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Physics-informed neural networks for solving functional renormalization group on a lattice
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Addressing high-dimensional partial differential equations to derive effective actions within the functional
renormalization group is formidable, especially when considering various field configurations, including inho-
mogeneous states, even on lattices. We leverage physics-informed neural networks (PINNs) as a state-of-the-art
machine-learning method for solving high-dimensional partial differential equations to overcome this challenge.
In a zero-dimensional O(N ) model, we numerically demonstrate the construction of an effective action on an
N-dimensional configuration space, extending up to N = 100. Our results underscore the effectiveness of PINN
approximation, even in scenarios lacking small parameters such as a small coupling.
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I. INTRODUCTION

The utilization of the functional renormalization group
(FRG) [1–4] has gained widespread popularity as a nonper-
turbative theoretical tool across diverse fields, encompassing
high-energy physics, condensed-matter physics, and statistical
physics (see Refs. [5–8] for comprehensive reviews). Central
to the FRG is the utilization of functional differential equa-
tions (FDE), such as the Wetterich equation [4], which plays a
pivotal role in describing the flow within the renormalization
group (RG). Notably, the self-determination of the effective
action (encompassing all the correlation information of a sys-
tem) through the Wetterich equation enhances the precision
and comprehensiveness of the FRG formalism. Despite these
advantages, the absence of universal, efficient, and accurate
algorithms for solving FDEs hampers an easily accessible and
accurate determination of various properties. The quest for
such algorithms or useful approximation schemes remains an
open problem.

Power series expansions, such as the vertex expansion (the
functional Taylor expansion) and the derivative expansion, are
commonly employed in solving the FRG. In these approaches,
the Wetterich equation transforms into an infinite hierarchy
of differential equations for the expansion coefficients. These
coefficients are subsequently truncated in a certain order to
facilitate approximate solutions. However, the effective ac-
tion �[ϕ] is only valid for specific field configurations ϕ(x),
where x is a spatiotemporal coordinate. For instance, the ef-
fective action derived from the vertex expansion is valid in
the vicinity of the expansion point ϕ(x) ≈ ϕexp(x), while that
obtained from the derivative expansion is applicable when
ϕ(x) ≈ const. In these cases, prior knowledge of the field’s
ground state is a prerequisite for calculations, limiting the
ability to capture complex structures such as inhomogeneous
states. Moreover, enhancing the accuracy of results often
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entails computationally demanding efforts in improving the
truncation order.

The application of FRG extends beyond continuum mod-
els and is commonly employed in lattice models as well
[7,8]. On a finite lattice, the Wetterich equation becomes an
(NDOF + 1)-dimensional partial differential equation (PDE)
involving NDOF degrees of freedom for the field variables and
the RG scale. While a finite-dimensional PDE might appear
more amenable to numerical analysis than an FDE, the com-
putational complexity of calculations with a large NDOF grows
exponentially when a computational grid is assigned to each
field component. Therefore, even in lattice models, approxi-
mations based on power series expansions remain commonly
employed.

This study aims to demonstrate that machine learning of-
fers a framework for solving the FRG applied to lattice models
with large NDOF as an alternative to power series expansions.
Among the array of recently developed machine-learning
methods for handling high-dimensional PDEs [9–21], we
leverage the physics-informed neural networks (PINNs)
[9,11,19]. PINNs can be applied to various PDEs and in-
volve optimizing a differentiable neural network (NN) to
satisfy PDE and boundary conditions, providing a solution
for a domain of input variables’ space rather than a single
point. Because of its grid-free characteristic, PINNs are par-
ticularly advantageous for handling high-dimensional inputs,
as demonstrated in recent applications to high-dimensional
PDEs [22–28], including 105-dimensional cases [26,28]. In
such scenarios, the limitations imposed by NDOF are naturally
expected to relax, implying the possibility of simultaneously
constructing effective actions for various field configurations,
including inhomogeneous states. Moreover, the universal ap-
proximation theorem [29–31] suggests that NNs can serve as
accurate approximations for effective action.

In the subsequent sections, we present a PINN-based
method for solving the FRG applied to a lattice (PINN-
LFRG). We outline a methodology for representing the
effective action using a differentiable NN, which is trained
to satisfy the Wetterich equation. Furthermore, we provide
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numerical demonstrations of the scalability and accuracy of
this approach in the zero-dimensional O(N ) model. Here,
PDEs with NDOF + 1 = N + 1 � 101 dimensions are solved
within a few hours. The effective action and self-energy are
computed across a domain of the field space simultaneously,
exhibiting superior or comparable accuracies when contrasted
with results obtained through perturbative and large-N ex-
pansions, spanning various choices of coupling strength and
N . Additionally, the O(N ) symmetry for the effective action
is successfully reproduced through training on the Wetterich
equation. These findings underscore the feasibility of utilizing
NNs to approximate the effective action even without a small
parameter, such as a small coupling. We note that our purpose
of solving FRG flow equations differs from that in a recent
machine-learning-based FRG study [32], which focuses on
the dimensionality reduction of the four-point vertex function
as given by FRG.

The remaining part of this paper is organized as follows: In
the following section (Sec. II), we briefly summarize the FRG
formulation for bosons in a lattice and illustrate our idea for
applying PINNs to solve the Wetterich equation. In Sec. III,
we present a numerical demonstration of our approach in the
zero-dimensional O(N ) model. Section IV is devoted to the
conclusions.

II. GENERAL FORMULATION

We focus on the FRG applied to bosons in a d-dimensional
space-time lattice. The action is represented by S(ϕ), where
ϕ = {ϕn,α}n,α is a real bosonic field. Here, the d-dimensional
vector n indicates a lattice site and α is the internal degrees of
freedom index. The total degrees of freedom for this system
are given by NDOF = V NIDOF, where V denotes the lattice
volume, and NIDOF is the internal degree of freedom. The
imaginary-time formalism is employed, and all quantities are
expressed in lattice units.

We adhere to the formalism outlined by Wetterich [4].
Following this formalism, a regulator term is introduced into
the action to induce the RG flow,

Sk (ϕ) = S(ϕ) + 1

2

∑
n,α,n,α′

ϕn,αRαα′
k,n−n′ϕn′,α′ . (1)

The regulator Rαα′
k,n−n′ is a predefined function acting as an

artificial mass, designed to dampen fluctuations with momenta
smaller than the RG scale k. In the momentum space, the
regulator must adhere to the following conditions:

lim
p2/k2→0

R̃k (p) > 0, (2a)

R̃kIR→0(p) = 0, (2b)

R̃kUV→∞(p) = ∞. (2c)

For simplicity, we have omitted the indices for the internal de-
grees of freedom. The first condition signifies the suppression
of infrared fluctuations, while the second condition ensures
that all fluctuations are included at a small infrared scale
kIR. The final condition is crucial for determining the initial
condition of the RG flow. It ensures that the system becomes
classical, described by SkUV (ϕ), at a large ultraviolet scale kUV.
In terms of the path integral introduced below, this condition

validates the saddle-point approximation at k = kUV. Com-
pared to the continuous one, the distinctions in the lattice
setup lie in the dispersion relation and the restriction of the
momentum to the Brillouin zone. An appropriate regulator
choice that accommodates these differences is discussed in
Ref. [33].

With this regulator, one can define the effective average
action �k (ϕ), which interpolates between the bare action S(ϕ)
and the effective action �(ϕ). The definition is

�k (ϕ) = sup
J

⎛
⎝∑

n,α

Jn,αϕn,α − ln Zk (J)

⎞
⎠

− 1

2

∑
n,α,n,α′

ϕn,αRαα′
k,n−n′ϕn′,α′ , (3)

with the path-integral form of the partition function

Zk (J) =
∫

dϕe−Sk (ϕ)+ad ∑
n,α Jn,αϕn,α . (4)

The condition limk→0 �k (ϕ) = �(ϕ) immediately follows
from Eq. (2b). From the saddle-point approximation validated
by Eq. (2c), we have �kUV (ϕ) = S(ϕ) + const. The RG flow
equation is derived as an (NDOF + 1)-dimensional PDE by the
derivative of Eq. (3) with respect to k,

∂k�k (ϕ) = 1

2
tr

[
∂kRk

(
∂2�k (ϕ)

∂ϕ∂ϕ
+ Rk

)−1
]
, (5)

which is known as the Wetterich equation. Here, the inverse is
defined by

∑
n′α′

(
∂2�k (ϕ)

∂ϕ∂ϕ
+ Rk

)−1

nα,n′α′

(
∂2�k[ϕ]

∂ϕn′,α′∂ϕn′′,α′′
+ Rα′α′′

k,n′−n′′

)

= δn,n′′δαα′′ . (6)

In principle, Eq. (5) determines �(ϕ), encompassing all the
thermodynamic properties and correlations. Typically, Taylor
series expansions, including vertex and derivative expansions,
are employed. These expansions yield an approximate calcu-
lation of �(ϕ) for a specific configuration of ϕn,α . However,
there is currently no established method to accurately and
efficiently obtain �(ϕ) for a broad domain of the ϕn,α space.
Our goal is to propose a promising candidate for such a
method.

A. PINNs for the Wetterich equation

Initially, calculations involving large NDOF may appear
computationally challenging, given their complexity, which
grows exponentially when a grid is associated with each com-
ponent ϕn,α . However, our approach is rooted in the resilience
of PINNs to this issue, given its grid-free nature and appli-
cability to high-dimensional PDEs [22–28]. In PINNs, the
solution is represented by a differentiable NN, eliminating
the need for discretization in numerical differentiation. The
NN is optimized to satisfy the PDE and the boundary condi-
tions (BCs) using backpropagation. The optimization function
may take the form L = LPDE + λLBC [19], where LPDE (LBC)
reaches its minimum if, and only if, the NN satisfies the PDE
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(BC) for any input, and λ is a positive hyperparameter to
adjust the relative scale of the two terms.

The presence of both terms LPDE and LBC can pose
challenges. For example, tuning λ for efficient optimization
convergence can be required. However, in our case of the
initial value problem, LBC can be omitted with an appropriate
choice of the ansatz on �k (ϕ) similar to Ref. [11]. We make
such an ansatz based on the decomposition,

�k (ϕ) = S(ϕ) + �RG(l,ϕ), (7)

where l = ln(kUV/k). Since the initial condition is �kUV (ϕ) =
S(ϕ), the RG-induced part �RG(l,ϕ) satisfies �RG(0,ϕ) = 0.
We further decompose �RG(l,ϕ) as

�RG(l,ϕ) = γfree(l ) + γ (l,ϕ). (8)

Here, γfree(l ) represents the constant term originating from
the free quadratic term Sfree(ϕ) of S(ϕ). In other words, it is
the solution when �k (ϕ) on the right-hand side of Eq. (5) is
substituted by Sfree(ϕ). The remaining term γ (l,ϕ) constitutes
the nontrivial interaction-induced part, corresponding to the
shift in the free energy. By imposing γ (0,ϕ) = 0, we replace
γ (l,ϕ) with an NN. A conceivable choice is

γ (l,ϕ) ≈ γ (l,ϕ; θ) = NNθ (l,ϕ) − NNθ (0,ϕ), (9)

where NNθ (l,ϕ) is a differentiable NN with parameters θ.
A possible choice of L = LPDE to train γ (l,ϕ; θ) is

Lθ = E
ϕ∼Pϕ

l∼Pl

⎡
⎢⎣

⎛
⎝∂l�

θ
k (ϕ) − 1

2
tr∂lRk

(
∂2�θ

k (ϕ)

∂ϕ∂ϕ
+ Rk

)−1
⎞
⎠

2
⎤
⎥⎦,

(10)

with �θ
l (ϕ) = S(ϕ) + γfree(l ) + γ (l,ϕ; θ), we introduce prob-

ability distributions Pϕ and Pl , defined for the ϕ space and
l ∈ [0, lend], with lend = ln(kUV/kIR ), respectively. In practice,
the expectation value is approximately evaluated using a finite
number of collocation points {(l (i),ϕ(i) )}Ncol

i=1 sampled accord-
ing to Pϕ and Pl . Naively, if one is interested in a specific
configuration ϕ = ϕtarget, then Pϕ should be chosen as to
sample the neighborhoods of ϕtarget at high rates. A caveat
is that, even in such a case, Pϕ should be sufficiently broad
for learning ϕ derivatives, i.e., the ϕ dependence of γ (l,ϕ; θ).
We surmise that the breadth should have the scale of the
fluctuation

√〈(ϕn,α − ϕtarget,n,α )2〉 for each direction ϕn,α to
describe correlations.

The PINN-LFRG method described above is expected
to offer advantages for complex structures, such as inho-
mogeneous states, over conventional FRG approximations.
Specifically, the PINN-LFRG demonstrates improved scaling
of computational complexity with respect to NDOF compared
to the vertex expansion, as illustrated in Appendix A.

III. NUMERICAL DEMONSTRATION IN THE
ZERO-DIMENSIONAL O(N) MODEL

To illustrate how PINN-LFRG works, we apply it to the
zero-dimensional O(N ) model, which possesses an exact

FIG. 1. The schematic picture of our NN architecture for the
interaction-induced effective action γ (l, ϕ).

solution. The action is given by

S(ϕ) = 1

2
m2ϕ2 + g

4!
(ϕ2)2, (11)

where ϕ = (ϕ1, . . . , ϕN ) represents an N-component scalar
field, and m and g are the mass and coupling, respectively.

This model gives the total degree of freedom by NDOF =
NIDOF = N due to V = 1. We investigate the scalability with
respect to NDOF by increasing N [34]. We also assess accuracy
by comparing the results of the interaction-induced effective
action γ (l,ϕ) and the RG-induced self-energy σα (l,ϕ) =
∂2γ (l,ϕ)/∂ϕ2

α to those from the exact calculation, perturba-
tive expansion up to the leading order, and large-N expansion
up to O(1), which are summarized in Appendix B. Note that
g̃ = Ng/m4 is the dimensionless control parameter determin-
ing the perturbative region as g̃ 
 1 due to 〈ϕ2〉 ∼ N/m2 [35].
With the regulator Rαα′

k = k2
UVe−2lδαα′ , our parameters satisfy

m2/k2
UV = 0.01 and g̃ 
 100, which validate the stationary

point approximation at l = 0 and realize �kUV (ϕ) ≈ S(ϕ). We
set lend = 5. Our ansatz on γ (l,ϕ) is based on Eq. (9). Our
NNθ (l,ϕ) is a fully connected NN composed of three hidden
layers with 256 units per layer and the differentiable softplus
activation function. We find that this choice of NN shows
successful convergence in the pretraining described below.
Figure 1 depicts a schematic of our proposed NN architecture
for γ (l,ϕ).

In our experience, the regularity of the matrix ∂2
ϕ�θ

k (ϕ) +
Rk , which is needed for the matrix inverse in Eq. (10), is
frequently broken for randomly chosen θ. We find that pre-
training with some approximate analytical results remedies
this problem. Specifically, we use the result of the first-order
perturbation γ 1pt (l,ϕ), employing the following optimization
function:

Lpre
θ

= E
ϕ∼Pϕ

l∼Pl

[(γ (l,ϕ; θ) − γ 1pt (l,ϕ))2]. (12)

It should be noted that for stabilizing training on the Wetterich
equation, the approximate solution does not always need high
accuracy. In fact, when we use γ 1pt (l,ϕ) during the pretrain-
ing phase, it significantly aids in successful training, even in
nonperturbative cases, such as g̃ = 10.

The Adam optimizer [36] is utilized to train the NN with
Eqs. (10) and (12). All computations are executed on an
NVIDIA A100 GPU with 40 GB of memory. Additional
details about our training procedures are in Appendix C. The
code for our numerical experiment is available at Ref. [37].
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FIG. 2. γ (l, ϕ) and σ (l, ϕ) in the case of N = 1 and g̃ = 1. (a) l
dependence at ϕ = 0 and (b) ϕ dependence at l = lend. Results of the
PINN-LFRG (red-solid line), the pretrained model (magenta-dashed
line), exact calculation (black-dashed line), perturbative expansion
(green-dotted-dashed line), and large-N expansion (blue-dotted line)
are represented.

We conducted computations for all the combinations of
N = 1, 10, 100 and g̃ = 0.1, 1, 10. In each case, the compu-
tational time for training is kept within 11 hours, ensuring the
convergence of Lθ and physical quantities; see Appendix C for
details. Figure 2 illustrates the results of γ (l, ϕ) and σ (l, ϕ)
for N = 1 and g̃ = 1. Specifically, the plot depicts the l de-
pendence at the vacuum expectation value ϕ = 0 and the ϕ

dependence at l = lend. The results from exact calculations,
perturbative and large-N expansions, and the model after the

FIG. 3. γ (l, ϕeα ) and σα (l, ϕeα ) in the case of N = 100 and
g̃ = 1. (a) l dependence at ϕ = 0 and (b) ϕ dependence at l = lend.
The outcomes of PINN-LFRG are presented as the N = 100 lines,
except for γ (l, 0), where each line corresponds to a different choice
of α.

pretraining are also presented. The perturbative and large-N
expansion results show considerable deviations from the exact
ones since both g̃ = 1 and 1/N = 1 are not small. Notably,
the training of the Wetterich equation successfully shifts val-
ues from those obtained by the perturbation approach toward
the exact results. In all instances, our PINN-LFRG approach
exhibits higher accuracy than the perturbative method and
large-N expansions. It is crucial to highlight that our approach
provides solutions over a broad domain of ϕ, in contrast to the
limitations of the vertex expansion method. Figure 3 illus-
trates the result for N = 100 and g̃ = 1. With the exception of

TABLE I. Relative errors of γ = γ (lend, 0) and σ = σ (lend, 0) compared to the exact values in percentage. The results of the perturbation,
large-N expansion, and PINN-LFRG are displayed. For PINN-LFRG, we present the ambiguity of the relative error of σ estimated from the
standard derivation (denoted by 
σ ). The minus sign indicates underestimation. The best values in each column are highlighted with bold
font.

N 1 10 100

g̃ 0.1 1 10 0.1 1 10 0.1 1 10

γ 6.2 47 275 2.1 19 129 1.7 15 110
Perturb. (%)

σ 7.6 51 228 2.3 19 109 1.7 15 92
γ −65 −57 −40 −16 −14 −8.4 −1.9 −1.6 −0.95

Large-N (%)
σ −65 −56 −42 −16 −13 −8.2 −1.9 −1.5 −0.89
γ −2.0 −2.2 −2.8 −1.9 −2.1 −2.3 −1.9 −2.0 −2.3

PINN-LFRG (%) σ −0.17 0.12 0.76 0.16 0.46 0.42 −0.011 0.44 0.50

σ 0 0 0 0.27 0.18 0.24 0.38 0.29 0.26
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FIG. 4. Absolute values of the relative errors of γ = γ (lend, 0)
compared to the exact values as a function of N . All the cases
of PINN-LFRG, perturbation, and large-N expansion with g̃ =
0.1, 1, 10 are depicted.

γ (l, 0), our results are presented as the N = 100 lines corre-
sponding to the N directions in the ϕ space. This includes all
the α = 1, . . . , 100 cases of γ (l, ϕeα ) and σα (l, ϕeα ), where
eα denotes the unit vector in the ϕα direction. The PINN-
LFRG results for different α closely match, with differences
being imperceptible in γ (lend, ϕeα ) and σα (l, 0)/m2. Even in
σα (lend, ϕeα ), all the results from our approach are as close to
the exact result as those of the large-N expansion, which is
expected to be accurate for N = 100. These findings indicate
that the NN automatically captures the O(N ) symmetry, en-
abling a simultaneously accurate solution for a domain of the
high-dimensional configuration space.

Table I summarizes the relative errors of γ (lend, 0) and
σ (lend, 0) compared to the exact values for all values of N
and g̃. In the case of PINN-LFRG for N > 1, we deter-
mine σ (lend, 0) by averaging σα (lend, 0) with respect to α =
1, . . . , N , and we derive the standard deviation. To show the
tendency, we plot the absolute values of the relative errors of
γ (lend, 0) compared to the exact values as a function of N in
Fig. 4; almost the same tendency is seen for σ (lend, 0). For all
N and g̃ values, the errors of PINN-LFRG are within 3% for
γ (lend, 0) and 1% for σ (lend, 0) even if the standard deviations
are taken into account. Particularly, PINN-LFRG is accurate
even for the nonperturbative and small-N regions, where both
the perturbative and large-N expansions break down. This
suggests that the NN is a promising tool for providing accu-
rate approximation independently of the existence of a small
parameter.

IV. CONCLUSIONS

This study introduces PINN-LFRG as a framework for
solving the Wetterich equation on a finite lattice. The approach
demonstrates the ability to simultaneously derive an effective
action for various field configurations. The proposed proce-
dure involves representing the effective action through an NN

and optimizing it. The demonstration in the zero-dimensional
O(N ) model indicates the feasibility of calculations involving
a substantial number of degrees of freedom, around 102 or
more, with NNs effectively approximating the effective action
without the reliance on a small parameter.

Our analysis can be readily extended to models incorporat-
ing temporal and spatial degrees of freedom. An intriguing
avenue for further exploration is the investigation of inho-
mogeneous states in scalar models, such as solitons, within
our framework, building upon existing work on this topic
[38–40]. Extending the approach to fermionic systems poses
a substantial challenge since there is currently no efficient
method for constructing NNs for Grassmann variables. How-
ever, one could apply our approach to fermionic systems by
introducing bosonic auxiliary fields, for example. An exciting
application in this direction is the adaptation of our method to
density functional theory [41–43], a standard tool for analyz-
ing many-body systems. This has been extended to apply to
lattice models, such as the Hubbard model [44]. We anticipate
that our approach holds promise for the FRG-based formalism
of density functional theory, a framework that has seen recent
developments [45–57].

ACKNOWLEDGMENTS

The author thanks Taiki Miyagawa for carefully reading
the manuscript and making valuable comments. The author
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APPENDIX A: COMPARISON OF COMPLEXITY

As delineated in the main text, the PINN-LFRG approach
is anticipated to offer advantages for analyzing complex
structures, such as inhomogeneous states, when compared to
conventional methods, including the vertex expansion. We
discuss this advantage from the perspective of computational
complexity. In the context of the lattice setup described in the
main text, we concentrate on the scaling relative to NDOF.

The derivative expansion is ineffective for systems with
large field gradients, which may be described by the ver-
tex expansion, albeit at a significantly greater computational
cost than in homogeneous cases. The computational complex-
ity for the ith-order vertex expansion scales as O(Ni+2

DOF) or
O(Ni+3

DOF), derived as follows: The ith-order vertex expansion
around an inhomogeneous field profile ϕ = ϕinhom produces
the flow equations for

�
( j)
k;n1,...,n j

= ∂ j�k (ϕinhom )

∂ϕn1 · · · ∂ϕn j

( j = 0, . . . , i), (A1)

where n1, . . . , n j are site indices. For simplicity, we have
omitted the internal degrees of freedom introduced in the
main text. The computational bottleneck is the calculation of
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�
(i)
k;n1,...,ni

, governed by the following flow equation:

∂k�
(i)
k;n1,...,ni

= 1
2 tr

[
matrix products of ∂kRk ,

[
�

(2)
k + Rk

]−1
, and[

�
( j)
k;m1,...,mj−2

]
( j = 3, . . . , i + 2)

]
, (A2)

where [�( j)
k;m1,...,mj−2

] is an NDOF × NDOF matrix defined by

[
�

( j)
k;m1,...,mj−2

]
n,n′ = �

( j)
k;m1,...,mj−2,n,n′ (A3)

and each ml (l = 1, . . . , j − 2) represents any of
n1, n2, . . . , ni. The computational complexity of evaluating
the trace is O(N2

DOF) or O(N3
DOF) depending on the algorithm

[58]. Since the flow equation is calculated for all combinations
of (n1, . . . , ni ), the complexity escalates to O(Ni+2

DOF) or
O(Ni+3

DOF). In contrast, in homogeneous cases, the complexity
is only O(Ni

DOF), as the number of independent components
of �

(i)
k;n1,...,ni

is O(Ni−1
DOF) and the trace evaluation requires

merely O(NDOF) due to translational symmetry.
The complexity of the PINN-LFRG model is assessed as

either O(N2
DOF) or O(N3

DOF), depending on the specific algo-
rithm employed. This complexity arises primarily due to the
evaluation of the trace in Eq. (10). These findings indicate
that for large values of NDOF, the computational demands of
the PINN-LFRG are potentially less than those of the vertex
expansion, even at the second order, where the complexity
reaches O(N4

DOF) or O(N5
DOF). For a more comprehensive

comparison, further discussion of the influence of additional
factors, such as network size, on the total numerical effort
would be desirable.

APPENDIX B: EXACT CALCULATION, PERTURBATIVE
EXPANSION, AND LARGE-N EXPANSION IN THE

ZERO-DIMENSIONAL O(N) MODEL

We summarize the numerical procedure for the exact
calculation and the results of the perturbative and large-
N expansions for the interaction-induced effective action
γ (l,ϕ) = γ (l, ϕ) and the RG-induced self-energy σ (l, ϕ) =
∂2
ϕγ (l, ϕ) in the zero-dimensional O(N ) model. We use the

form of the regulator Rαα′
k = rkδαα′ as in the main text.

The exact results are obtained by directly evaluating the
path integral of the partition function,

Zl (J) =
∫

dϕe− 1
2 m2

l ϕ
2− g

4! (ϕ2 )2+J·ϕ, (B1)

where m2
l = m2 + rk represents the regulated mass squared.

Due to the presence of an O(N − 1) symmetry in the ϕ space
perpendicular to J, the integral can be simplified as follows:

Zl (J ) = �N−1

∫ ∞

−∞
dϕe− 1

2 m2
l ϕ

2− g
4! ϕ

4+JϕQN−2,l (ϕ
2), (B2)

QN−2,l (ϕ
2) =

∫ ∞

0
dxxN−2e− 1

2

(
m2

l + g
6 ϕ2

)
x2− g

4! x4

= 1

2

(
6

g

) N−1
4

�

(
N − 1

2

)

×U

(
N − 1

4
,

1

2
,

3

2g

(
m2

l + g

6
ϕ2

)2
)

, (B3)

where we have introduced J = ‖J‖, the surface area of
the unit (N − 1)-sphere �N = 2πN/2/�(N/2), the gamma
function �(x), and the Tricomi’s confluent hypergeometric
function U (a, b, z). Let J = Jsup,l (ϕ) be an external field re-
alizing 〈ϕ〉 = ϕ, i.e., the solution of

ϕ = ∂ ln Zl

∂J
(Jsup,l (ϕ))

=
∫ ∞
−∞ dx xe− 1

2 m2
l x2− g

4! x4+Jsup,l (ϕ)xQN−2,l (x2)∫ ∞
−∞ dx e− 1

2 m2
l x2− g

4! x4+Jsup,l (ϕ)xQN−2,l (x2)
. (B4)

With this external field, the effective action and the self-energy
are given by

�(l, ϕ) = Jsup,k (ϕ)ϕ − ln Zk (Jsup,k (ϕ)) − 1
2 rkϕ

2, (B5)

(l, ϕ) = ∂2
ϕ�(l, ϕ) − m2 = 1

〈ϕ2〉 − ϕ2
− m2

l , (B6)

where correlation function 〈ϕ2〉 − ϕ2 is evaluated by

〈ϕ2〉 − ϕ2 = ∂2 ln Zl

∂J2
(Jsup,l (ϕ))

=
∫ ∞
−∞ dxe− 1

2 m2
l x2− g

4! x4+Jsup,l x(x − ϕ)2QN−2,l (x2)∫ ∞
−∞ dxe− 1

2 m2
l x2− g

4! x4+Jsup,l xQN−2,l (x2)
.

(B7)

With these �(l, ϕ) and (l, ϕ), we obtain

γ (l, ϕ) =�(l, ϕ) − �(0, ϕ) − γfree(l ), (B8)

σ (l, ϕ) = (l, ϕ) − (0, ϕ), (B9)

where γfree(l ) = (N/2) ln(m2
l /m2

0 ) is the solution of

∂lγfree(l ) = 1

2

N∑
α=1

∂l rk

(
∂2Sfree(ϕ)

∂ϕ∂ϕ
+ rk

)−1

αα

, γfree(0) = 0,

(B10)

with Sfree(ϕ) = m2ϕ2/2. We numerically solve Eq. (B4) for
Jsup,l (ϕ) by use of scipy.optimize.fsolve in SciPy. With
this Jsup,l (ϕ), we numerically evaluate Eqs. (B2) and (B7) to
obtain γ (l, ϕ) and σ (l, ϕ). The integrals in Eqs. (B2), (B4),
and (B7) are evaluated using the Gauss quadrature method
implemented as scipy.integrate.quad in SciPy.

The perturbative and large-N expansion results are ob-
tained from Ref. [35]. By substituting the regulated mass
squared m2

l into these expressions, the results at the scale l
for the effective action and self-energy up to the leading order
are given by

�(l, ϕ) = S(ϕ) + N
1 + 2N−1

24
g̃l + 1 + 2N−1

12
g̃l m

2
l ϕ

2

+ γfree(l ) + O
(
g̃2

l

)
, (B11)

(l, ϕ) = ∂2
ϕS(ϕ) − m2 + 1 + 2N−1

6
g̃lm

2
l + O

(
g̃2

l

)
. (B12)
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TABLE II. Computational times for the pretraining and the train-
ing of the Wetterich equation (labeled by Wetterich) on an NVIDIA
A100 GPU. The results are consistent for g̃ = 0.1, 1, 10.

N 1 10 100

Pretraining 4 m 4 m 6 m
Wetterich 6 h 7 h 11 h

Here, the dimensionless quantity g̃l = Ng/m4
l is employed as

the expansion parameter instead of g. The result of the large-N
expansion up to O(1) is expressed as follows:

�(l, ϕ) = S(ϕ) + N

(
zl − 1

4
− 1

2
ln zl

)
+ 1

2
ln (2 − zl )

+ 1

2

(
z−1

l − 1
)
m2

l ϕ
2 + γfree(l ) + O(1/N ), (B13)

(l, ϕ) = ∂2
ϕS(ϕ) − m2 + (

z−1
l − 1

)
m2

l + O(1/N ), (B14)

with

zl = 2

1 +
√

1 + 2
3 g̃l

. (B15)

With these �(l, ϕ) and (l, ϕ), we obtain γ (l, ϕ) and σ (l, ϕ)
from Eqs. (B8) and (B9).

APPENDIX C: DETAILS ABOUT TRAINING

We provide some details about the training and information
about the convergence of our results. We optimize our NN
to minimize Lθ (Lpre

θ
) in the main text for the training of the

Wetterich equation (the pretraining). The expectations of these
equations are approximately evaluated on a finite number of
collocation points,

Lθ ≈ 1

Ncol

Ncol∑
n=1

⎡
⎢⎣

⎛
⎝∂lγ (l (n),ϕ(n); θ) + ∂lγfree(l (n) ) − 1

2

∑
α,α′

∂lR
αα′
k(n)

(
∂2S(ϕ(n) )

∂ϕ∂ϕ
+ ∂2γ (l (n),ϕ(n); θ)

∂ϕ∂ϕ
+ Rk(n)

)−1

α′,α

⎞
⎠

2
⎤
⎥⎦, (C1)

Lpre
θ

≈ 1

Ncol

Ncol∑
n=1

[(γ (l (n),ϕ(n); θ) − γ 1pt (l (n),ϕ(n) ))2], (C2)

where l (n)(= ln(kUV/k(n) )) and ϕ(n) are randomly sampled
following the probability distributions Pϕ and Pl . For Pl ,
we adopt a uniform distribution within the interval [0, lend].
To sample the neighborhoods of ϕ = 0, representing the vac-
uum expectation value, we define Pϕ such that the direction
n̂ = ϕ/‖ϕ‖ is uniformly sampled. The norm ‖ϕ‖ is sampled
following a normal distribution N (0, N/m2) without the sign,
where the variance N/m2 corresponds to the order of 〈ϕ2〉.
It is noteworthy that the efficiently sampling neighborhoods

of ϕ = 0 for large N is challenging if Pϕ is set to an N-
dimensional normal distribution N (0, m−21) or a uniform
distribution in an N-dimensional box due to the curse of
dimensionality. Specifically, we choose Ncol = 500 colloca-
tion points, which are refreshed each time the optimization
functions are assessed.

For the numerical implementation, we employ Pytorch.
The learning rate for the Adam optimizer is initially set to
10−4 and exponentially decays with a factor of 0.99999.

FIG. 5. Learning curve and the histories of γ = γ (lend, 0), the average σ/m2, and the standard deviation 
σ/m2 of σα (l, 0)/m2 with
respect to α in the case of N = 100 and g̃ = 1. The red dots indicate the initial values.
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TABLE III. Relative errors of γ (lend, 0) compared to the ex-
act solutions for different numbers of the hidden layers and the
units per layer with N = 1 and g̃ = 1. The minus sign indicates
underestimation.

Number of units per layer

Relative error of γ (%) 64 128 256

1 –3.2 –0.23 –3.7
Number of hidden layers 2 –2.2 –2.2 –2.2

3 –2.2 –2.2 –2.2

The learning rate is fixed at 10−3 in the pretraining phase.
The Xavier initialization [60] is used for this pretraining.
It is worth noting that the computational cost of evaluating
the matrix inverse in Lθ is substantial. To facilitate im-
plementation, we directly compute the inversion using the
torch.linalg.inv function in Pytorch. Efficiency enhance-
ment, potentially utilizing alternative algorithms such as the
Hutchinson trace estimator [59], is reserved for future study.

The training process involves 106 iterations for the Wet-
terich equation and 105 for the pretraining. Table II provides
an overview of the computational time required. With this
iteration count, we observe the convergence of Lθ and physical
quantities. As illustrated in Fig. 5, we present a learning curve
along with the histories of γ = γ (lend, 0) and the average
σ/m2, as well as the standard deviation 
σ/m2 of σα (l, 0)/m2

with respect to α for the case of N = 100 and g̃ = 1. In

TABLE IV. Relative errors of σ = σ (lend, 0) compared to the
exact solutions for different numbers of the hidden layers and the
units per layer with N = 1 and g̃ = 1. The minus sign indicates
underestimation.

Number of units per layer

Relative error of σ (%) 64 128 256

1 4.1 –2.1 4.2
Number of hidden layers 2 0.68 0.36 0.62

3 0.16 0.26 0.12

the initial iterations, Lθ rapidly decreases, and the physical
quantities approach converges quickly. Subsequently, as the
learning rate decays, physical quantities gradually converge.
The diminishing 
σ/m2 over iterations indicates successfully
reproducing the O(N ) symmetry during training. Finally, we
explore how the NN’s size influences our results. Tables III
and IV detail the errors in measuring γ (lend, 0) and σ (lend, 0),
respectively, each considering different numbers of hidden
layers and units per layer, with settings of N = 1 and g̃ = 1.
From these, it is clear that more hidden layers lead to better
accuracy. However, while this improvement tends to level off
for γ (lend, 0), the accuracy for σ (lend, 0) continues to benefit
from additional layers. This difference might be unique to
the architecture we’ve used. We observed similar trends under
other settings for N and g̃.
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