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Entanglement transition and heterogeneity in long-range quadratic Lindbladians
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The generation of entanglement in mixed states is relevant to quantum systems coupled to an environment.
The dissipative and mixing properties of the environment are unavoidable in physical platforms for quantum
simulation and information processing, where entanglement can be a vital resource. In this work, we explore
entanglement and heterogeneity in random Lindbladian dynamics describing open quantum systems. We propose
a model of a one-dimensional chain of noninteracting, spinless fermions coupled to a local ensemble of baths.
The jump operator mediating the interaction with the bath linked to each site has a power-law tail with an
exponent p. We show that the system undergoes volume-to-area law entanglement phase transition in the mixed
steady state by tuning p which remains stable in the presence of coherent hopping. Unlike the entanglement
transition in the pure-state quantum trajectories of open systems, this transition is exhibited by the averaged
steady-state density matrix of the Lindbladian. The steady state in the area-law phase is characterized by a
spatial heterogeneity in local population imbalance, while the jump operators exhibit a constant participation
ratio of the sites they affect. Our work provides a theoretical description of an entanglement transition realized
in long-ranged open quantum systems and provides an avenue to stabilize quantum correlations in mixed states.

DOI: 10.1103/PhysRevB.109.214204

I. INTRODUCTION

Interactions of a quantum system with an environment
can destroy quantum correlations. The environment disrupts
the fragile nature of a quantum superposition which encodes
entanglement and quantum information [1–5]. The stability
of quantum entanglement in the presence of dissipation can
prove to be vital for discovery of new quantum phenomena
in the laboratory and developing technologies for quantum
sensing and information processing [6–8]. A precise under-
standing of the evolution of long-range quantum correlations
in the presence of dissipation provides a picture of thermaliza-
tion and formation of states which deviate from the thermal
ensemble going beyond isolated systems [9,10]. In this con-
text, the temporal and spatial properties of the environment,
which control the dissipative processes, play an important role
in the relaxation dynamics and the formation of novel steady
states [11–15].

Open quantum systems (OQSs) can host steady states
which are manifestly out of equilibrium and protect co-
herence from environmental noise, such as decoherence-
free subspaces [16–18] and noiseless subsystems [19,20],
among other nonequilibrium phenomena [21–25]. The long-
time dynamics leading to stationarity may present complex
metastable behavior [26–29], while periodic driving can
enable time-crystalline phenomena [30–37]. Quantum tra-
jectories of OQSs, providing stochastic realizations of the

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

systems pure-state evolution, can exhibit nontrivial statistics
that cannot be detected in either the averaged time evolution
of the density matrix or its steady state [38–47]. In particular,
recent work demonstrating entanglement transitions in quan-
tum trajectory ensembles has spurred interest for quantum
information processing [48–50]. Altogether, the preservation
of coherence in nonequilibrium OQSs suggests the possibil-
ity for new quantum behavior to survive in the presence of
dissipation.

Quadratic Lindbladians have emerged as a test bed for
studying various concepts in OQSs [51–61], due to sim-
plifications enabled by their noninteracting nature. Here
we propose and investigate the properties of a quadratic
fermionic Lindbladian model which undergoes a volume-to-
area law entanglement phase transition induced by coupling
to a heterogeneous bath. The local degrees of freedom
couple randomly to baths, similarly to recent work on ran-
dom Lindbladians [62–72], with correlations decaying as
a power law in space. The baths are modeled using a
Lindbladian formalism for OQSs where the jump operators
influence distant sites, realizable in the collective dissipa-
tion of atomic arrays [73–80]. The locality of the jump
operators representing the bath-mediated interaction is a
tunable parameter, driving a phase transition between vol-
ume and area law entangled steady states, the strength of
their influence decaying as a power law in separation be-
tween sites in the area-law phase. The steady-state properties
closely relate to the single-particle localization transition
of power-law random banded matrices (PRBMs) for purely
unitary dynamics, with the correlation matrix exhibiting anal-
ogous statistical properties [81–88]. Furthermore, we studied
the effect of coherent hopping on the system’s dynamics
and steady state, finding that the phenomena observed—
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including the transition—are largely independent of such
perturbations.

II. MODEL

We consider a one-dimensional spinless fermionic system
modeled by a quadratic Lindblad equation d

dt ρ(t ) = L(ρ),
with Lindblad operator

L(ρ) = −i[H, ρ(t )]

+
∑

jk

� jk

(
c†

kρ(t )c j − 1

2
{c jc

†
k , ρ(t )}

)

+
∑

jk

B jk

(
c jρ(t )c†

k − 1

2
{c†

kc j, ρ(t )}
)

, (1)

in terms of fermionic creation operators c†
j at sites j, where

the Hamiltonian H = ∑
n,m hnmc†

ncm conserves particle num-
ber governed by Hermitian matrix h. Specifically, we will
consider coherent hopping, corresponding to hnm = λ if m =
n ± 1 and 0 otherwise.

The dissipative bath interactions include particle creation
and annihilation governed by positive-semidefinite matrices
� and B = I − �, respectively. The action of the bath on the
system can be more clearly seen in the diagonal form of the
dissipator,

L(ρ) = −i[H, ρ(t )]

+
∑

m

γm

(
d†

mρ(t )dm − 1

2
{dmd†

m, ρ(t )}
)

+
∑

m

(1 − γm)

(
dmρ(t )d†

m − 1

2
{d†

mdm, ρ(t )}
)

, (2)

where γm are eigenvalues of � and dm = ∑
i〈i|gm〉ci are jump

operators describing the action of the bath, given by the cor-
responding eigenvectors of �, � |gm〉 = γm |gm〉.

We wish to model a bath which acts on the system hetero-
geneously, through changes that can be tuned to have different
degrees of locality. To achieve this while maintaining Her-
miticity and positivity of � we take � ∝ X †X for a random
matrix X. The elements of X are chosen as

Xjk = x jk

(| j − k| + 1)p
, (3)

where x jk is chosen from the complex Gaussian distribu-
tion CN (0, 1), and p controls the decay of matrix elements
with distance from the diagonal, analogous to PRBMs and
Wishart matrices. As we will see, the value of p directly
influences how localized the eigenvectors of � are, and thus
how localized the jump operators are, leading to the model
sketched in Fig. 1(a). Each site can be imagined to have an
associated bath, interacting with the system with distinct rates
representing differing energies of the modes or different tem-
peratures of the baths, encoded in the eigenvalues of �. Bath
interactions are mediated via the jump operators dm, adding
or removing particles from modes focused on the associated
site and decaying away from that site as a power law with
an exponent determined by p, as demonstrated in Fig. 11
in Appendix E 3. Such long-range jump operators with a
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FIG. 1. (a) Schematic of the model: The spatial power-law pro-
file of each jump operator for the heterogeneous baths shows the
coupling to a system of spinless fermions hopping in a 1D lattice.
We consider the mutual information between fermions in regions
A and B (I). (b) Disorder-averaged mutual information between A
and B in the steady state (I∞) as a function of system size L, with
LA = LB = LC = L/3. For each value of p (shown in the legend)
the curves are fitted to the form ln(I∞) = � ln(L) + c. The fitting
parameter � is shown in the legend. (c) I∞ between A and B in
the steady state as a function of subsystem size LA with total system
size L = 103. LC is fixed at L/3. Curves were fitted according to
I∞ = a(LA)c + b log(LA). Note c ≈ 1/2 for all p. For both (b), (c):
Curves are color coded to a given p according to the legend in panel
(b). Error bars are not visible. Details on disorder realizations are
included in Appendix H 1.

power-law spatial profile can be realized with cold atoms in
optical cavities using tunable Raman sidebands for the driving
field as discussed in [75].

Note, for the dissipative evolution to be valid, the maxi-
mum eigenvalue of � must be less than 1, so we scale the
product by twice its maximum eigenvalue, denoted λmax, i.e.,
� = X †X/2λmax. Alternatively, one may use the Kac normal-
ization in Ref. [36]. The overall scaling does not affect the
local properties or steady state, which will be the focus of our
work.

III. GAUSSIANITY AND PURE DISSIPATION SOLUTION

The quadratic structure of the Lindbladian results in a
closed equation for the time evolution of the two-point cor-
relation matrix � jk = Tr(ρc†

j ck ) [55], giving

d�

dt
= i[hT ,�] + 1

2
({�, I − �} − {I − �,�}). (4)

The first term corresponds to the coherent Hamiltonian evolu-
tion, the second term corresponds to bath interactions which
create fermions, while the third term removes them. This
implies that beginning from a Gaussian state leaves the
state Gaussian at all times, and that the steady state will be
Gaussian. We thus restrict our attention to Gaussian states
described by this equation.
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FIG. 2. Mutual information between A and B as a function of
p, with LA = LB = LC = L/3, for various L shown, averaged over
disorder. Inset shows a finite-size scaling collapse with pc = 0.98 ±
0.01 and ν = 6.3 ± 0.7. Error bars are not visible. Details on disorder
realizations and fitting procedure are included in Appendix H.

The steady state and time evolution can be solved exactly
both with and without a Hamiltonian. We begin with the
Hamiltonian-free case (λ = 0), finding

�(t ) = �(1 − e−t ) + �(0)e−t . (5)

The steady-state correlation matrix is unique, �(0) = � in
this case. The parameter p allows us to tune between two
limits. When p is large, � is short-ranged and almost diag-
onal; thus the steady state is approximately unentangled. In
contrast, p = 0 implies � is infinite-ranged and random, and
one would expect the steady state to be entangled and obey
a volume law [89,90]. In this work, we study what happens
between the two limits as p is varied.

IV. MUTUAL INFORMATION

We first consider the correlations in the steady state as we
vary p using the mutual information I (denoted by I∞, with
disorder average I∞), defined between subsystems A and B as

IA|B(ρ) = SA(ρ) + SB(ρ) − SA∪B(ρ), (6)

where SX (ρ) is the von Neumann entropy of ρ in subsystem
X , which may be rewritten in terms of the subsystem cor-
relation matrix �X of ρ as SX (ρ) = −Tr[�X ln(�X ) + (1 −
�X ) ln(1 − �X )] [91,92].

We choose subsystems A and B separated by an intervening
region C of length LC = L/3 to remove boundary correlation
terms, cf. Fig. 1(a), and consider two cases: varying overall
system size L with LA = LB = L/3, and varying subsystem
size LA for a fixed L (see Appendix F for the case with bound-
aries). In the first case in Fig. 1(b) we observe that for small
p, I∞ scales as a volume law in L, as expected; for large p the
lack of boundary terms causes I∞ to decay toward zero with
increasing L. At intermediate values of p we observe power-
law behavior, with exponent � decreasing as p increases until
a critical point p = pc at which I∞ is approximately constant
as a function of L. As p increases further, � becomes negative.
This p dependence of � is suggestive of a transition between
area and volume law entanglement phases.

In Fig. 2 we perform a scaling collapse assuming a continu-
ous transition finding a critical point at pc = 0.98 ± 0.01 with
a correlation length critical exponent of ν = 6.3 ± 0.7. The
critical point is close to the localization transition for PRBMs
of pc ∼ 1, suggesting that the transition is driven by the lo-
calization of the effective jump operators dm. Nevertheless,
our analysis of the correlations in the steady state differs from
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FIG. 3. (a) Disorder-averaged fermionic negativity (EF ) between
A and B (cf. Fig. 1) in the steady state as a function of system size
L, with LA = LB = LC = L/3. (b) Steady state EF between A and B
as a function of subsystem size LA with LC = L/3 fixed at L = 103.
For each value of p the curves are fitted to ln[ f (x)] = � ln(x) + c.
The corresponding � is shown in the legend. Details on disorder
realizations are included in Appendix H 1.

the existing studies of entanglement in eigenstates of PRBM
models. However, the volume-law phase close to the transition
exhibits a sub-volume-law scaling in I in analogy with the
eigenstate entanglement transition of PRBM models [93–95].
We note that this scaling is possibly due to classical correla-
tions as the scaling of fermionic negativity, a direct measure
of quantum correlations, does not show this effect (see next
section). Interestingly, the critical exponent ν is comparable
in size to the exponents for measurement-induced transitions
for quantum trajectories studied in long-range Clifford circuits
and free-fermion Hamiltonians [96–99].

In Fig. 1(c) we see that with LC fixed at L/3, I∞ is indepen-
dent of subsystem size LA in the area-law phase at large p. In
contrast, the volume-law phase at small p exhibits a subexten-
sive scaling of I∞, differing from the linear dependence seen
in volume-law entangled pure states. Regardless, our results
suggest that even for p ∼ 0, when I∞ scales as a volume
law with system size, the scaling with LA is subextensive. A
possible explanation could be that the steady states, although
delocalized, are only weakly entangled locally. This would be
analogous to delocalized, nonergodic states discussed in the
context of Anderson localization on Bethe lattices [100,101].

V. FERMIONIC NEGATIVITY

Since mutual information contains contributions from
classical correlations, to capture quantum correlations we con-
sider the fermionic negativity EF . A version of entanglement
negativity [102,103] that is tailored to Gaussian fermionic
systems [104,105], this captures entanglement even in mixed
states, and is expressed as

EF =
∑

j

ln[
√

μ j + √
1 − μ j]

+
∑

j

1

2
ln[(λ j )

2 + (1 − λ j )
2], (7)

where μ j and λ j are eigenvalues of two algebraic expressions
of the two-point correlator � [105]. In Fig. 3 we show the
variation of EF with system size (L) and subsystem size (LA).
We note that while I (LA) (cf. Fig. 1) suffers from finite-size
effects which become apparent in a log-log scale—all curves
scale in the same manner albeit the magnitude of I in the area
law is O(10−7)—these finite-size effects vanish in EF (LA),
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FIG. 4. The disorder-averaged participation ratio PR against p
for sizes L = [400, 800, 1200, 1600, 2000], increasing along the ar-
row. Inset: Power a as a function of p found when fitting PR(L, p) =
La(p)/c(p) to PR(L) curves. Data for c are shown in Appendix D.

suggesting they are the result of the mixed nature of the steady
state.

VI. BATH STRUCTURE

The entanglement transition occurs in parallel with struc-
tural changes of the bath, observable through the eigenvectors
of � in the Lindblad equation, which determines its jump
operators as dm = ∑

i〈i|gm〉ci, where � |gm〉 = γm |gm〉. We
thus consider the participation ratio (PR) of the eigenstates gm

of �, a measure of their locality, defined as PR(g) = 1∑
m |gm|4 .

In Fig. 4 we show PR, the PR averaged over eigenvectors
of � from multiple disorder realizations. Varying p leads to
a transition: from delocalized vectors where the PR grows
linearly with L, with dn ∼ ∑

n cn such that the bath correlates
distant sites, to localized vectors where it becomes small and
constant, with the bath jump operator dn ∼ cn acting on a
single site. However, rather than a sharp transition, we see a
gradual reduction in the constant value that the PR achieves
as p increases, approximately reaching its lower bound of 1 at
large p. To characterize this, in the inset of Fig. 4 we show the
p dependence of a power-law fit of PR(L). Increasing p from
the suspected critical point around p = 1, we see a decay from
the expected exponent of 1 in the volume-law phase down to
0 in the area-law phase.

A possible explanation for the slow decay of the PR may
be found in the localization behavior of the eigenstates. In
Appendix E 3 we observe that the eigenstates of � exhibit
a power-law decay away from some central site, similar to
prior studies of PRBM models [106], in contrast with the
exponential decay common in short-range models exhibiting
localization. Relatedly, in Appendix C we also report observ-
ing multifractality in the eigenstates, a common phenomenon
in PRBM models [107–109].

VII. STATIONARY-STATE HETEROGENEITY

We now investigate the impact of the spatial structure
of the bath on the system’s steady state. As portrayed in
Fig. 4, the action of the bath is localized to a single site in
the large-p limit due to � becoming increasingly diagonal
in the position basis, causing a heterogeneous bath structure.
In contrast, for p close to 0, the action of the bath is highly
nonlocal, with each site affected by multiple jump operators
which fluctuate weakly across different sites. This results in an
effective homogeneity of the bath action when averaged over
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FIG. 5. Distribution of the standard deviation of the bias ñ cal-
culated for each realization using the central L/5 sites in the bulk in
the area (blue, p = 4)) and volume law (orange, p = 0.4) phases for
system size L = 103. Inset: Average standard deviation as a function
of L; error bars are not visible.

the jump operators, which can be viewed as a consequence
of a central limit theorem. We expect this heterogeneous-vs-
homogeneous behavior to be reflected in the properties of the
steady state, as we will now show.

To illustrate such behavior in our system, we calculate
the variability of single-site density matrices in the steady
state, which are diagonal due to Gaussianity. We write ρs =
Zñ |o〉 〈o| + (1 − Zñ) |u〉 〈u| with Zñ = e−ñ/(1 + e−ñ), where
|o〉 and |u〉 correspond to the single site s being occupied
and unoccupied, and ñ is the bias of that site toward being
unoccupied.

We study the distribution of ñ for p = 0.4 and p = 4.
Figure 5 shows the standard deviation σ distribution of ñ
from the sites within the middle 1/5 of the chain calculated in
multiple disorder realizations. Note ñ is mostly positive due
to the spectra of � being in the interval [0, 1/2], causing a
lower rate of particle creation than annihilation, biasing sites
to be unoccupied. In the volume-law phase (p = 0.4), the
distribution is sharp and well defined at small values whereas
the area law phase (p = 4) exhibits a distribution that is broad
at much larger values: a signature of a heterogeneous system.
The inset of Fig. 5 shows the scaling of the average standard
deviation of ñ against L, which is weak in the area-law phase
but quickly sharpens in the volume-law phase as L increases,
implying a homogeneous steady state in the thermodynamic
limit. Reduced fluctuations in the volume-law phase are con-
sistent with the increased mixing allowed by longer-range
jump operators, as particles are distributed across the system,
causing each site to equilibrate with each other.

VIII. EFFECT OF COHERENT HOPPING

To study the influence of a coherent dynamics on the steady
state and dynamics, we introduce a nearest neighbor hopping
Hamiltonian, λ 
= 0. Solving Eq. (4) in the eigenbasis of a
Hamiltonian, we arrive at

�̃(t )nm =
(

�̃(0)nm − i�̃nm

�Enm

)
ei�Enmt + i�̃nm

�Enm
, (8)

where En are the eigenvalues of h, �Enm
.= En − Em + i, and

Õnm denotes the matrix elements of O in h’s basis. We note
Eq. (8) holds for any h.

A unit relaxation timescale originates from h = 0. Here,
creation and annihilation operators for the fermionic eigen-
modes each contribute −1/2 to the eigenvalue. Since this
equation describes the evolution of quadratic Gaussian op-
erators, these eigenmodes appear in pairs whose eigenvalues
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FIG. 6. (a) Dynamics of the bipartite mutual information It be-
tween A and B where LA = LB = L/2 and LC = 0, of an initially
uncorrelated state, i.e., �(0) = diag{a1, . . . , aL}, for random real
{an} with system size L = 100 and λ = 5. Dashed lines here denote
their associated I∞. (b) Nonequilibrium steady state bipartite mutual
information I∞ against hopping strength λ for different dissipation
and system sizes. All curves were averaged over disorder realiza-
tions, and error bars are not visible.

sum to −1. For details see Appendix B. This implies that the
timescale is independent of system size, p, and details of the
dissipation.

In short, we see that turning on hopping does not affect the
qualitative behavior of the model. Fig. 6(a) shows I∞ between
A and B in the steady state, LA = LB = L/2 and LC = 0: the
L dependence of the two phases is unchanged, with the same
critical point, although the I∞ decreases in magnitude as λ is
increased for all values of p.

Turning our attention to the system dynamics using (8),
the disorder-averaged evolution It develops a bump as λ is
increased from 0, as shown in Fig. 6(b), indicative of short-
time correlations induced by the weakly entangling coherent
hopping, before being destroyed by dissipation. The paramet-
ric dependence of this bump is shown in Appendix G.

IX. CONCLUSIONS

We explored the phenomena of entanglement phase tran-
sitions and heterogeneity in the stationary states of open
quantum systems, using quadratic fermionic Lindbladians as
a test bed. We observed a phase transition from area to

volume law entanglement phases in a model with disordered,
long-range bath interactions as a function of the range of
interactions.

This correlates with a transition from nonlocal to lo-
cal bath-system interactions, detected through the spread
of individual jump operators. In the volume-law phase, the
steady-state occupation is homogeneous, while the area-law
phase exhibits significant heterogeneity which survives in the
thermodynamic limit. Finally, perturbing with coherent hop-
ping leaves the critical point unchanged, but induces increased
short-time correlations.

Our work analyzed entanglement in mixed steady states
of open quantum systems and shows the significance of
disordered, long-range bath interactions in the entangle-
ment scaling laws of dissipative systems. The persistence
of entanglement in the presence of dissipation can be po-
tentially leveraged to stabilize novel correlated states away
from thermal equilibrium. Stability of the phase transition
in the presence of interactions could have relevance to as-
pects of many-body localization [110–115]. Furthermore, it
would be illuminating to understand the consequences of this
phenomenon to the closely related measurement-induced tran-
sitions of quantum trajectories [116,117].
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APPENDIX A: FURTHER MODEL
DETAILS AND DISCUSSION

Our model begins from a general quadratic fermionic
Lindbladian without superconductive terms in the Hamilto-
nian:

d

dt
ρ(t ) = −i

⎡⎣∑
n,m

hnmc†
ncm, ρ(t )

⎤⎦ +
∑

jk

� jk

(
c†

kρ(t )c j − 1

2
{c jc

†
k , ρ(t )}

)
+

∑
jk

B jk

(
c jρ(t )c†

k − 1

2
{c†

kc j, ρ(t )}
)

, (A1)

from which a closed equation for the time evolution of the
two-point correlation matrix � jk = Tr(ρc†

j ck ) can be derived

by multiplying (A1) by c†
j ck and then taking the trace [55];

after some algebra we obtain

d

dt
�(t ) = i[hT ,�(t )] + 1

2
{�, I − �(t )} − 1

2
{B,�}. (A2)

This equation is guaranteed to keep the correlation matrix
physical due to constraints inherited from the Lindblad equa-
tion: Hermiticity is ensured by the Hermiticity of �, B, and h;
positivity is ensured by the positivity of � and B. Physically,
� and B correspond to competing bath interactions which

respectively add and remove particles from the system. Ex-
isting in isolation, � would push the system into a state where
every site is occupied by a particle, while B would lead to only
holes.

We specifically focus on the case when [�, B] = 0. The
eigenvalues {αn} of � and {βn} of B and their correspond-
ing eigenvectors {|gn〉} fully describe the behavior of the
dissipation. In the case when h = 0, the eigenstates may be
thought of as describing quasiparticle modes of the system:
in the Lindbladian description, these eigenstates may be used
to diagonalize the dissipative term, with each state resulting
in a potentially delocalized jump operator dm = ∑

i〈i|gm〉ci.
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Since we assume � and B commute, these jump operators
appear in conjugate pairs which add and remove excitations
from these modes at rates determined by the corresponding
eigenvalues. The likelihood of these modes being occupied
is therefore described by the ratios αn/βn ∈ (0,∞), which
may be thought of as representing the relationship between
the energy of each mode and the temperature of the bath it is
coupled to.

Finally, we further specialize to the case when B = I − �,
simplifying Eq. (A2) to

d

dt
�(t ) = i[hT ,�(t )] + � − �(t ). (A3)

In the spectral basis of h the equations for each component
decouple,

d

dt
�̃(t )nm = i(En − Em + i)�̃(t )nm + �̃nm, (A4)

where En are the eigenvalues of h and Õnm denotes the matrix
elements of O in h’s basis. The solution to Eq. (A3) is then

�̃(t )nm = e−t

(
˜�(0)nm − i�̃nm

�Enm

)
ei(En−Em )t + i�̃nm

�Enm
,

(A5)
where �Enm

.= En − Em + i. Note that the steady state is in-
dependent of the initial conditions, indicating it is unique. A
key benefit of the above is that it is numerically efficient to
construct its time evolution and its stationary state up to and
beyond a system size of 104 sites.

In the absence of H , Eq. (A5) reads

�nm(t ) = �nm(1 − e−t ) + �nm(0)e−t , (A6)

in the original basis of �.

APPENDIX B: EXACT SOLUTION
WITHOUT HAMILTONIAN TERM

In the case when h = 0, an exact solution can be ac-
cessed by first separating the system into a set of independent
fermionic modes based on the spectrum of �, then solving
each independent system, as follows. For generality we show
the result here for when [�, B] = 0, rather than any specific
B which satisfies this equation. Writing the spectrum of � as
� |gi〉 = γi |gi〉, and the eigenvalues of B as bi, we may rewrite
our Lindbladian as

L(ρ) =
∑

m

[
γmd†

mρdm − γm

2
{ρ, dmd†

m}bmd†
mρdm

−bm

2
{ρ, dmd†

m}
]

=
∑

m

Lm(ρ), (B1)

where dm = ∑
i〈i|gm〉ci. Each term in this sum corresponds to

an independent 2-level fermionic mode evolving according to
a 4 × 4 Lindbladian.

For a given independent subsystem, with basis |0m〉, |1m〉
such that d†

m |0m〉 = |1m〉 and dm |1m〉 = |0m〉, we calculate the
matrix elements Tr[|im〉 〈 jm|Lm(|i′m〉 〈 j′m|)]. Ordering the basis

as |1m〉 〈1m|, |0m〉 〈0m|, |0m〉 〈1m|, |1m〉 〈0m| we find

Lm =

⎛⎜⎜⎝
−bm γm 0 0
bm −γm 0 0
0 0 − γm+bm

2 0
0 0 0 − γm+bm

2

⎞⎟⎟⎠, (B2)

finding that the coherences are already eigenmodes, while the
occupation expectations support a 2 × 2 block. This may be
diagonalized to find eigenvalues of 0 and −γm − bm, with cor-
responding left and right eigenvectors. Eigenmodes of the full
Lindbladian can then be constructed by taking tensor prod-
ucts of the eigenmodes of each independent fermionic mode,
and rewriting the state in terms of the original position-space
creation and annihilation operators, with their corresponding
eigenvalues given by the sum of the eigenvalues for each
subsystem eigenmode used in the product.

In the case where bm = 1 − γm, as we have in the main text,
this result explains why our correlation matrix evolution equa-
tion has a uniform relaxation rate of 1, independent of system
size and p. Since in this case the eigenvalues of each single-
fermion Lindbladian are either 0, −1/2, or −1, eigenvalues
of the full Lindbladian must be multiples of −1/2. Consid-
ering the space of quadratic states, there are three classes of
terms which contribute: d†

mdm = |1m〉 〈1m|, dmd†
m = |0m〉 〈0m|,

d†
mdn = |1m〉 〈0m| ⊗ |0n〉 〈1n|. The first two have support only

on single-fermion eigenmodes with eigenvalues of 0 and −1,
while the third consists of a tensor product of two single-
fermion eigenmodes each with eigenvalue −1/2, and thus has
an overall eigenvalues of −1. As such, all quadratic states
reside in a vector subspace with support on eigenmodes with
eigenvalues of 0 and −1. Since Gaussian states are a subspace
of such matrices, they reside in the same vector subspace,
and therefore possess the same uniform relaxation time of 1,
also imparted on the evolution of their correlation matrices.
We therefore see that this relaxation time, and its parameter
independence, has its origin in the precise relationship we
chose in taking B = I − �, leading to a particular balancing
of transition rates in the classical stochastic evolution each
independent fermionic mode undergoes.

APPENDIX C: MULTIFRACTALITY

To further understand the intermediate region between
phases, particularly notable in the participation ratio, we cal-
culate the generalized fractal dimensions encoding the scaling
behavior of moments, as considered in other works on PRBMs
[107,108]. For a given eigenstate ψ viewed as a single-particle
wave function in a 1D system with L sites, we denote the
probability of the particle being found in a box from i to
i + l − 1 as

pl (i) =
i+l−1∑

j=i

|ψ j |2. (C1)

The qth moment of this probability distribution over disjoint
boxes of length l is given by

χq(l, L) =
L/l∑
i=0

pq
l (il ). (C2)
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FIG. 7. (a)–(c) Generalized fractal dimensions as a function of
system size for p = [0.95, 1.0, 1.05, 1.1], increasing along the arrow.

Finally, the generalized fractal dimensions are then extracted
from the scaling behavior of these moments. Assuming the
moments satisfy a large deviation principle

χq(l, L) ∝
(

l

L

)Dq

, (C3)

we have

Dq = lim
δ→0

ln[χq(δL, L)]

ln(δ)
, (C4)

where δ = l/L is the fraction of the system contained in each
region. Figure 7 shows how estimates of these change as L
increase for a variety of q and p. We note two properties of this
data consistent with multifractal phenomena [107–109]. First,
in the vicinity of p = 1.0 the dimensions become approxi-
mately constant at large L, diverging away from this constant
with L for p further from the critical point. When these ex-
ponents become independent of system size for all moments,
the statistical properties of the particle’s position depend only
on the size of the subsystem relative to the total system size,
not the absolute subsystem size. Second, the fractal dimension
attains noticeably distinct values as q is varied, in contrast to
non- and mono-fractal systems in which the fractal dimension
remains largely constant.

APPENDIX D: PR FIT

In the main text, the fitting function PR(L, p) = La(p)/c(p)
used to study the scaling behavior of the PR contains two
parameters: the exponent a mentioned in the main text, and
an overall scaling coefficient c. For completeness, in Fig. 8(a)
we show the p dependence for both these coefficients. For
comparison, in Fig. 8(b) we also show the exponent a(p)
found when fitting c(p) = 1 for all p: the lack of c(p) to allow
scaling to increase the overall PR produced by the fit, a key
to accurately fitting in the intermediate regime, results in a
slower decay of the exponent as p is increased. However, the
overall behavior is qualitatively the same.

0 1 3 4p
0

1

a

(a)

0 1 3 4p
0

1

a

(b)

0

2

c

FIG. 8. Coefficients as a function of p found when fitting
PR(L, p) = La(p)/c(p) to PR(L) curves.

APPENDIX E: NUMERICAL PROPERTIES OF �

1. Maximum eigenvalue statistics

The behavior of the largest eigenvalue of X †X , λmax, is of
great importance to the dynamical study of ρ because

�
.= X †X/2λmax, (E1)

as previously defined in the main text (which choice again
tamed the semipositiveness of ρ). This maps the spectrum of
� to the [0,1] interval regardless of p or L. Thus, it is worth
studying the behavior of λmax used for this definition of �

for different values of p and L, Fig. 9. One finds that in the
localized phase λmax remains roughly fixed at a constant value
for all such p and L whereas in the thermal phase λmax grows
as a power law with L.

2. Power-law decay of � matrix elements

�’s matrix elements decay away from the diagonal as the
distance to it, d , is increased. This decay is intimately related
to p via

Xjk = x jk

(| j − k| + 1)p
. (E2)

As depicted in Fig. 10, for large enough d , the decay of the
matrix elements of � away from the diagonal is roughly given

FIG. 9. Eigenvalues of X †X (markers) and their average against
L (lines).
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FIG. 10. Log-log plot of the decay of the matrix elements of � as
a distance d away from the diagonal. For large enough d , the decay
is given by a power law with an exponent approximately equal to p.
In the legend, g log is the linear gradient of the black lines fitted to
the log-log data. Note how p ∼ g log, suggesting a power-law decay
with power p for large enough d .

by

||�L/2,L/2+d || ∼ 1

d p
for 1 � d. (E3)

As � is Hermitian, this observation connects the local-
ization transition of �’s eigenvectors to the already men-
tioned power-banded localized Hamiltonian models in the
literature.

3. Power-law decay of � eigenvectors

Prior studies of PRBMs have observed power-law decay
of eigenstates away from a central site, particularly closer to
the transition within the localized phase. This is in contrast
to eigenstates in short-range models exhibiting exponential
decay. In Fig. 11 we present data suggesting our PRBM model
exhibits the same phenomena, with small deviations from
power-law behavior at lower values of p.

APPENDIX F: MUTUAL INFORMATION
WITH BOUNDARIES

When we set to explore the mutual information behav-
ior between two subsystems, one needs to choose whether
or not to include the boundaries that separate these two
subsystems. In the main text, we decided to exclude the
boundaries between A and B so when L → ∞ even if A/L
and B/L are set constant the boundary ∂AB contribution to
I∞ dies off as ∂AB grows. This is because it filters the very
short-range entanglement contribution of ∂AB for sufficiently
large L. This can be seen in the area-law phase in Fig. 1
of the main text. Here we redo our analysis of the mutual
information without removing ∂AB in Fig. 12. As expected,
pc shifts into the area-law phase as now the short-range
entanglement is a more dominant contribution to I∞. This
also illustrates the strength of this contribution toward I∞,
which can be seen in this shift and the overall substantially
larger magnitude of I∞. Note that in contrast to the unusual
LA dependence we observe in the case without boundary

0 200 400 600 800 1000i
0.000

0.005

0.010

|ψ
(i

)|2

(a)

0 200 400 600 800 1000i
0.00

0.02

0.04

|ψ
(i

)|2

(b)

100 101 102

|i − imax|
10−6

10−5

10−4

10−3

10−2

|ψ
(i

)|2

(c)

p
1 2 3p

0.0

2.5

FIG. 11. (a), (b) Five sample eigenstates with a maximum mag-
nitude value within the middle 25th of the system at (a) p = 0.5
and (b) p = 1.1. (c) Log-log plot of the averaged positional prob-
ability as a function of distance from the most probable site, for
p = [0.5, 0.7, 0.9, 1.0, 1.2, 1.4, 1.7, 2.0]. Averaged over eigenstates
with most probable sites located in the middle 5th of the system, and
averaged over 1000 disorder realizations. Linear fits of the probabili-
ties for distances of 100 to 1000 are shown by the dashed lines. Inset:
(solid) gradients of the linear fits are shown vs p, (dashed) the curve
y = p.

102 103

L

101

10−1

I∞

30 3 × 102

LA

10−1

2 × 101

I∞

0 1.1 1.2 1.3p

1.0

0.1

I∞
L1/ν(p − pc)

I∞

(b) (c)

(d)

FIG. 12. Steady-state mutual information between A and B in-
cluding their boundary term ∂AB.
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10−2

ΔB
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FIG. 13. Relative height of the bump in It in (b) with respect to
its I∞ scaled by 1/I∞, denoted by �B/I∞, against system size, L.

contributions, here we see a clear change from a subextensive
power-law dependence at low p to an area-law dependence at
high p.

APPENDIX G: MUTUAL INFORMATION BUMP

The height of the bump, �B, relative to I∞ at different
values of p against L is plotted in Fig. 13. As L is increased,
�B/I∞ decreases for all p, but far more rapidly in the
delocalized phase. The weak entangling nature of hopping
introduces a short time increment in It which is subsequently
destroyed by the dissipation.

APPENDIX H: NUMERICAL DETAILS

1. Disorder realizations

In Fig. 1 of the main text, panel (b), disorder realizations
are linearly decreased from 500 at L = 100 to 100 at L =

1000. In panel (c), 20 disorder realizations were used. Figure 2
of the main text uses identical disorder realizations to Fig. 1.
In Fig. 3 of the main text, from L = 400 to L = 2000, disorder
realizations were [500,200,200,200,100]. The inset of Fig. 3
of the main text was done using identical numbers of disorder
realizations.

Figure 5 of the main text was computed by randomly
generating � at each p, 103 times, and from this obtaining
the temperature distribution shown. The inset was computed
at L = [50, 100, . . . , 1000] and averaged with disorder
realizations [2000, 1900, . . . , 100], respectively, for each
value
of p.

Figure 9 was computed by randomly sampling X †X in the
L = [102, 103] interval 105 times for each value of p shown.

Figure 10 was computed at L = 103 and averaged over 103

realizations.

2. Finite-size scaling

To perform a finite-size scaling analysis on the mutual
information data, we optimize a standard loss function which
measures the spread of the data; see, e.g., Ref. [118]. Given
that our data possess nonzero error bars from averaging over
disorder realizations, we perform this analysis by sampling
Gaussian perturbations of our dataset, sampling noise for each
data point with a standard deviation equal to the error in the
mean for that data point. For each sample of a noise-perturbed
dataset, we then optimize the loss to find a corresponding
critical point and exponent. The expected value and variance
of these resulting parameters are then calculated, using 1000
noisy realizations of our dataset.
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of dephasing on many-body localization, Phys. Rev. B 93,
094205 (2016).

[112] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S.
Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and
U. Schneider, Signatures of many-body localization in a con-
trolled open quantum system, Phys. Rev. X 7, 011034 (2017).
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