − p − 3)N̂L−p

⎤
⎦

− U

2

L−4∑
n=3

2nN̂n − 3UL

4
+ V2

= −U

2
[4N̂1 + 10N̂2] − U

2

L−4∑
n=3

6nN̂n

− U

2
[(3L − 9)N̂L−1+ (4L− 13)N̂L−2+ (5L− 18)N̂L−3]

= −U

2

L−1∑
n=0

6nN̂n + U

2
[2N̂1 + 2N̂2 + (3L + 3)N̂L−1

+ (2L + 1)N̂L−2 + LN̂L−3], (D3)

where again we omitted the constant term coming from the
total magnetization conservation.

Therefore, for a general R the resulting term reads

VR = −UR
L−1∑
n=0

nN̂n + U

2

R−1∑
n=0

n(R − n)N̂n

+ U

4

R∑
n=0

[2nL + n(n − 1)]N̂L−R+n−1. (D4)

APPENDIX E: HILBERT SPACE FRAGMENTATION AND
DERIVATION OUTLINE FOR AN EFFECTIVE

HAMILTONIAN BY THE SCHRIEFFER-WOLFF
TRANSFORMATION

At the limit t/U = 0, only the interaction part of the
Hamiltonian (1) survives. The corresponding eigenstates in
the space of zero total magnetization and symmetric under
the spin-flip operator

∏
n σ x

n form a set of disconnected
clusters [25], where each cluster consists of degenerate
eigenstates (for L � 6), and different clusters are separated by
large energy gaps at least of order ∼U/2. The Hilbert space is
strongly fragmented [62–64] as depicted in Fig. 14. We are not
aware of any symmetry that can justify the generation of such
separated clusters. The dimension of the largest degenerate
cluster Dgmax decreases exponentially with the increase of the
system size L compared to the total Hilbert space dimension
D (after resolving the symmetries). In the presence of

FIG. 14. (a), (b) The ratio of dimension of the largest degenerate
cluster = Dgmax and Hilbert space dimension D [Eq. (2)] as a func-
tion of system size L and interaction range R in log-linear scale. The
insets indicate the total number of clusters = Ncl as functions of L for
various R with the same color lines as for the main plots. (c) Gradient
g as a function of R, obtained by the straight line fits on the main plots
in subfigures (a) and (b) for the last four points {L = 12, 14, 16, 18}
(to avoid the finite-size effect). It indicates the decay of Dgmax/D as
gL with system size L for various R.

perturbative hopping (t 
 U ) we expect a change in energy
eigensystem properties within each cluster, and negligible
mixing between different clusters. For convenience, we define
H = HR/U and split the interaction part and the hopping part
H = Hhop + Hint [see Eq. (1)]. For a general R and L, the
hopping term Hhop = −(t/U )

∑L−2
n=0 (σ+

n σ−
n+1 + σ−

n σ+
n+1)

does not commute with the interaction part Hint. In such
cases, for the degenerate subspace belonging to a cluster,
the first-order (t/U )1 perturbative energy vanishes. The
hopping term (σ+

n σ−
n+1 + σ−

n σ+
n+1) only connects spins from

nearest neighbors, while mixing or changing the energy
spacing between nonperturbative degenerate states requires
long-range correlated hoppings. For example, within the
spin-flip symmetry and zero magnetization sector in L = 10,
the states (|• ◦ ◦ • • ◦ ◦ • •◦〉 + |◦ • • ◦ ◦ • • ◦ ◦•〉)/

√
2 and

(|◦ ◦ • • ◦ • ◦ ◦ ••〉 + |• • ◦ ◦ • ◦ • • ◦◦〉)/
√

2 are degenerate
having nonperturbative energy = −5U/4 for R = 1, where
“◦” indicates a spin-down state, and “•” indicates a spin-up
state. They are connected by the long-ranged hopping term
∼σ+

1 σ−
3 σ+

6 σ−
8 , where the lattice site index n = 0, 1, . . . is

counted from the left in the states vectors. For L = 18, the
states (|• ◦ ◦ • • ◦ ◦ • • ◦ ◦ • • ◦ ◦ • •◦〉 + | ◦ • • ◦ ◦ • • ◦ ◦
• • ◦ ◦ • • ◦ ◦ •〉)/

√
2, (|• ◦ ◦ • • • ◦ ◦ • ◦ ◦ • • ◦ • • ◦◦〉 +

|◦ • • ◦ ◦ ◦ • • ◦ • • ◦ ◦ • ◦ ◦ ••〉)/
√

2 are degenerate having
nonperturbative energy = −9U/4 for R = 1; they can be
connected by the long-ranged hopping term ∼σ+

5 σ−
7 σ+

14σ
−
16.

It seems that we need a longer range of hopping for longer
system size to connect all degenerate eigenstates within the
same cluster or fragmented subspace. This motivates us to
look for the higher-order (t/U )k�2 perturbative terms using
the Schrieffer-Wolff (SW) transformation.

We will use a similar procedure used in the Supplemental
Sec. IV of Ref. [25] or in Ref. [83]. The idea is to perform a
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unitary transformation controlled by an anti-Hermitian oper-
ator S which rotates the eigenstates perturbatively so that the
resulting effective Hamiltonian becomes block-diagonal in the
fragmented subspaces,

Heff = eS · H · e−S

= H + [S,H] + 1

2
[S, [S,H]] + · · ·

= Hint +
∞∑

k=1

(t/U )kH(k)
eff . (E1)

The effective Hamiltonian Heff will be derived such that all of
its terms up to a finite kth order (t/U )k will commute with the
nonperturbative Hamiltonian Hint, and Heff obeys the spin-
flip symmetry and zero magnetization conservation condition.
Therefore, the derived perturbative Hamiltonian can change
energy spacings between eigenstates within the same cluster
only. It is also possible that up to a leading order perturbation
each cluster further divides in many subclusters, which can
give rise to another type of fragmentation.

We also split the operator S in perturbation series

S =
∞∑

k=1

(t/U )kS(k). (E2)

The construction of S relies on the demand that all the off-
diagonal terms that connect different clusters will cancel out
at each perturbative order—see details in supplementary ma-
terial of Ref. [25]. At first order this means

Hnc
hop + [S(1),Hint] = 0, (E3)

where we split the hopping part in the commutative and
noncommutative parts Hhop = (t/U )(Hnc

hop + Hc
hop) such that

[Hnc
hop,Hint] �= 0 and [Hc

hop,Hint] = 0. For example, Hc
hop can

be like the folded hopping terms, which can induce further
fragmentation within each cluster [cf. Eq. (7) in Ref. [83]].
Up to second order, the effective Hamiltonian terms are

H(1)
eff = Hc

hop,

H(2)
eff = [

S(1),Hc
hop + (1/2)Hnc

hop

] + [S(2),Hint], (E4)

where S(2) will be derived based on the demand that
[S(2),Hint] will remove the irrelevant parts (which are non-
commutative with Hint) from the other term in H(2)

eff . Since we
are outlining the procedure, we will provide only S(1) for the
shortest range R = 1. For our R = 1 case,

Hc
hop = 0,Hint =

L−2∑
m=0

(m + 1)σ z
mσ z

m+1. (E5)

To derive the form of SW operator S(1), we take motivation
from the form given in Ref. [83]. We define projectors on the
spin-down and spin-up states at each lattice site n,

Pn = |◦〉〈◦| = 1
2 − σ z

n , Qn = |•〉〈•| = 1
2 + σ z

n . (E6)

The ansatz S(1) ∼ An−1σ
+
n σ−

n+1Bn+2 is taken where A, B is one
of the projectors P, Q. For convenience, we define

An
pp = Pn−1σ

+
n σ−

n+1Pn+2. (E7)

Similar definitions follow for An
pq, An

qp, and An
qq. The following

commutation relations will be used to derive S(1):

[An
pp, (m + 1)σ z

mσ z
m+1]

= δm,n−1n(−Pn−1/2)(−σ+
n )σ−

n+1Pn+2

+ δm,n+1(n + 2)Pn−1σ
+
n σ−

n+1(−Pn+2/2)

⇒
L−2∑
n=0

L−1∑
m=0

[
An

pp, (m + 1)σ z
mσ z

m+1

]

= −
L−2∑
n=0

Pn−1σ
+
n σ−

n+1Pn+2. (E8)

Note that the original interaction term Eq. (E5) does not carry
the term σ z

L−1σ
z
L , which we added in the above commutation

relation to obtain an identical coefficient = −1 for all n in
the final result of the commutator. Including this extra term
σ z

L−1σ
z
L in Eq. (E5) will not affect the dynamics if we staple the

spin configurations at the last two sites n = L − 1, L so that
the spin at extra added site n = L takes a fixed orientation de-
pending on the spin state at the previous site, either |••〉L−1,L

or |◦◦〉L−1,L, it will just add a constant term in the main Hamil-
tonian. Without this extra term, it is also possible to obtain the
commutator. As in Ref. [83], we consider P, Q operators at the
added sites n = −1, L, which will not influence the dynamics.
Henceforth we will include these considerations,[

An
pq, (m + 1)σ z

mσ z
m+1

]
= δm,n−1n(−Pn−1/2)(−σ+

n )σ−
n+1Qn+2

+ δm,n+1(n + 2)Pn−1σ
+
n σ−

n+1(Qn+2/2)

⇒
L−2∑
n=0

L−1∑
m=0

[
An

pq, (m + 1)σ z
mσ z

m+1

]

=
L−2∑
n=0

(n + 1)Pn−1σ
+
n σ−

n+1Qn+2, (E9)

[
An

qp, (m + 1)σ z
mσ z

m+1

]
= δm,n−1n(Qn−1/2)(−σ+

n )σ−
n+1Pn+2

+ δm,n+1(n + 2)Qn−1σ
+
n σ−

n+1(−Pn+2/2)

⇒
L−2∑
n=0

L−1∑
m=0

[
An

qp, (m + 1)σ z
mσ z

m+1

]

= −
L−2∑
n=0

(n + 1)Qn−1σ
+
n σ−

n+1Pn+2, (E10)

[An
qq, (m + 1)σ z

mσ z
m+1]

= δm,n−1n(Qn−1/2)(−σ+
n )σ−

n+1Qn+2

+ δm,n+1(n + 2)Qn−1σ
+
n σ−

n+1(Qn+2/2)

⇒
L−2∑
n=0

L−1∑
m=0

[
An

qq, (m + 1)σ z
mσ z

m+1

]

=
L−2∑
n=0

Qn−1σ
+
n σ−

n+1Qn+2. (E11)
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From Eqs. (E8)–(E11) we obtain

L−2∑
n=0

L−1∑
m=0

[
−An

pp + An
qq + An

pq − An
qp

n + 1
, (m + 1)σ z

mσ z
m+1

]

=
L−2∑
n=0

(Pn−1 + Qn−1)σ+
n σ−

n+1(Pn+2 + Qn+2)

=
L−2∑
n=0

σ+
n σ−

n+1. (E12)

Therefore, in order to satisfy Eq. (E3), we need

S(1) =
L−2∑
n=0

[
Pn−1(σ+

n σ−
n+1 − σ−

n σ+
n+1)

(
Qn+2

n + 1
− Pn+2

)

+ Qn−1(σ+
n σ−

n+1 − σ−
n σ+

n+1)

(
Qn+2 − Pn+2

n + 1

)]
.

(E13)

The S(1) carries nearest-neighbor hopping terms with pro-
jector constraints that are separated by three lattice unit
cells. Therefore, in H(2)

eff , which has a single S(1) operator in
the commutator [Eq. (E4)], we can perform correlated hop-
ping ∼σ+

n σ−
n+1σ

+
n+2σ

−
n+3 between sites separated maximally

by three unit cells. Similarly, H(3)
eff , which has a maximum

three S(1) operators in the commutator (cf. the Supplemental

Material of Ref. [25]), can perform hopping between dif-
ferent lattice sites which are separated by seven lattice unit
cells. Therefore, we expect the H(3)

eff will connect the ex-
ample states (|• ◦ ◦ • • ◦ ◦ • •◦〉 + |◦ • • ◦ ◦ • • ◦ ◦•〉)/

√
2

and (|◦ ◦ • • ◦ • ◦ ◦ ••〉 + |• • ◦ ◦ • ◦ • • ◦◦〉)/
√

2 discussed
at the beginning of this section. If H(3)

eff cannot connect all
the states within a cluster, we can check the next higher-
order perturbed effective Hamiltonian, and the iteration can
be performed until we obtain the leading-order correction that
will fulfill our demands. In general, H(k)

eff involves commuta-
tors where S(1) participates maximally k-number (k > 2) of
times, which implies H(k)

eff can carry hopping among lattice
sites separated by 2k + 1 lattice units ∼σ+

n · · · σ−
n+2k+1. Fi-

nally, the effective Hamiltonian Heff can carry both diagonal
and off-diagonal matrix elements with respect to the non-
perturbative degenerate eigenbasis, and Heff mixes different
eigenstates within an individual cluster. As a result, the Krylov
space (related to each of the fragmented Hilbert subspaces)
restricted thermalization can arise [83].

Following a similar procedure as in Eqs. (E8)–(E13), one
can derive the expression for the full SW operator S for
arbitrary R. For all the cases, we expect mixing among states
within a cluster only because of resonance, and no mixing
among states from different clusters because of off-resonance
(large energy gaps). Hence the fragmentation structure of
Hilbert space will be well maintained for perturbative t/U .
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