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Role of Fock-space correlations in many-body localization
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Models of many-body localization (MBL) can be represented as tight-binding models in the many-body
Hilbert space (Fock space). We explore the role of correlations between matrix elements of the effective
Fock-space Hamiltonians in the scaling of MBL critical disorder Wc(n) with the size n of the system. For this
purpose, we consider five models, which all have the same distributions of diagonal (energy) and off-diagonal
(“hopping”) Fock-space matrix elements but different Fock-space correlations. These include quantum-dot (QD)
and one-dimensional (1D) MBL models, their modifications (uQD and u1D models) with removed correlations
of off-diagonal matrix elements, as well a quantum random energy model (QREM) with no correlations at all.
Our numerical results are in full consistency with analytical arguments predicting n3/4(ln n)−1/4 � Wc � n ln n
for the scaling of Wc(n) in the QD model (we find Wc ∼ n numerically), Wc(n) ∼ const for the 1D model,
Wc ∼ n ln n for the uQD and u1D models without off-diagonal correlations, and Wc ∼ n1/2 ln n for QREM.
The key difference between the QD and 1D models is in the structure of correlations of many-body energies.
Removing off-diagonal Fock-space correlations makes both these models “maximally chaotic”. Our findings
demonstrate that the scaling of Wc(n) for MBL transitions is governed by a combined effect of Fock-space
correlations of diagonal and off-diagonal matrix elements.
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I. INTRODUCTION

The problem of many-body localization (MBL) addresses
quantum localization in interacting disordered systems far
from the ground state (i.e., at finite-energy density) [1,2]. This
problem can be viewed as a many-body extension of the fa-
mous Anderson localization problem [3]. In the single-particle
setting, localization-delocalization phase transitions (Ander-
son transitions) are characterized by remarkably rich physics,
which has been explored by analytical and numerical means
[4]. For the MBL problem, fully controllable analytical and
numerical investigations represent highly challenging tasks.
While great progress has been achieved in understanding the
MBL physics (see reviews [5–11]), many important aspects
remain a subject of active current research.

The Hamiltonian of an MBL model can be equivalently
represented as a tight-binding model in the many-body Hilbert
space, which we will term for brevity “Fock space”. (For
spin-1/2 models that we consider, the many-body Hilbert
space is in one-to-one correspondence with that of fermions
or hard-core bosons, thus justifying the “Fock space” termi-
nology.) In such a representation, site energies correspond
to energies of many-body basis states, while hopping matrix
elements are amplitudes of transitions between these states.
The Fock-space view on the MBL problem is highly in-
structive since it is closely related to one of the fundamental
properties of the MBL phase—breakdown of (quantum) er-
godicity [12,13]. This can be explored by studying Fock-space
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observables, i.e., those related to eigenvalues and eigenstates
of the many-body Hamiltonian. In the ergodic phase, eigen-
states hybridize within an energy shell that contains a very
large number of states. This implies, in particular, the scaling
of inverse participation ratio (IPR) corresponding to spreading
of many-body eigenstates over the basis states within the
energy shell as well as the Wigner-Dyson level statistics. In
contrast, on the MBL side of the transition, the hybridization
is typically strongly suppressed, even for states that are ad-
jacent in energy space, which is reflected in the IPR scaling
and in the Poisson level statistics. Within the Fock-space
approach, the concept of transition between ergodicity and
MBL is also applicable to many-body quantum-dot models
[12,14–33] that do not exhibit real-space localization. The
Fock-space approach (including the analysis of properties
of many-body eigenstates, matrix elements, and resonances)
has proven to be very useful for theoretical investigation of
the physics around MBL transitions [9,11,27,34–46]. Further-
more, there is remarkable progress in experimental studies
of Fock-space dynamics and of statistics of many-body en-
ergies in systems of coupled qubits across the MBL transition
[47–51].

The Fock-space representation of the MBL models bears
analogies to Anderson localization on random regular graphs
(RRG), see Ref. [9] for a recent review of the RRG model
and its relations to the MBL. The Anderson localization on
RRG (and in some variations of this model) was studied in
a number of papers [37,52–67] (see also earlier studies of
a related sparse random matrix model [68,69]). Of special
interest in the MBL context is the Anderson transition on RRG
with a large coordination number, which has been explored
analytically and numerically in the recent paper [33].
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While the analysis of Anderson localization on RRG has
been very instructive for understanding the MBL physics, the
actual Fock-space structure of a many-body Hamiltonian is
more involved than that of the RRG model. Specifically, Fock-
space matrix elements in MBL problems necessarily exhibit
strong correlations, since they are built of a much smaller
number of couplings entering the second-quantized Hamil-
tonian. Importance of these correlations was emphasized in
particular in Refs. [20,70,71].

The goal of this paper is to explore the role of Fock-space
correlations in the scaling of the critical disorder Wc(n) of
MBL transitions with the system size n. Strictly speaking,
for a finite n, the transition from ergodicity to MBL with
increasing disorder W is not fully sharp, i.e., it happens in a
window �W (n) (and thus may be termed a crossover) around
a certain disorder Wc(n), in analogy with conventional contin-
uous (second-order) phase transitions. Clearly, using different
observables (e.g., those related to level statistics or to eigen-
functions statistics) may lead to slightly different values of
Wc(n) within the �W (n) window. However, with increasing n,
the relative width of this window shrinks, �W (n)/Wc(n) → 0
at n → ∞, so that one can speak about a well-defined phase
transition at Wc(n) in the large-n limit. Importantly, for many
models one finds a very nontrivial scaling of the critical dis-
order Wc with n; see, e.g., Refs. [35,72]. Understanding this
scaling—and the underlying mechanisms—in various settings
is of crucial importance for understanding the physics of the
evolution from ergodicity to MBL.

We study numerically (by exact diagonalization) five Fock-
space models (explicitly defined in Sec. II), which all share
the same distributions of energies and hopping matrix ele-
ments but with distinct correlation properties. Two of these
models are Fock-space representations of MBL problems of
two extreme geometries: a quantum dot (QD) and a one-
dimensional (1D) chain. As we discuss in detail below,
the crucial difference between the Fock-space representa-
tions of these two models is in correlations of diagonal
matrix elements. Further two models—which we term “un-
correlated quantum dot (uQD) model” and “uncorrelated 1D
(u1D) model”—are obtained from these models by remov-
ing correlations between off-diagonal elements. Finally, we
also consider a model without any correlations of matrix
elements, which is a version of the quantum random en-
ergy model (QREM) [73–75]. Exploring Wc(n) in all five
models, we obtain numerical results that are in full agree-
ment with the corresponding analytical arguments, predicting
n3/4(ln n)−1/4 � Wc � n ln n for the scaling of Wc(n) in the
QD model (we find Wc ∼ n numerically), Wc(n) ∼ const for
the 1D model, Wc ∼ n ln n for the uQD and u1D models, and
Wc ∼ n1/2 ln n for QREM, see Fig. 1. Our findings provide
a comprehensive picture of how Fock-space correlations of
diagonal and off-diagonal matrix elements jointly govern the
scaling of MBL transitions.

We also analyze the scaling of the transition width and
find numerically �W (n)/Wc(n) ∼ n−μ with μ ≈ 0.95 − 1.3
for all five models. Our analytical results for QREM, uQD,
and u1D models show that this is indeed the expected be-
havior in the range of n accessible to exact diagonalization.
At the same time, this is not the asymptotic large-n behavior
of the width that we find to be �W (n)/Wc(n) ∼ n−3 ln2 n

FIG. 1. Summary of scaling of the critical disorder Wc(n) of the
MBL transition for models considered in this article. Presence and
character of energy and hopping correlations (i.e., correlations in
diagonal and off-diagonal matrix elements, respectively) in the Fock-
space representation of the models are indicated. The labels f (rαβ )
and f (α, β ) on the energy-correlation axis refer, respectively, to
correlations that depend only on the Hamming distance rαβ between
Fock-space states α and β and to correlations with a more complex
dependence on α and β (reflecting 1D spatial structure), see Sec. II
for details. The analytical results for Wc(n) shown in the figure (see
Sec. III) are supported by numerical simulations in Secs. IV and
V. For the QD model, the numerical results suggest Wc(n) ∼ n, in
consistency with analytical bounds shown in the figure.

for these models and which is applicable to larger systems,
n > 22.

The structure of the paper is as follows. In Sec. II we define
the models and analyze the Fock-space correlations of the cor-
responding matrix elements. In Sec. III we present analytical
arguments for the scaling of critical disorder in these models.
Our numerical approach is explained in Sec. IV, where we
also apply it to the model without any Fock-space correlations
(i.e., QREM). Numerical results for four models with different
types of Fock-space correlations (QD, 1D, uQD, and u1D) are
then presented and analyzed in Sec. V. Section VI contains a
summary of our results, along with a discussion of prospects
for future research. Some technical details are shifted to Ap-
pendices.

II. MODELS AND ASSOCIATED FOCK-SPACE
CORRELATIONS

A. Fock-space graph representation

In this paper, we focus on spin-1/2 models. For n spins, the
many-body Hilbert space (the Fock space) has a dimension 2n.
We will use states |α〉 that are eigenstates of all Ŝz

i operators
(i = 1, . . . , n) as a basis of this space. The considered models
have a Fock-space representation of the form

Ĥ = Ĥ0 + Ĥ1 =
2n∑

α=1

Eα|α〉〈α| +
2n∑

α,β=1
α �=β

Tαβ |α〉〈β|. (1)

The basis states |α〉, which can be presented as spin strings
of the type |↑,↓, . . . ,↑〉, are eigenstates of the part Ĥ0 of
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the Hamiltonian, Ĥ0|α〉 = Eα|α〉, with many-body energies
Eα . The MBL transition in the models under consideration
is driven by the strength W of the random Zeeman field in z
direction, so that the basis states |α〉 become also eigenstates
of the full Hamiltonian Ĥ in the limit W → ∞. Further, the
part Ĥ1 of the Hamiltonian includes terms involving spin-flip
processes, with Tαβ ≡ 〈α|Ĥ1|β〉 being a transition matrix ele-
ment between spin configurations α and β. The Hamiltonian
Ĥ equivalently describes a tight-binding model for a fictitious
single particle living on the Fock space of our model of inter-
est, with on-site energies Eα and hopping amplitudes Tαβ .

Geometrically, the Fock space of the models under con-
sideration can be viewed as formed by N = 2n vertices of
an n-dimensional hypercube. Thus, generically, models under
consideration can be viewed as single-particle localization
problems on graphs that have the form of a hypercube in
n dimensions. The 2n nodes of the graph (which are at the
vertices of the hypercube) are characterized by on-site ener-
gies Eα , and the hopping amplitudes Tαβ are associated with
graph edges. We define the Hamming distance rαβ between
states α and β as the number of differing spins in these states.
The Hamiltonians Ĥ that we will consider in this paper will
include only single-spin-flip processes, so that edges of the
graph will be identical to edges of the hypercube. Correspond-
ingly, the Hamming distance rαβ will be equal to the length of
the shortest path (number of edges of the graph) linking these
two nodes on the graph.

Since we are interested in disordered models, the energies
Eα and the amplitudes Tαβ are random variables, and we
describe the physics by observables averaged over the corre-
sponding ensemble of disorder realizations. Thus, for a given
spin model, the mapping to the Fock-space representation (1)
is completely determined by specifying the joint distribution
of the set of random variables {Eα} and {Tαβ}. This multivari-
ate distribution, which includes information about fluctuations
and correlations of matrix elements of the Fock-space Hamil-
tonian, thus fully controls the physics of the system. For the
models that we consider here, the distributions are multi-
variate Gaussian and are fully determined by two covariance
matrices

(CE )αβ ≡ 〈EαEβ〉, (2)

(CT )αβμν ≡ 〈T ∗
αβTμν〉. (3)

All models that we study in this paper are characterized by
the same values of variances (CE )αα and (CT )αβαβ of energies
Eα and “hopping” matrix elements Tαβ . At the same time,
they differ by the form of covariances (CE )αβ [for α �= β)
and (CT )αβμν (for {α, β} �= {μ, ν}]. This allows us to explore
implications of correlations for the scaling of the MBL transi-
tion. More specifically:

(i) Both genuine many-body models that we consider
(quantum dot and 1D) have nontrivial Fock-space energy cor-
relations (CE )αβ . A crucial difference between them is that for
the quantum-dot model (CE )αβ depends only on the Hamming
distance between the states it couples,

(CE )αβ = f (rαβ ). (4)

This property does not hold for the 1D model, for which
(CE )αβ has a more complicated dependence on the difference
between spin configuration α and β, reflecting the structure of
the model in real space. Comparing the results for both models
(between themselves, and also with the fully uncorrelated
QREM-type model) allows us to investigate the role of en-
ergy correlations (CE )αβ in the scaling of the MBL transition
Wc(n).

(ii) Furthermore, both many-body models are character-
ized by nontrivial correlations of “hopping” matrix elements
in Fock space. Again, the corresponding correlation func-
tion (CT )αβμν depends only on the Hamming distance for
the quantum-dot model and reflects the 1D spatial structure
in the case of a 1D model. For comparison, we study also
two Fock-space models (that we call “uncorrelated quantum
dot” and “uncorrelated 1D” for brevity) that have the same
(CE )αβ as the respective many-body model but have no cor-
relations between hopping matrix elements [i.e., (CT )αβμν =
0{α, β} �= {μ, ν}]. In addition, we study a quantum random
energy model without correlations at all, whether in diagonal
or in off-diagonal matrix elements. This allows us to explore
separately the impact of (CE )αβ and (CT )αβμν correlations.

In the rest of Sec. II, we introduce five models mentioned
above (quantum dot, 1D, “uncorrelated quantum dot”, “uncor-
related 1D”, and quantum random energy model), which are
studied in this paper and serve as a basis for our comparative
analysis of the effect of Fock-space correlations on the scaling
of the MBL transition. Since all of these models are restricted
to single-spin flip processes, every spin configuration |α〉 is
connected to n other states through nonzero matrix elements
Tαβ . As a consequence, the associated Fock-space representa-
tion is a regular graph with connectivity n. For each of these
models, we specify the mapping to the Fock-space representa-
tion (1) by computing the distributions of Eα and Tαβ and their
correlation properties, encapsulated in the covariance matrices
CE and CT .

B. Quantum dot (QD) model

1. Definition of the model

We define a single-spin-flip quantum dot model, with in-
teractions between every pair (i, j) of spins. For brevity, we
call it “QD model” below and use the superscript “QD” for
the corresponding Hamiltonian and covariance matrices. The
Hamiltonian of the model reads

ĤQD = ĤQD
0 + ĤQD

1 , (5)

ĤQD
0 =

n∑
i=1

εiŜ
z
i + 2√

n

n∑
i, j=1

V z
i j Ŝ

z
i Ŝz

j, (6)

ĤQD
1 = 1√

n

n∑
i, j=1

a∈{x,y}

V a
i j

(
Ŝz

i Ŝa
j + H.c.

)
, (7)

where the spin- 1
2 operators are defined as Ŝa

i = 1
2σ a

i with
i = 1, . . . , n and σ a

i the Pauli matrices. The single-particle
energies εi are uncorrelated random variables uniformly dis-
tributed in [−W,W ], where W sets the disorder strength and is
a parameter that is used to drive the system through the MBL
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transition. The interaction couplings V a
i j (with a ∈ {x, y, z}) are

uncorrelated real Gaussian random variables with〈
V a

i j

〉 = 0, (8)〈
V a

i jV
b

kl

〉 = 0 for a �= b, (9)〈
V z

i jV
z

kl

〉 = δikδ jl , (10)〈
V x

i jV
x

kl

〉 = 〈
V y

i jV
y

kl

〉 = 2δikδ jl . (11)

Everywhere in the paper, 〈. . .〉 denotes the average over the
statistical ensemble (i.e., over the distribution of {εi} and {V a

i j}
in the present context).

It is worth mentioning that our QD model can be obtained
from the spin quantum-dot model studied in Ref. [33] by
removing from the Hamiltonian all terms corresponding to
two-spin-flip processes. A similar model with random all-to-
all interactions and single-spin flips was also considered in
Ref. [27].

2. Fock-space representation

We proceed now as discussed in Sec. II A and represent the
QD model as a Fock-space tight-binding model in the basis
of eigenstates |α〉 of ĤQD

0 (i.e., of all Ŝz
i ). The many-body

energies Eα are expressed as

Eα ≡ 〈α|ĤQD|α〉 = 1

2

n∑
i=1

εis
(α)
i + 1

2
√

n

n∑
i, j=1

V z
i js

(α)
i j , (12)

with s(α)
i ≡ 〈α|σ z

i |α〉 = ±1, and s(α)
i j ≡ s(α)

i s(α)
j = ±1. Fur-

ther, the matrix element Tαβ ≡ 〈α|ĤQD|β〉 is nonzero if and
only if |α〉 and |β〉 differ by a single spin flip. Specifically, for
a pair of states that differ only by a sign of spin sk (i.e., for
|β〉 = |ᾱk〉 ≡ σ x

k |α〉), we have

Tαβ = 〈α|ĤQD
1 |ᾱk〉 = 1

2
√

n

n∑
i=1
i �=k

(
V x

iks(α)
i + iV y

iks(α)
ik

)
. (13)

Note that the terms with V y
ik are purely imaginary and depend

on the sign of spin k.
The QD model (5) thus maps to the Fock-space represen-

tation (1), with on-site energies and hopping matrix elements
given by Eqs. (12) and (13), respectively. Below, we analyze
the correlations of these matrix elements.

3. Energy distributions and correlations

By virtue of the central limit theorem, for n � 1, the
many-body energies Eα , given by Eq. (12), obey a multivari-
ate Gaussian distribution. Let us first consider the individual
distributions of Eα . The first term in Eq. (12) is a Gaussian ran-
dom variable ∼ N (0, nW 2/12) (here we use the conventional
notations for a Gaussian distribution, with two arguments
denoting the mean value and the variance). The second term
obeys the Gaussian distribution N (0, n/4). Thus, we get

Eα ∼ N
(

0,
nW 2 + 3n

12

)
. (14)

We turn now to the full covariance matrix that encodes
information about energy correlations. According to Eq. (12),
we obtain(

CQD
E

)
αβ

= 〈EαEβ〉 = W 2

12

n∑
i=1

s(α)
i s(β )

i + 1

4n

n∑
i, j=1

s(α)
i j s(β )

i j ,

(15)

where we used 〈εiε j〉 = δi jW 2/3 and 〈V z
i jV

z
kl〉 = δikδ jl [see

Eq. (10)]. As discussed above, we introduce the Hamming
distance rαβ between two many-body states α and β as the
minimum number of spins to be flipped in order to transform
α into β. It is not difficult to see that both sums in Eq. (15) can
be expressed as functions of rαβ . For the first sum, this is fully
straightforward, as s(α)

i s(β )
i = 1 if the spin i is in the same state

in both states α and β, and s(α)
i s(β )

i = −1 otherwise. We thus
get

n∑
i=1

s(α)
i s(β )

i = n − 2rαβ. (16)

To compute the second sum in Eq. (15), we denote as D the
set of spins i such that s(α)

i = −s(β )
i . Clearly, D contains rαβ

elements. It is easy to see that s(α)
i j s(β )

i j = 1 when i ∈ D and j ∈
D or, else, when i /∈ D and j /∈ D. These terms thus provide
a contribution (n − rαβ )2 + r2

αβ to the sum. For the remaining
terms, which correspond to the cases where i ∈ D and j /∈ D
or, else, i /∈ D and j ∈ D, we have s(α)

i j s(β )
i j = −1. These terms

contribute −2rαβ (n − rαβ ). Thus, we obtain

n∑
i, j=1

s(α)
i j s(β )

i j = (n − 2rαβ )2, (17)

Combining the two terms in Eq. (15), we find the following
expression for the covariance matrix:

(
CQD

E

)
αβ

= n

[
W 2

12

(
1 − 2rαβ

n

)
+ 1

4

(
1 − 2rαβ

n

)2
]
. (18)

4. Distribution and correlations of hopping matrix elements

Obviously, matrix elements Tαβ obey a multivariate com-
plex Gaussian distribution with zero mean. In particular, it
is easily seen from Eq. (13) that individual Tαβ (those that
are nonzero, i.e., connect two states that differ by a single
spin flip) are Gaussian complex random variables such that
(at n � 1)

Tαβ ∼ N
(
0, 1

2

) + iN
(
0, 1

2

)
, (19)

where we used Eq. (11). Correspondingly, diagonal elements
of the covariance matrix CQD

T read(
CQD

T

)
αβαβ

= 〈|Tαβ |2〉 = n − 1

n
� 1. (20)

Later, we will also need the average absolute value of transi-
tion amplitudes |Tαβ |,

〈|Tαβ |〉 =
√

π

2
. (21)

To extend Eq. (20) to the full covariance matrix CQD
T , we

note that (CQD
T )αβμν ≡ 〈T ∗

αβTμν〉 is nonzero only if the states
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{α, β} are connected by a single flip of spin sk and the states
{μ, ν} are connected by a single flip of the same spin sk , with
s(α)

k = s(μ)
k . Geometrically, this means that the edges (α → β )

and (μ → ν) of the hypercube are collinear, with the same di-
rection, and parallel to k axis. [We recall that Tαβ are complex,
Eq. (19), so that the order of indices α, β does matter, and the
same for μ, ν.] In this case, a simple calculation yields

(
CQD

T

)
αβμν

= 1

n

n∑
i=1
i �=k

s(α)
i s(μ)

i = n − 1 − 2rαμ

n
� 1 − 2rαμ

n
.

(22)
We have thus fully determined the statistics of matrix

elements of the Fock-space Hamiltonian of the QD model.
Both the many-body energies Eα and the “hopping” ma-
trix elements Tαβ are characterized by correlated multivariate
Gaussian distributions. The covariance matrix for the energies
is given by Eq. (18); its elements depend only on the Ham-
ming distance rαβ on the Fock-space graph. Nonzero elements
of the covariance matrix of hoppings are given by Eq. (22);
they also depend on the relative position of two states α and
μ only via the Hamming distance rαμ.

C. Uncorrelated quantum dot (uQD) model

In the Fock-space representation of the QD model, there
are strong correlations between energies Eα (Sec. II B 3) and
also strong correlations between the hopping matrix elements
Tαβ (Sec. II B 4). To explore the role of the latter correlations,
we define a modified model in the Fock space, in which the
energy covariance matrix CE has exactly the same form as
in the QD model, Eq. (18), and, at the same time, the off-
diagonal matrix elements of CT are set to zero,

(
CuQD

T

)
αβμν

≡ (
CQD

T

)
αβαβ

δαμδβν � δαμδβν, (23)

where α and β are connected by one spin flip. In this way, we
remove correlations between the hopping matrix elements in
the Fock-space version of the QD model.

We term the model obtained in this way the “uncorrelated
QD model” or, still shorter, “uQD model”. Let us reiterate,
however, that this model on the Fock-space (hypercube) graph
is uncorrelated only in the sense of absence of correlations
between the hopping matrix elements Tαβ defined on edges
of the graph. At the same time, the energies Eα in this model
retain strong correlations of the QD model given by Eq. (18),(

CuQD
E

)
αβ

= (
CQD

E

)
αβ

. (24)

It is also worth emphasizing that, while the uQD model
has a simple definition in terms of a tight-binding model in
the Fock space, it does not correspond to any “conventional”
spin model (i.e., a model involving p-spin interactions, where
p is fixed in the large-n limit). Indeed, it is easy to see that, in
order to obtain a Fock-space model like the uQD model, one
would need to include in the spin Hamiltonian terms involving
coupling of all n spins. This comment also applies to the
uncorrelated 1D model introduced below in Sec. II E.

D. One-dimensional spin chain (1D model)

We define now a 1D single-spin-flip model and derive
its Fock-space representation and associated correlations. We
will see how the 1D spatial structure is reflected in Fock-space
correlations, which are not more functions of solely the Ham-
ming distance on the graph, at variance with the QD model.

1. Definition of the model

The 1D model that we consider is a length-n spin chain
with periodic boundary conditions, governed by the Hamilto-
nian

Ĥ1D = Ĥ1D
0 + Ĥ1D

1 , (25)

Ĥ1D
0 =

n∑
i=1

εiŜ
z
i + 2

n∑
i=1

V z
i,i+1Ŝz

i Ŝz
i+1, (26)

Ĥ1D
1 = 2

n∑
i=1

a∈{x,y}

V a
i,i+1Ŝz

i Ŝa
i+1. (27)

As in the QD model, the spin- 1
2 operators are defined as

Ŝα
i = 1

2σ a
i with Pauli matrices σ a

i , and the single-particle
energies εi are uncorrelated random variables uniformly dis-
tributed in [−W,W ]. Further, the interaction couplings V a

i,i+1
are uncorrelated Gaussian random variables with the statistics
determined by Eqs. (8)–(11), where now only the couplings
with j = i + 1 and l = k + 1 enter, i.e.,〈

V a
i,i+1

〉 = 0, (28)〈
V z

i,i+1V
z

k,k+1

〉 = δik, (29)〈
V x

i,i+1V
x

k,k+1

〉 = 〈
V y

i,i+1V
y

k,k+1

〉 = 2δik . (30)

2. Fock-space representation

In analogy with the QD model, Ĥ1D can be straightfor-
wardly mapped to the Fock-space representation (1) in the
basis |α〉 of eigenstates of Ĥ1D

0 . The many-body energies Eα

are found to be

Eα ≡ 〈α|Ĥ1D|α〉 = 1

2

n∑
i=1

s(α)
i εi + 1

2

n∑
i=1

s(α)
i,i+1V

z
i,i+1, (31)

with the same notations as above, s(α)
i ≡ 〈α|σ z

i |α〉 = ±1 and
s(α)

i,i+1 ≡ s(α)
i s(α)

i+1 = ±1. The “hopping” matrix elements Tαβ ≡
〈α|Ĥ1D|β〉 are nonzero if and only if |α〉 and |β〉 are connected
by a single spin flip. For a pair of states |α〉 and |β〉 = |ᾱk〉 that
differ only by the sign of the spin sk in a position k, we have

Tαβ = 2〈α|[V x
k−1,kŜz

k−1Ŝx
k + V y

k−1,kŜz
k−1Ŝy

k

]|ᾱk〉
= 1

2

(
V x

k−1,ks(α)
k−1 + iV y

k−1,ks(α)
k−1,k

)
. (32)

As in the case of the QD model, the Fock space can be seen
as a hypercube graph with 2n nodes and connectivity n, with
energies Eα associated with the graph vertices and single-spin-
flip amplitudes Tαβ associated with the edges.

3. Energy distributions and correlations

It follows from Eq. (31) that individual energies Eα obey
exactly the same Gaussian distribution (14) as for the QD
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model. Let us calculate the correlations. Using Eqs. (28) and
(29), we get for the energy covariance matrix (C1D

E )αβ =
〈EαEβ〉,

(
C1D

E

)
αβ

= W 2

12

n∑
i=1

s(α)
i s(β )

i + 1

4

n∑
i=1

s(α)
i,i+1s(β )

i,i+1

= W 2

12
(n − 2rαβ ) + 1

4
(n − 2qαβ ). (33)

Here rαβ is the Hamming distance defined above, and we have
introduced the notation qαβ for the number of sites i such that
s(α)

i,i+1 = −s(β )
i,i+1.

Crucially, the covariance (33) depends on the Fock-space
path between the states α and β not solely via the Hamming
distance rαβ . The emergence of qαβ in Fock-space correla-
tions, Eq. (33), reflects the 1D real-space geometry of the
model. This difference between Eqs. (18) and (33) is crucial
for a different scaling of the MBL transition Wc(n) in the QD
and 1D model, as we discuss below.

It is instructive to consider an average of the covariance
(33) over all pairs of spin configurations (α, β ) with a given
Hamming distance rαβ . (A similar calculation for a different
1D model was performed in Ref. [71].) We will denote such an
average by an overbar; by construction, it gives a function of
rαβ . It is not difficult to see that, for a given rαβ , the probability
that s(α)

i,i+1 = −s(β )
i,i+1 for a given site i is

rαβ (n − rαβ )

n(n − 1)
� rαβ (n − rαβ )

n2
, (34)

so that

qαβ = 2n
rαβ

n

(
1 − rαβ

n

)
. (35)

Thus, we find from Eq. (33)

C1D
E (rαβ ) = n

[
W 2

12

(
1 − 2rαβ

n

)
+ 1

4

(
1 − 2rαβ

n

)2
]
. (36)

We observe that the right-hand side of Eq. (36) is identical to
that of the QD covariance, Eq. (18). Thus, while the 1D spatial
geometry is reflected in the Fock-space covariance matrix
C1D

E in a specific way, this structure is totally washed out if
one considers the covariance averaged over directions in Fock
space, C1D

E (rαβ ), which is the same for QD and 1D models.
It is thus of paramount importance to address (CE )αβ rather
than its average CE (rαβ ) when discussing MBL properties.
In particular, one cannot deduce the scaling of Wc(n) on the
basis of solely CE (rαβ ), at variance with Ref. [71]: many-body
models with the same CE (rαβ ) may exhibit a totally different
scaling Wc(n).

4. Correlations of hopping matrix elements

In analogy with the QD model, the Fock-space hoppings
{Tαβ} of the 1D model obey a multivariate complex Gaussian
distribution with zero mean. From Eq. (32), we find, using
Eq. (30), that the matrix elements Tαβ exhibit the same Gaus-
sian distribution (19) as in the QD model.

As in the QD model, an element (C1D
T )αβμν ≡ 〈T ∗

αβTμν〉 of
the covariance matrix is different from zero only if the states

{α, β} are connected by a single flip of spin sk and the states
{μ, ν} are connected by a single flip of the same spin sk , with
s(α)

k = s(μ)
k . In this situation, we find(

C1D
T

)
αβμν

= s(α)
k−1s(μ)

k−1. (37)

As in the case of energy correlations, we see that (C1D
T )αβμν

is not a function of Hamming distance, in contrast to the
covariance CT of the QD model, Eq. (22). This is again a
manifestation of the spatial geometry of the 1D model. If one
averages over Fock-space directions between the states α and
μ (at fixed rαμ), this information gets lost (in the same way as
for CE ), and the result is exactly the same as for the QD model
[Eq. (22)], (

C1D
T

)
αβμν

= 1 − 2
rαμ

n
. (38)

E. Uncorrelated one-dimensional (u1D) model

In the same spirit as we modified the QD model into the
uQD model, we define now an “uncorrelated 1D model” (in
brief, u1D model) by removing the correlations of hopping
matrix elements Tαβ from the 1D model. Thus, the u1D model
has exactly the same energy covariance matrix CE as the 1D
model, (

Cu1D
E

)
αβ

= (
C1D

E

)
αβ

, (39)

which is given by Eq. (33), and the hopping covariance matrix
CT obtained from C1D

T , Eq. (37), by setting all off-diagonal
elements [(α, β ) �= (μ, ν)] to zero,(

Cu1D
T

)
αβμν

= (
C1D

T

)
αβμν

δαμδβν, (40)

so that the only nonzero elements of (Cu1D
T ) are(

Cu1D
T

)
αβαβ

= 1, (41)

where α and β are connected by a single spin flip.

F. Fully discarding correlations: Quantum random energy
model (QREM)

All four models discussed above (QD, uQD, 1D, and u1D)
have the same variances of energies, (CE )αα and of hopping
matrix elements, (CT )αβαβ but differ by the forms of covari-
ance matrices (CE )αβ and (CT )αβμν . For a more complete
understanding of the role of Fock-space correlations, it is
natural to consider also a model with the same variances and
without any correlations (i.e., with all off-diagonal elements
of covariance matrices set to zero). This is an Anderson tight-
binding model on the n-dimensional hypercube graph, Eq. (1),
with uncorrelated random energies on vertices

Eα ∼ N
(

0,
nW 2 + 3n

12

)
(42)

and with uncorrelated random hopping matrix elements on
hypercube edges

Tαβ ∼ N
(
0, 1

2

) + iN
(
0, 1

2

)
. (43)

This model is analogous to the quantum random-energy
model (QREM) studied in the context of MBL in
Refs. [74,75], with the only difference that hopping matrix
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TABLE I. Summary of the Fock-space correlation properties for the models presented in Sec. II.

Model Energy correlations CE Hopping correlations CT

QD Determined by Hamming distance, (CQD
E )αβ = f (rαβ ), Eq. (18) Determined by Hamming distance, Eq. (22)

uQD Determined by Hamming distance, (CuQD
E )αβ = f (rαβ ), Eq. (18) Diagonal CT (no correlations)

1D Reflect spatial structure, (C1D
E )αβ �= f (rαβ ), Eq. (33) Reflect spatial structure, Eq. (37)

u1D Reflect spatial structure, (Cu1D
E )αβ �= f (rαβ ), Eq. (33) Diagonal CT (no correlations)

QREM / RRG Diagonal CE (no correlations) Diagonal CT (no correlations)

elements Tαβ were constant in Refs. [74,75] and are uncorre-
lated Gaussian random variables in our case. A spin-based
microscopic realization of the QREM appeared in the context
of spin glasses [76] as an Ising infinite-range model with
p-spin interaction in a transverse field in the limit p → ∞
[73]. In what follows, we will refer to a fully uncorrelated
model defined on a hypercube by Eqs. (1), (42), and (43) as
“QREM”.

The QREM is also closely related to the RRG model,
which is obtained by substituting the hypercube structure of
the Fock space with random regular graphs with the same
connectivity m + 1 = n. In the limit of large n, the position
of the localization transition on this graph should be the same
as in the RRG model, which has been solved analytically
(see the discussion at the beginning of Sec. III A). We present
analytical results and expectations for all five models (QREM,
uQD, u1D, QD, and 1D; see Table I for the summary of their
Fock-space correlation properties) in the next section.

III. ANALYTICAL CONSIDERATIONS

In this section, we discuss analytical predictions for the
critical disorder Wc(n) and the width �W (n)/Wc(n) of the
MBL transitions in the models defined in Sec. II. We begin
with the QREM, since the absence of correlations simplifies
its analytical treatment, thus making it a convenient starting
point. After this, we consider the uQD and u1D models that
involve energy correlations, and finally, the QD and 1D mod-
els that have both energy and hopping correlations.

A. Fully uncorrelated model: QREM and Anderson localization
on RRG

We begin with the model of QREM type, Sec. II F, without
any correlations of energies Eα and hoppings Tαβ that obey the
Gaussian distributions (42) and (43). We omit some technical
details of the analysis here; they can be found in Appendix A.

The behavior of Wc(n) at large n in QREM should be
the same as in the RRG model with the same coordination
number n, the same distributions of Eα and Tαβ , and the same
system volume N = 2n. Indeed, the two models essentially
differ only by that the n-dimensional hypercube (on which
the QREM is defined) contains more short-scale loops than
a typical RRG (that is locally tree-like). However, such loops
are rare also in the QREM model, so that their contributions
to the observables get parametrically suppressed in the large-n
limit (see the discussion on the “single resonance approxima-
tion” in Refs. [74,75]). We thus begin by considering the RRG
model with a large coordination number, which can be solved
analytically.

The scaling of the Anderson localization transition in the
RRG model is well understood [9,33,61]. The “standard”
RRG model considered in most of previous papers (we will
use a subscript “RRG-0” for the corresponding observables) is
characterized by connectivity m + 1, hopping matrix elements
T = 1, and the box distribution on [−W/2,W/2] of random
energies Ei. In the limit of large Hilbert-space dimension
(number of vertices of the graph), N → ∞, the critical disor-
der Wc of this model in the middle of the band (energy E = 0)
is a solution of the equation

Wc = 4m ln(Wc/2), (44)

the same as for the corresponding model on an infinite Bethe
lattice [77,78]. As we are interested here in a large RRG con-
nectivity, we will not make distinction between connectivity
m and m + 1.

For a finite (but large) N , the transition point
W RRG−0

c (m, N ) is shifted towards smaller W . It can be
found from an equation

Nξ (W ) = N, (45)

where Nξ (W ) is the correlation volume [33], see Eqs. (A2) and
(A3) of Appendix A 1. In the above notations, the solution of
Eq. (44) is W RRG−0

c (m,∞).
We are interested here in a more general RRG model, with

distribution γ (E ) of uncorrelated energies Eα (characterized
by a single energy scale W ) and with some distribution of un-
correlated hopping amplitudes Tαβ . One should then perform
a substitution [33]

1/W �−→ γ (0)〈|T |〉, (46)

where 〈|T |〉 is the average value of |Tαβ |. Since the product
γ (0)〈|T |〉 is proportional to 1/W , the transformation (46)
amounts essentially to rescaling of the disorder W (and cor-
respondingly of Wc). In particular, Eq. (A1) takes the form

1 = 4m〈|T |〉γ (0) ln
1

〈|T |〉γ (0)
; (47)

its solution is W RRG
c (m,∞). To find W RRG

c (m, N ), one should
solve Eq. (45) for W , with Nξ (W ) given by a transformed
version of Eqs. (A2) and (A3),

Nξ = 1

m
exp{2πx−1 ln[(γ (0)〈|T |〉)−1]}, (48)

where x is a solution of the equation

sin x

x
= f (W )

f
(
W RRG

c (m,∞)
) , f (W ) = W

ln[(γ (0)〈|T |〉)−1]
.

(49)
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FIG. 2. Localization transition in QREM. Full-red line: critical
disorder W QREM

c (n), Eq. (54), as a function of the number n of spins.
The finite-size transition region [W−(n),W+(n)] around W QREM

c (n)
is shown by shading. Full-black line: the asymptotics W RRG

c (n, ∞)
given by a solution of Eq. (52). Dashed-black line: the leading large-
n asymptotics (53). Vertical-dotted line: estimated lower border of
the critical regime, ncrit ≈ 22, defined by the condition W QREM

c (n) =
W RRG

c (n, ∞)/2. Symbols: numerical exact-diagonalization data for
W QREM

c (n) from level statistics and from IPR, see Sec. IV C.

For our QREM, and thus for the associated RRG model,
〈|T |〉 = √

π/2, see Eq. (21), and

γ (E ) = 1

σ
√

2π
e−E2/2σ 2

; σ 2 = nW 2

12
, (50)

see Eq. (42). Here we have neglected the second term in the
variance in Eq. (42) since it is much smaller than the first term
under the condition W � 1. (The critical disorder Wc satisfies
this condition, as we will see shortly.) This yields

γ (0)〈|T |〉 = (3/2n)1/2W −1. (51)

Further, we make a substitution m �−→ n for the coordination
number. Equation (47) for W RRG

c (n,∞) then becomes

Wc = 4
√

3
2 n1/2 ln[(2n/3)1/2Wc]. (52)

The leading large-n asymptotics of the solution of this equa-
tion is

W RRG
c (n,∞) � 4

√
3
2 n1/2 ln n. (53)

Solving Eq. (52) iteratively, one observes that a relative cor-
rection to Eq. (53) scales with n as ln ln n/ ln n, i.e., it decays
with n very slowly.

We recall now that, for the QREM, the system volume N is
related to the coordination number n via N = 2n, so that

W QREM
c (n) = W RRG

c (n, 2n). (54)

In the large-n limit, the exponential growth of N = 2n ensures
that limn→∞ W QREM

c (n)/W RRG
c (n,∞) = 1. At the same time,

for moderately large n, this ratio may differ appreciably from
unity.

In Fig. 2, we plot the analytical curve W QREM
c (n) =

W RRG
c (n, 2n) as obtained from Eqs. (45), (48), (49), and (51).

We also show the asymptotics W RRG
c (n,∞) given by a so-

lution of Eq. (52) as well as the leading large-n asymptotics
(53). The vertical dotted line in the figure represents an es-
timated border ncrit ≈ 22 of the critical regime, n > ncrit , in

FIG. 3. Finite-size effects in localization transition in QREM.
(Left) ln (W RRG

c (n, ∞)/W QREM
c (n)) representing finite-size shift of

the transition. The large-n asymptotics (55) is shown by a black line.
(Right) Width of the transition ln (W+(n)/W−(n)) and its finite-size
asymptotics (57). Symbols: numerical exact-diagonalization data for
W QREM

c (n) from level statistics (mean gap ratio r), see Sec. IV C.
Vertical dotted lines represent the lower border ncrit ≈ 22 of the
critical regime, in which W QREM

c (n) > W RRG
c (n,∞)/2.

which W QREM
c (n) > (1/2)W RRG

c (n,∞). We find that, in the
critical regime, W QREM

c (n) approaches its large-n asymptotics
W RRG

c (n,∞) according to [see Eq. (A23)]

W RRG
c (n,∞) − W QREM

c (n)

W RRG
c (n,∞)

� 2π2

3 ln2 2

ln2 n

n2
. (55)

We analyze now the finite-size width of the QREM local-
ization transition. For this purpose, we recall that observables
that are used to detect the transition (such as the gap ratio
r of level statistics or the IPR P2) have N/Nξ as a scaling
parameter (“volumic” scaling) for W < Wc(n,∞) in the RRG
model [9,54,55,59,61,65]. Thus, to estimate the disorder in-
terval [W−(n, N ), W+(n, N )], in which the transition takes
place (e.g., the level statistics evolves from a nearly-Wigner-
Dyson form to a nearly-Poisson form), we define W−(n, N )
and W+(n, N ) via

Nξ (W−(n, N )) = b−N, Nξ (W+(n, N )) = b+N, (56)

where b+ and b− are numerical constants, with b+ > b−.
These results can be translated to the QREM by setting N =
2n, see Appendix A 1. In the critical regime, n > ncrit ≈ 22
we find for the transition width �W QREM(n) = W+(n, N ) −
W−(n, N ) [see Eq. (A24)],

�W QREM(n)

W QREM
c (n)

= 4π2

3 ln2 2
ln(b+/b−)

ln2 n

n3
. (57)

Comparing Eqs. (57) and (55), one observes that the transition
sharpens with increasing n faster (by an additional factor of
1/n) than its finite-size shift decays, which can be traced
back to an exponential growth of the volume with length
in the RRG model and QREM, see a detailed discussion
in Appendix A 1. The transition interval [W−(n),W+(n)] is
shown by shading in Fig. 2. We also show the transition width
ln(W+(n)/W−(n)) along with the corresponding asymptotics
Eq. (57) in the right panel of Fig. 3.

Ahead of a detailed discussion of the results of our nu-
merical simulations in Sec. IV, we include in Figs. 2 and 3
exact-diagonalization results for the QREM. A good agree-
ment between the analytical predictions and the numerical
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data is observed, both for the position of the transition and
for its width. In consistency with the analytical prediction,
the numerical data approach, with increasing n, the large-n
asymptotics. It is seen, however, that the slope of the numer-
ical data is smaller than that of the analytically derived curve
(54) in this range of n. These deviations can be attributed to
finite-size corrections to our analytical treatment. We recall
that the analytical curve for W QREM

c in Fig. 2 is obtained by
using Eq. (54) in combination with Eqs. (45), (48), (49), and
(51) for W RRG

c , which implies several sources for finite-size
corrections. First, the analytical result for W RRG

c (m, 2n) is
derived for m � 1 and n � 1 but then used, to compare with
the numerics, for a moderately large n and m = n + 1 ≈ n.
Second, while the equality between the critical disorder in
the QREM and RRG models, Eq. (54) becomes exact in the
large-n limit, corrections to it are expected at finite n. We
note that the numerical data in Fig. 2 exhibit a curvature
corresponding to an increase of slope with n. Extrapolating
this trend, we expect that the values of W QREM

c (n) will stay
close to our analytical curve also for larger n.

We will return to a more detailed analysis of the numerical
data for the QREM in Sec. IV C.

B. uQD and u1D models: RRG-like approximation with energy
correlations

Let us now consider the uQD and u1D models, defined in
Sec. II C and II E respectively, as the limiting case of the QD
and 1D models where Fock-space hopping correlations have
been removed: (CuQD/u1D

T )αβμν = δαμδβν . The difference from
the QREM and the RRG model is that the energies Eα are now
strongly correlated. In particular, for two states α and β that
are connected by a single spin flip (i.e., rαβ = 1), the energy
difference satisfies |Eα − Eβ | � W , while in the QREM (and
in the associated RRG model) the typical energy difference
is |Eα − Eβ | ∼ n1/2W . A parametrically smaller difference
|Eα − Eβ | resulting from energy correlations in the uQD and
u1D models favors resonances and, therefore, is expected to
enhance delocalization. We will see that this expectation is
indeed correct.

We argue now that the large-n asymptotics for Wc(n) in
the uQD and u1D models can be found by using an RRG-
like approximation formulated in Ref. [33]. More specifically,
this approximation was developed in Ref. [33] as an upper
bound for Wc(n) in genuine quantum-dot models; our point
now is that it yields the correct asymptotics for the models
of uQD and u1D type, with random uncorrelated Fock-space
hoppings.

The idea of this RRG-like approximation with energy cor-
relations is the following. On the delocalized side of the
transition, i.e., for W smaller than Wc but not too far from
Wc, an eigenstate will delocalize over a narrow energy shell
(but still containing a large number of states) around the given
energy E . As everywhere in this paper, we choose E = 0
(center of the band) for definiteness. Since only basis states
with energies Eα close to zero are relevant, we should replace
γ (0) in Eq. (47) by γ1(0), where γ1(E ) is a distribution of
energies Eβ of states directly coupled to a state α with Eα = 0.
This yields an equation for Wc(n) in a model with energy
correlations.

In our models, states β directly connected to the state α

differ from α by flipping a single spin Ŝk , so that

Eβ = Eα ± εk = ±εk . (58)

[Here we have neglected terms in Eβ − Eα resulting from the
V z interaction since they are of order unity and thus much
smaller than the typical value of εk for W � 1. We have
checked numerically that keeping these terms indeed leads
only to a very small shift of Wc(n), see Appendix B.] There-
fore, γ1(E ) is equal to the distribution of εk , which we have
chosen to be uniformly distributed over the interval [−W,W ],

γ1(E ) = 1

2W
, −W < E < W, (59)

and thus γ1(0) = 1/2W . In combination with 〈|T |〉 = √
π/2,

this yields

γ1(0)〈|T |〉 = (
√

π/4)W −1, (60)

which is to be substituted for γ (0)〈|T |〉 in the RRG formulas
of Sec. III A. Performing this substitution in Eq. (47), we
finally obtain the equation for Wc(n) in the uQD and u1D
models,

Wc = √
π n ln

4Wc√
π

. (61)

The leading asymptotic behavior of the solution of this equa-
tion reads

W uQD
c (n), W u1D

c (n) � √
π n ln n. (62)

Equations (61) and (62) are uQD and u1D counterparts of
QREM equations (52) and (53). In notations of Sec. III A,
the solution of Eq. (61) is W RRG

c (n,∞), where the superscript
“RRG” now means the RRG-like approximation correspond-
ing to the uQD and u1D models, which gives the large-n
asymptotics for Wc(n) in these models. The RRG-like approx-
imation further predicts that, for moderately large n, the actual
values of W uQD

c (n) and W u1D
c (n) should deviate from their

asymptotic form according to Eq. (55) (where the superscript
“QREM” should now be replaced by “uQD” or “u1D”). Via
the same token, the width of the transition should be described
by Eq. (57), again with the same replacement of the super-
script.

We provide now a more formal argument in favor of va-
lidity of the RRG-like approximation leading to Eqs. (61) and
(62). Let us fix some positive number c < 1 and keep in every
realization of the model only vertices satisfying |Eα| < cW .
For a small c and sufficiently large n (such that cn � 1), we
will then get a graph with a coordination number n′ = cn
and with the distribution γ ′(E ) being a box distribution on
[−cW, cW ], so that γ ′(0) = 1/2cW . Furthermore, for a small
c the energies Eα will be almost uncorrelated. We can thus use
the RRG formula (47) to determine the critical disorder in the
resulting model, which yields

Wc = √
π n ln

4cWc√
π

. (63)

This is identical to Eq. (61) up to a factor c inside the log-
arithm. Therefore, Eq. (61) holds, with uncertainty only in
the numerical coefficient of order unity in the argument of
the logarithm. Clearly, this coefficient is of no importance for
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the asymptotic behavior; in particular, it does not affect the
leading large-n asymptotics (62) (and, in fact, also dominant
subleading corrections to it).

Comparing Eq. (62) with the result (53) for the uncorre-
lated RRG model, we see that energy correlations lead to
a parametric enhancement of Wc(n), i.e., to a parametrically
larger ergodic phase, in full agreement with a qualitative ar-
gument in the beginning of Sec. III B. We note that this result
is opposite to the conclusion of Refs. [64,71]. The disorder
W that is argued to be the localization transition point in
Refs. [64,71] is, in fact, unrelated to the localization transition;
rather, it corresponds to a crossover between different regimes
deeply within the ergodic phase [79]. It is also worth noting
that the RRG model with energy correlations as considered
in Ref. [64] is actually ill-defined since the corresponding
covariance matrix is not positive definite for almost any RRG
realization, see Appendix D for detail. Contrary to this, our
uQD and u1D models are defined on a hypercube graph,
which makes them well defined.

The expected applicability of the RRG-like approxima-
tion to the uQD and u1D models is crucially related to the
fact that hopping amplitudes in these models are indepen-
dent random variables. This suppresses interference between
different paths on the graph arising in higher orders of the
perturbation theory and having the same initial and final state.
Such interference effects tend to reduce Wc (i.e., to promote
localization) [20] and are of central importance in genuine
many-body models, like the QD and 1D models that we are
going to discuss. In the absence of interference, contributions
of different paths can be viewed as independent, which is at
heart of the RRG-like approximation.

C. QD model

We now turn to analytical predictions for the QD model,
defined in Sec. II B 1. Presentation in this subsection largely
uses Ref. [20], with modifications for the QD model under
consideration. We also refer the reader to Ref. [20] for a dis-
cussion of relations to earlier analytical works on localization
in many-body quantum-dot models [14–19]. The theoretical
considerations presented below are based on an analysis of
resonances within a perturbative expansion with respect to the
term ĤQD

1 , Eq. (5), in the QD Hamiltonian.
Consider a basis state α with energy Eα = 0 and another

state μ separated by a Hamming distance rαμ. Clearly, we will
have an admixture of the state μ to the state α in the order
rαμ of the perturbation theory. There will be a contribution
to the corresponding amplitude from any Hilbert-space path
of length rαμ that connects these two states: α → β → γ →
. . . → λ → μ. (It is easy to see that there are exactly rαμ!
such paths.) The dimensionless coupling ηpath that is associ-
ated with such a path and controls the resulting hybridization
between α and μ is given by

ηpath = TαβTβγ . . . Tλμ

EβEγ . . . Eμ

. (64)

The total η is given by a sum of ηpath over the paths from α to
μ. If η � 1, the states α and μ are in resonance and strongly
hybridize. In the opposite limit, η � 1, the hybridization is
negligibly weak.

For the uQD model (and also u1D model), numerators
of ηpath for different paths are uncorrelated (since hopping
matrix elements are uncorrelated random variables), so that
the interference between different paths yields a random sign
and thus does not yield a systematic cancellation (“no interfer-
ence”). As a result, it is not essential for counting resonances
that many paths from α end up in the same state μ. This
justifies the RRG-like approximation discussed in Sec. III B.
On the other hand, in a genuine many-body model, like the
QD model, interference between the paths is essential. In
particular, if one totally discards contributions of diagonal
(Ŝz

i Ŝz
j) interactions to energies in the denominator of Eq. (64),

the sum of rαμ! terms (64) is identically equal to a single
term of a similar type. This cancellation suppresses hybridiza-
tion and therefore delocalization. The diagonal interactions
strongly reduce the effect of this cancellation by reshuffling
the energies Eν of the basis states. It follows that W uQD

c (n)
given by the RRG-like approximation of Sec. III B provides
an upper bound for the critical disorder W QD

c (n) of the QD
model,

W QD
c (n) � W uQD

c (n) ∼ n ln n, (65)

where the large-n asymptotics of W uQD
c (n) is given by

Eqs. (61) and (62).
To obtain a lower bound for W QD

c (n), let us analyze, up to
what Hamming distance (equivalently, order of perturbation
theory) can we proceed with finding resonances for a typical
basis state α in a typical realization of random QD Hamil-
tonian with disorder W . For W < 1, the energy difference
between the state α and a state β connected to it by a single
spin flip (i.e., such that rαβ = 1) satisfies |Eα − Eβ | < 1, i.e.,
is typically smaller than the hopping Tαβ . Thus, the state α

is in resonance with all n states directly coupled to it. We
can proceed via such first-order resonances up to the largest
Hamming distance n, so that the system is in the ergodic
phase. Thus, Wc(n) � 1. This lower bound can be, however,
strongly improved.

For this purpose, consider a disorder W ∼ n/p, where
1 � p � n. Now, a state α has typically ∼p first-order reso-
nances, i.e., it is resonantly connected to ∼p direct neighbors
on the Fock-space graph. These resonances ensure a strong
hybridization of the state α with at least ∼2p other many-body
states. The idea now (see an analogous discussion for a differ-
ent QD model in Appendix B of Ref. [20]) is that, already
for a relatively small p, these ∼2p states form an ergodic
“resonant subsystem”. Furthermore, this resonance subsystem
becomes very efficient in making the whole system ergodic.
As shown in Appendix C, this mechanism of ergodization
becomes operative when p reaches the value

p ∼ n1/4 ln1/4 n. (66)

Substituting this value into W = n/p, we obtain the lower
bound for critical disorder,

W QD
c (n) � n3/4(ln n)−1/4. (67)

Combining Eqs. (65) and (67), we conclude that

n3/4(ln n)−1/4 � W QD
c (n) � n ln n. (68)
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D. 1D model

For 1D many-body systems with a short-range interaction,
it was found in Refs. [1,2,80] from the analysis of a perturba-
tive expansion that

W 1D
c (n) ∼ 1, (69)

in the sense that the large-n asymptotics of Wc(n) does not
depend on n. A formal proof of Eq. (69) was provided
in Refs. [81,82] under a physically plausible assumption
of a limited level attraction. In Refs. [83,84], the effect of
exponentially rare regions of anomalously weak disorder (“er-
godic spots”) on MBL transitions was studied. It was found,
that in spatial dimensions d > 1 such ergodic spots lead to
“avalanches”, making the whole system ergodic. As a result,
the critical disorder Wc(n) grows without bounds when the
system size n increases. Since an exponentially large system
is needed to find an ergodic spot, the growth of Wc(n) in
d > 1 geometry is slower than any power law [72,85]. At the
same time, in 1D geometry, the avalanche mechanism does
not modify the result (69), in agreement with Refs. [81,82].

We briefly comment on numerical studies of the MBL
transition in 1D systems. Most of the numerical works dealt
with an XXZ spin-chain model in a random field. For a choice
of parameters that has become standard, exact-diagonalization
studies of systems of length n ≈ 20 yielded a finite-size es-
timate of the critical disorder W XXZ

c (20) ≈ 4 [86,87]. It was
also found in numerical simulations that finite-size effects
are rather strong in this model: W XXZ

c (n) exhibits a sizable
drift towards larger values when n increases. In particular, the
matrix-product-state study of systems of the length n = 50
and n = 100 [10,88] yielded an estimate for the critical disor-
der W XXZ

c (50) ≈ W XXZ
c (100) ≈ 5.5, substantially larger than

W XXZ
c (20). During the last couple of years, the drift of Wc(n)

and the related physics observed in numerical simulations
of 1D models have been addressed in many papers [41,89–
106]. In particular, these studies addressed very slow (but still
detectable) dynamics that is observed for numerically studied
system lengths n at disorder W above the finite-size estimate
Wc(n). Many studies pointed out that the observed behavior
is consistent with a finite value of Wc in the thermodynamic
limit, Eq. (69), and, moreover, is not unexpected. Indeed,
it is known that the finite-size critical disorder W RRG

c (m, N )
of an RRG model with a fixed coordination number m + 1
exhibits a strong drift when the Hilbert-space dimension N
increases. Already for the smallest m + 1 = 3 the magnitude
of the drift W RRG

c (m,∞)/W RRG
c (m, NED) (where NED are sys-

tem sizes that can be studied by exact diagonalization) is
∼1.2 − 1.3, and it becomes as big as ∼5 for m + 1 = 20 [33].
[We recall that, for the RRG model, we have the luxury of
knowing exactly W RRG

c (m,∞).] Since 1D many-body sys-
tems may be expected to have stronger fluctuations than the
RRG model (in particular, due to effects of rare spatial spots),
a finite-size drift up to W XXZ

c (∞) ≈ 10 [which corresponds
to W XXZ

c (∞)/W XXZ
c (20) ∼ 2.5] as suggested by several nu-

merical studies (see, e.g., Refs. [94,95,106]) would not be too
surprising.

While one expects to see universal features of the MBL
physics in different 1D systems, the magnitude of finite-
size effects may depend on the specific model. If one could

identify 1D models in which finite-size effects are weaker than
in the XXZ model, this could be useful for numerical studies
of the MBL transitions. A very recent paper [107] suggests
that finite-size effects in some Floquet models may be less se-
vere. Our numerical studies of the single-spin-flip 1D model
defined in Sec. II D 1 show that it is a promising candidate
for exploring the 1D MBL transition by computational means.
Further work is needed to see whether it may have particular
advantages over other 1D models in this respect.

Summarizing, we presented in Sec. III analytical predic-
tions for the scaling of critical disorder Wc(n) in all the models
considered in this paper. Derivation of most of these results
involves some approximations. Furthermore, the analytical
considerations assume large n, and it is not a priori clear
how well the values of n accessible in numerical simulations
satisfy the large-n assumption. It is thus of crucial importance
to study these models numerically and to compare the results
between themselves and with the analytical predictions. Our
computational (exact-diagonalization) results and their analy-
sis are presented in the next two sections.

IV. NUMERICAL APPROACH. SETTING THE STAGE
WITH QREM

In this section and in Sec. V, we present and analyze exact-
diagonalization numerical results for the ergodicity-to-MBL
transition in the models defined in Sec. II, with a partic-
ular focus on the scaling of the critical disorder Wc(n). In
addition, we study also the scaling of the transition width
� ln W (n). After explaining in Sec. IV A how the models are
implemented, we specify in Sec. IV B the observables that are
studied to explore the transition, to locate Wc(n), and to de-
termine the transition width. After this, we analyze numerical
results for the QREM in Sec. IV C. Out of all the models that
we consider, the QREM is best understood analytically (due to
its direct connection to the RRG model). Thus, a comparison
of the numerical results for the QREM with the corresponding
analytical predictions provides a benchmark for numerical
investigations of other models by the same methods, which
are the subject of Sec. V.

A. Numerical implementation

The QD and 1D models are genuine many-body models
and are defined directly by their many-body Hamiltonians
given in Sec. II B 1 and Sec. II D 1, respectively. Imple-
mentation of these models is straightforward: we generate
random samples for the on-site energies εi and the interac-
tion couplings V a

i j and build the Hamiltonian matrix from the
definition.

The uQD and u1D models, as well as the QREM, are
defined by their Fock-space representation (1), as specified in
Sec. II C, Sec. II E, and Sec. II F, respectively. To implement
these models, we first generate recursively the Fock-space
graph structure recursively. Starting from the configuration
|↓,↓, . . . ,↓〉, we find the n connected states by flipping one
spin at a time. This procedure is then repeated on these
n states, and repeated again until all 2n nodes (Fock-space
states) and 2n−1n edges have been found. We then gener-
ate a sample of uncorrelated {εi} uniformly distributed on
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FIG. 4. Energy correlations (CE )αβ on the Fock-space graph for
the uQD and u1D models with n = 8 spins. (Left) (CuQD

E )αβ as a
function of the Hamming distance rαβ , for disorder strengths W = 1,
5, and 10. The numerical data (crosses) is averaged over 10 000 dis-
order realizations. The analytical result (18) with the corresponding
parameters is shown by dashed lines. (Right) (Cu1D

E )αβ as a function
of qαβ defined below Eq. (33) for disorder W = 10 and for various
values of rαβ . Dashed lines represent the analytical result (33).

[−W,W ], as well as a sample of uncorrelated {V z
i j} normally

distributed with zero mean and variance unity, and associate
the on-site energy Eα to each node by computing them using
Eq. (12) for the uQD model and Eq. (31) for the u1D model.
For the QREM, energies Eα are generated as independent
random Gaussian variables according to Eq. (42). Finally, for
each of these three models, we generate independent random
matrix elements Tαβ ∼ N (0, 1/2) + iN (0, 1/2) for all edges
of the graph.

To check that our implementation is correct, we plot in
Fig. 4 numerically evaluated energy correlations (CuQD

E )αβ

and (Cu1D
E )αβ on the Fock-space graph, for a system size n =

8, averaged over 10 000 disorder realizations. The left panel
presents the results for (CuQD

E )αβ as a function of the Hamming
distance rαβ for several values of the disorder strengths W .
Very good agreement with the analytical formula (18) (shown
by dashed lines) is seen. On the right panel, we show the
energy correlations for the u1D model at fixed W = 10, for
various values of rαβ , as a function of qαβ , defined below
Eq. (33). The agreement with the analytical prediction (33)
(dashed lines) is excellent, thus validating our implementation
of the model.

B. Observables

To study the transition, we compute the 2n/10 eigenvalues
Eσ and associated eigenvectors |ψσ 〉 close to the center of
the band E = 0 for various system sizes n ∈ {8, 10, 12, 14}
and for a wide range of disorder strengths. By using this
data, we evaluate two observables: the average gap ratio r
characterizing the energy spectrum and the average inverse
participation ratio (IPR) characterizing eigenfunctions.

We use the eigenenergies Eσ to compute the consecutive
level spacings δσ = Eσ − Eσ+1 and to determine the mean
adjacent gap ratio r,

r =
〈

min(δσ , δσ−1)

max(δσ , δσ−1)

〉
, (70)

with the averaging performed over disorder realizations and
over the index σ labeling 2n/10 eigenvalues around the band
center. The number of disorder realizations for each of the

models is specified below in captions to the figures where the
data is presented.

It has been shown [86,108–111] that r is very useful for lo-
cating the localization transition. On the localized side, it takes
the value rP � 0.3863 characteristic for the Poisson statistics,
while on the ergodic side, it is given by rGUE � 0.5996
for models with symmetry of the Gaussian unitary ensemble
(GUE) [110,111]. The fact that r has the known and distinct
limiting values of order unity in both phases makes it a very
convenient observable for determining the position and the
width of the transition in finite systems. In the thermodynamic
limit, n → ∞, the mean gap ratio r would exhibit a jump
between these two values at the critical point, W = Wc. For
a finite n, this discontinuity is smeared to a crossover. The lo-
cation of this crossover yields a finite-size estimate Wc(n) for
the critical point, and the width of the crossover corresponds
to the width � ln W (n) of the critical regime. We define a
finite-size estimate Wc(n) as a value of W at which r(W ) =
(rGUE + rP)/2 � 0.493 [112]. Further, the transition interval
[W−(n), W+(n)] is obtained from r(W−) = 0.8 rGUE + 0.2 rP

and r(W+) = 0.2 rGUE + 0.8 rP. We characterize the width of
the transition by ln (W+(n)/W−(n)).

In addition to the gap ratio r, we calculate the average IPR,
which is a well-known observable in the context of localiza-
tion transitions [4,9]. The IPR is defined as

P2 =
〈

2n∑
α=1

|〈α|ψσ 〉|4
〉
, (71)

where the sum goes over the vertices α of the graph, and the
averaging is performed both over the eigenvectors |ψσ 〉 and
over disorder realizations. Generally, the dominant factor in
the scaling of P2 with the Hilbert space volume N = 2n at
large n is of power-law type, P2 ∝ N−τ (W ). On the ergodic
side of the transition, W < Wc, one has τ (W ) = 1. At the
transition point, τ (W ) exhibits a jump from this ergodic value
to τ (Wc) < 1. For the RRG model (or QREM), one has [9]
τ (Wc) = 0, and the same behavior can be expected for models
properly described by an RRG-like approximation (such as
our uQD and u1D models). For 1D models, and, more gen-
erally, for models with a structure in real space, one finds
0 < τ (Wc) < 1, with τ (W ) decreasing ∝ W −1 in the MBL
phase [20,35,36,86]. The discontinuity of τ (W ) and W = Wc

suggests to use the derivative to locate the transition [33],

α(W ) = d ln P2

d ln W
. (72)

In the limit n → ∞, this derivative diverges at W = Wc. For a
finite n, this divergence is smeared and one finds a maximum
in the dependence α(W ), whose position can serve as a finite-
size approximation of the critical disorder. This numerical
approach was verified in Ref. [33] by using RRG models
(with various coordination numbers) for which Wc(n → ∞)
was found analytically.

C. Numerical results for the QREM

In Fig. 5, we show the data for the mean gap ratio r in the
QREM. The disorder in this plot is rescaled as W/n1/2 ln n,
in accordance with the analytically predicted large-n scaling
of W QREM

c (n), Eq. (53). It is seen that this rescaling leads to
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FIG. 5. Localization transition in QREM via the level statis-
tics. Mean adjacent gap ratio r as a function of rescaled disorder
W/n1/2 ln n. The Wigner-Dyson and Poisson values, rGUE � 0.5996
and rP � 0.3863, are marked by horizontal dashed lines. The
horizontal dash-dotted lines are r− = 0.8 rGUE + 0.2 rP and r+ =
0.2 rGUE + 0.8 rP that serve to define W− and W+ [via r(W−) = r−
and r(W+) = r+] used to calculate the transition width shown in the
right panel. The vertical dashed line marks the analytical predic-
tion for Wc(n) in the limit n → ∞, see Eq. (53). (Inset) transition
width ln(W+/W−) as a function of n. The straight line representing a
power-law fit ln(W+/W−) ∼ n−1.32 is a guide to the eye. The data is
averaged over 320 000, 20 000, 2500, and 400 disorder realizations
for n = 8, 10, 12, and 14, respectively.

a good collapse of numerical values of Wc [values of W at
which r = (rGUE + rP)/2 � 0.493], i.e., that the asymptotic
n1/2 ln n scaling is observed with a good accuracy already
at relatively small values of n = 8 − 14. After rescaling, a
relatively weak finite-size drift of the critical disorder towards
its large-n asymptotics (vertical-dashed line) remains, in full
correspondence with the data slowly approaching the large-n
asymptotics in Fig. 2. This finite-size drift bears analogy with
that of Wc in RRG models at fixed coordination number and
for increasing system size, see, e.g., Ref. [33]. It is also seen
that the transition rapidly becomes sharper with increasing
n. The transition width as a function of n is shown in the
inset of Fig. 5. The data is well fitted by the power law
ln(W+/W−) ∼ n−1.32. The analytical result, Eq. (57), predicts
a still faster sharpening of the transition ∼n−3 ln2 n in the
large-n limit. This difference is, however, fully expected as
can be seen in the right panel of Fig. 3. If we describe the
analytical n-dependence of the transition width by a flowing
effective exponent:

μ(n) = −∂ ln ln(W+/W−)

∂ ln n
, (73)

we find μ(n) ≈ 1.32 for values of n corresponding to our
numerical simulations.

Figure 6 presents the data for the IPR (left panel) and
for its logarithmic derivative α, Eq. 72 (right panel), again
as functions of rescaled disorder W/n1/2 ln n. These results
provide additional support to the analytically predicted scaling
Wc(n) ∼ n1/2 ln n.

In Fig. 7 we show the values of W QREM
c (n) as obtained from

the data for level statistics (gap ratio r) and for eigenfunctions

FIG. 6. Transition in QREM via average IPR P2 of eigenstates.
Left panel: 2nP2 as a function of rescaled disorder W/n1/2 ln n. Right
panel: Logarithmic derivative α, Eq. (72). The maximum of the
dependence α(W ) serves as a finite-size approximation of the critical
disorder Wc(n). The vertical-dashed lines in both panels mark the
analytical prediction for Wc(n) in the limit n → ∞, see Eq. (53).
The data is averaged over 320 000, 20 000, 2500, and 400 disorder
realizations for n = 8, 10, 12, and 14, respectively.

(logarithmic derivative α of IPR P2). A good agreement with
the scaling Wc(n) ∼ n1/2 ln n is evident. We also show in this
figure the predicted large-n asymptotics of W QREM

c (n), i.e.,
W RRG

c (n,∞) given by the solution of Eq. (52). It is seen
that the numerically extracted values are a few times below
the asymptotical curve and approach it with increasing n.
This is in excellent agreement with analytical expectations
as is manifest from Fig. 2 which provides a comparison of
numerical values of W QREM

c (n) with the analytical result (54)
that includes deviations from the asymptotic curve related
to a finite volume N = 2n of the QREM Hilbert space. We
also observe that Wc(n) extracted from the IPR data exhibits
somewhat larger finite-size corrections in comparison to the
critical disorder obtained from the level-spacing data. The dif-
ference between these two estimates of the finite-size critical
disorder is of the order of the transition width, and we expect
that they become closer and merge with further increasing
n, in correspondence with the sharpening of the localization
transition.

Since we largely use QREM as a benchmark in this paper
(see the beginning of Sec. IV), it is instructive to briefly

FIG. 7. Scaling of critical disorder of localization transition in
QREM (log-log plot). Symbols are numerical values of W QREM

c (n)
based on data for mean gap ratio r, Fig. 5, and for logarithmic
derivative α of the IPR P2, Fig. 6. Straight lines (corresponding
to power-law fits) are guide to the eye. Dashed-black line visual-
izes the n1/2 ln n scaling. Full-black line is the large-n asymptotics
W RRG

c (n,∞) given by the solution of Eq. (52).

214203-13



SCOQUART, GORNYI, AND MIRLIN PHYSICAL REVIEW B 109, 214203 (2024)

FIG. 8. MBL transition in QD and uQD models studied via the level statistics. (Left) Mean adjacent gap ratio r for the QD (solid lines)
and the uQD (dashed lines) models as a function of rescaled disorder W/n ln n, with rescaling corresponding to predicted scaling of Wc for the
uQD model, (62). The data is averaged over 320 000, 20 000, 1500, and 350 disorder realizations for n = 8, 10, 12, and 14, respectively. The
vertical dashed line corresponds to the analytical prediction for W uQD

c (n) in the limit n → ∞, Eq. (62). (Middle) Data for the QD model from
the left panel plotted as a function of W/n. (Right) transition width ln(W+/W−) as a function of n. The straight lines representing power-law
fits ln(W+/W−) ∼ n−0.96 for QD and ∼n−0.95 for uQD models are a guide to the eye.

summarize our key findings with respect to the localization
transition in this model as studied numerically for n = 8 − 14,
including a comparison with analytical predictions:

(i) The analytical scaling Wc(n) ∼ n1/2 ln n is nicely ob-
served in numerical data, despite the fact that the values of n
that can be studied by exact diagonalization are not so large.
Because of the finite size N = 2n of the QREM Hilbert space,
the prefactor in front of n1/2 ln n is appreciably below the
one predicted for n → ∞, slowly approaching the asymptotic
value with increasing n, as also predicted analytically.

(ii) The transition width quickly shrinks with increasing
n, confirming that there is a sharp transition in the large-n
limit. The flowing exponent μ(n), Eq. (73), characterizing
sharpening of the transition with n is numerically μ ≈ 1.32.
This is exactly in the range of μ(n) analytically expected
for this range of n but is substantially below the predicted
asymptotic value μ(n → ∞) = 3.

(iii) Finite-size values of critical disorder W QREM
c (n) ob-

tained from the level statistics (gap ratio r) data and from
the maximum of the logarithmic derivative α of IPR show
nearly identical dependence on n. At the same time, the value
obtained from IPR is somewhat lower (with a difference of the
order of transition width), i.e., it exhibits a larger finite-size
deviation.

Armed with (and encouraged by) these results for QREM,
we are now ready to proceed with the presentation and analy-
sis of numerical data for the genuine many-body models—QD
and 1D—as well their counterparts with uncorrelated Fock-
space hoppings—uQD and u1D.

V. NUMERICS FOR MODELS WITH FOCK-SPACE
CORRELATIONS

In Sec. V A, we present and discuss numerical results
for the QD and uQD models, while Sec. V B contains an
analogous discussion of the 1D and u1D models. Finally, in
Sec. V C we compare and analyze numerical findings for all
the models.

A. Numerical results for the QD and uQD models

In this subsection, we analyze and compare our numerical
results for the MBL transition in QD and uQD models (see
definitions in Secs. II B 1 and II C).

In Fig. 8 we show the data for the mean adjacent gap ratio
r characterizing the level statistics. In the left panel, the data
presented as a function of disorder rescaled as W/n ln n, which
corresponds to analytically predicted scaling of W uQD

c , see
Eq. (62). We see that this rescaling indeed yields a very good
collapse for the uQD data. We further observe that the numer-
ical value of the ratio W uQD

c (n)/n ln n in the considered range
of n is smaller by a factor ≈2.5 than the asymptotic n → ∞
value

√
π marked by the vertical dashed line. This is fully

analogous to what is observed for the QREM, see Sec. IV C.
As for the QREM, for increasing n, a slow evolution of the
above ratio towards its asymptotic value is expected.

At variance with the uQD data, the QD data in the left
panel of Fig. 8 exhibit a clear (although quite slow) drift
to the left. The middle panel shows the QD data with a
rescaling of disorder to W/n, which leads to a very good
collapse. The numerically observed behavior W QD

c (n) ∼ n is
fully consistent with the analytically derived lower and upper
bounds, Eq. (68). Obviously, we cannot claim on the basis
of the numerical data that W QD

c (n) ∼ n is an exact large-n
asymptotic behavior.

In the right panel of Fig. 8, results for the transition width
ln(W+/W−) are presented. We see that the behavior is es-
sentially the same for both models: the transition sharpens
with increasing n, and the effective exponent μ(n), Eq. (73),
characterizing this sharpening is μ ≈ 0.95 − 0.96.

In Fig. 9, we show numerical results for the IPR (left panel)
and for its logarithmic derivative α (middle and right panels).
The results confirm the above conclusions made by using the
level statistics: a good collapse of the maxima of α(W ) is
achieved by rescaling of disorder to W/n ln n for the uQD
model and to W/n for the QD model.

The numerical results for W QD
c (n) and W uQD

c (n) obtained
by both approaches are summarized in Fig. 10. As in the
case of QREM, the values of critical disorder obtained from
level statistics are somewhat larger than those obtained from
IPR but, up to this, they exhibit a nearly identical behavior.
Specifically, the uQD data points show the predicted n ln n
scaling and slowly approach the large-n asymptotics given by
the solution of Eq. (61). The QD data exhibit a slower increase
with n, which is at the same time faster than the analyti-
cally predicted lower bound, W QD

c > n3/4(ln n)−1/4. Thus, the
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FIG. 9. MBL transition in QD and uQD models studied via the average IPR P2. (Left) 2nP2 for the QD (solid lines) and the uQD (dashed
lines) models as a function of W . The data is averaged over 320 000, 20 000, 1500, and 350 disorder realizations for n = 8, 10, 12, and 14,
respectively. (Middle) logarithmic derivative α, Eq. (72) as a function of rescaled disorder W/n ln n, with rescaling corresponding to predicted
scaling of Wc for the uQD model, (62). The vertical-dashed line corresponds to the analytical prediction for W uQD

c (n) in the limit n → ∞,
Eq. (62). (Right) Data for the QD model from the middle panel plotted as a function of W/n.

observed behavior of W QD
c (n) is in perfect agreement with

both the upper and the lower bounds, Eq. (68). As was pointed
out above, W QD

c (n) ∼ n turns out to be a good fit to our
numerical results.

Thus, our numerical results for the uQD model confirm
the validity of the RRG-like approximation in the presence
of strong Fock-space energy correlations represented by the

FIG. 10. Scaling of critical disorder of the localization transition
in QD and uQD models (log-log plots). Symbols are numerical
values of W QD

c (n) and W uQD
c (n) based on data for mean gap ratio

r (upper panel) and for logarithmic derivative α of IPR P2 (lower
panel). Straight lines (corresponding to power-law fits) are guide
to the eye. Black-dashed lines are the large-n asymptotics of W uQD

c

given by the solution of Eq. (61) (rescaled by a constant prefactor
as shown in the legend for convenience of data presentation). The
dotted lines represent the analytical lower bound ∝ n3/4 ln−1/4 n to
W QD

c , see Eq. (67).

matrix CuQD
E . Specifically, as discussed in Sec. III B, strong

correlations between energies on nearby sites in the Fock
space parametrically enhance the probability of resonances,
leading to a faster increase of Wc(n) with n in the uQD model
in comparison with the QREM, where these correlations are
absent. Furthermore, a slower increase of W QD

c (n) in com-
parison with W uQD

c (n) demonstrates the role of correlations
between Fock-space hopping matrix elements encoded in the
matrix CT . Specifically, as discussed in Sec. III C, these cor-
relations lead to destructive interference (partial cancellation)
of different contributions to hybridization couplings between
distant states in the Fock space, thus favoring localization and
suppressing W QD

c (n) compared to W uQD
c (n).

B. Numerical results for the 1D and u1D models

We turn now to the numerical analysis of the MBL transi-
tion in the 1D and u1D models (see definitions in Secs. II D 1
and II E). We recall that these models differ from their
quantum-dot counterparts (QD and uQD) by a 1D real-space
structure, which is encoded in the Fock-space correlations.
Specifically, the energy correlations in the 1D and u1D models
depend not only on the Hamming distance rαβ but also on an
additional parameter qαβ associated with the 1D real-space
structure, see Eq. (33) and text below it. Importantly, in the
1D model, also Fock-space hopping correlations depend not
only on the Hamming distance but rather have a structure that
preserves information about the 1D real-space geometry, see
Eq. (37). As we will see below, this leads to a dramatic change
in the behavior of the 1D model in comparison with the QD
model.

Figure 11 presents the results for the gap ratio r of the level
statistics. In the left panel, we show the data for r(W ) of both
models. It is seen that the data for the 1D model exhibits a
good collapse without any rescaling of disorder, in agreement
with the analytical expectation of n-independent critical dis-
order W 1D

c ∼ 1, Eq. (69). At the same time, the data for the
u1D model shows a very different behavior, with a strong drift
towards stronger disorder. In the right panel, the u1D data
is plotted as a function of disorder rescaled as W/n ln n, in
accordance with Eq. (62). This yields a good collapse, thus
supporting the analytical prediction W u1D

c ∼ n ln n.
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FIG. 11. MBL transition in 1D and u1D models studied via the level statistics. (Left) Mean adjacent gap ratio r for the 1D (solid lines) and
the u1D (dashed lines) models as a function of disorder W . The data is averaged over 160 000, 20 000, 2500, and 350 disorder realizations for
n = 8, 10, 12, and 14, respectively. (Middle) Data for the u1D model from the left panel plotted as a function of rescaled disorder W/n ln n, with
rescaling corresponding to predicted scaling of Wc for the u1D model, (62). The vertical dashed line corresponds to the analytical prediction
for W u1D

c (n) in the limit n → ∞, Eq. (62). (Right) transition width ln(W+/W−) as a function of n. The straight lines representing power-law
fits ln(W+/W−) ∼ n−1.05 for 1D and ∼n−1.17 for u1D models are a guide to the eye.

For both models, clear sharpening of the transition with
increasing n is observed. The right panel of Fig. 11 quantifies
this: we find a power-law shrinking of the transition width,
ln(W+/W−) ∼ n−μ, with μ = 1.05 for the 1D model and
μ = 1.17 for the u1D model. These values of the (effective)
exponent μ are remarkably close to those found above for the
other three models (QREM, QD, uQD). The fact that u1D and
uQD models exhibit, in the same range of n, nearly the same
exponent μ as the QREM, is not surprising since these models
are described by the RRG-like approximation. The observed
values of μ for these models are not large-n asymptotics but
rather flowing exponents μ(n), as we discussed in Sec. IV C.
Interestingly, the transition width in the 1D model exhibits es-
sentially the same scaling behavior in the range of n accessible
to exact diagonalization.

In Fig. 12, we present the results for the IPR (left panel)
and its logarithmic derivative α (middle and right panels). The
scaling of critical disorder that is inferred from these results
is in full agreement with the above findings based on level
statistics data and with analytical expectations. Specifically,
a collapse of maxima in α(W ) is obtained for the 1D model
without any rescaling of disorder and for the u1D model with
rescaling to W/n ln n (thus supporting W 1D

c ∼ 1 and W u1D
c ∼

n ln n).

The results for the critical disorder for 1D and u1D models
are summarized in Fig. 13. A dramatic difference between
the scaling W 1D

c (n) ∼ 1 and W u1D
c (n) ∼ n ln n is manifest.

We recall that both models have exactly the same statistics
of Fock-space energies Eα (i.e., the same covariance matrix
CE ) and exactly the same fluctuations of individual hopping
matrix elements Tαβ (i.e., the same diagonal elements of the
covariance matrix CT ). The only difference between them is
in off-diagonal elements of CT , i.e., in correlations between
Fock-space transition matrix elements Tαβ , which are present
in the 1D model and absent in the u1D model. These correla-
tions are thus crucial for the n-independent critical disorder of
the 1D model.

To explain such importance of these correlations, we re-
turn to the perturbative expansion for hybridization between
distant Fock-space basis states, Sec. III C. As discussed there,
the hybridization amplitude between two distant states α and
μ involves a sum over rαμ! Fock-space paths, each providing
a contribution of the type (64). Comparing the 1D and u1D
models, we can assume identical sets of energies Eα (since
the statistics of energies is the same in both models), so that
the denominators of the corresponding terms (64) in both
models will be identical as well. Further, for each individual
term, the statistics of the numerator will also be the same in

FIG. 12. MBL transition in 1D and u1D models studied via the average IPR P2. (Left) 2nP2 for the 1D (solid lines) and the u1D (dashed
lines) models as a function of disorder W . The data is averaged over 320 000, 20 000, 1500, and 350 disorder realizations for n = 8, 10, 12,
and 14, respectively. Middle panel: logarithmic derivative α, Eq. (72), as a function of W . (Right) Data for the u1D model from the middle
panel plotted as a function of as a function of rescaled disorder W/n ln n, with rescaling corresponding to predicted scaling of Wc for the u1D
model, (62). The vertical-dashed line corresponds to the analytical prediction for W u1D

c (n) in the limit n → ∞, Eq. (62).
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FIG. 13. Scaling of critical disorder of localization transition in
1D and u1D models (log-log plot). Symbols are numerical values of
W 1D

c (n) and W u1D
c (n) based on data for mean gap ratio r, Fig. 11,

and for logarithmic derivative α of IPR P2, Fig. 12. Straight lines
(corresponding to power-law fits) are guide to the eye. Black-dashed
line is the large-n asymptotics of W u1D

c given by the solution of
Eq. (61) (rescaled by a constant prefactor as shown in the legend
for convenience of data presentation).

both models. The crucial difference is in correlations between
the numerators. In the u1D model, they are uncorrelated,
so that there is no interference between the terms. On the
other hand, in the 1D model, strong correlations between
hopping matrix elements Tαβ lead to major cancellations in
the sum of rαμ! contributions. The Ŝz

i Ŝz
j terms may, in gen-

eral, counteract these cancellations; however, they are not so
efficient in the 1D model since only nearest-neighbor spins
interact. As a result of the cancellations, the combinatorial
factor rαμ! gets effectively suppressed down to ∼prαβ with
p ∼ 1, thus transforming W u1D

c (n) ∼ n ln n into W 1D
c (n) ∼ 1

(see Refs. [19,20] and references therein for technical details
on how the interference-induced cancellation of factorials
enhances localization). A simple way to understand the dra-
matic difference between W u1D

c (n) and W 1D
c (n) is as follows.

For the u1D model, one can choose on each step the closest-in-
energy state, which will yield each factor in the denominator
of Eq. (64) of order of W/n, thus resulting in Wc ∼ n. A further
optimization can be shown to enhance Wc by an additional log-
arithmic factor, yielding W u1D

c (n) ∼ n ln n. For the 1D model,
the cancellation emphasized above leads to an increase of typ-
ical values of factors in the denominator up to ∼W , leading to
W 1D

c (n) ∼ 1. Our numerical results for Wc contrasting the 1D
and u1D models demonstrate that this mechanism is indeed
operative.

C. Comparing QD and 1D models

To further compare the QD and 1D models, we now com-
bine the results for Wc(n) in these models as well as in their
counterparts with removed Fock-space hopping correlations
(uQD and u1D models) in Fig. 14. We recall that from the
Fock-space point of view, the QD and 1D models are different
in that the correlations CE and CT of the QD model depend
on the Hamming distance only, while these correlations in
the 1D model depend on an additional parameter reflecting
its 1D real-space structure. It is obvious from Fig. 14 that
this strongly changes the scaling Wc(n) of the critical dis-
order of the MBL transition. At the same time, once the

FIG. 14. Comparison of scaling of critical disorder of MBL tran-
sition in 1D, QD, u1D, and uQD models. Symbols are numerical
values of W 1D

c (n), W QD
c (n), W u1D

c (n), and W uQD
c (n) based on data

for mean gap ratio r (left) and for logarithmic derivative α of IPR
P2 (right). Straight lines (corresponding to power-law fits) are guide
to the eye. Black-dashed lines are W ∼ n ln n [corresponding to
the analytically predicted large-n scaling (62) in the uQD and u1D
models]; black-dotted lines are W ∼ n.

hopping correlations are removed (i.e., off-diagonal matrix
elements of CT are set to zero), we obtain two models—
uQD and u1D—with nearly indistinguishable Wc(n), despite
a qualitative difference in the form of CE correlations of their
Hamiltonians. The reason for this is clear from a discussion
at the end of Sec. V B: when numerators of contributions
(64) are uncorrelated (which is the case for both uQD and
u1D models), interference between different contributions is
absent irrespective of the correlation pattern of energies Eα in
the denominators.

VI. SUMMARY AND OUTLOOK

In this paper, we have explored the role of correlations
between matrix elements of Hamiltonians in the Fock-space
representation in the scaling of MBL transitions. For this
purpose, we have investigated five models that all share the
same Gaussian distributions of diagonal and off-diagonal
Fock-space matrix elements (energies Eα and hoppings Tαβ ,
respectively) but differ in their correlations, see Fig. 1 and
Table I. The Hilbert space of all these models is that of a
system of n spins 1/2, with a volume N = 2n. All consid-
ered Hamiltonians, when presented in Ŝz

i basis, involve only
single-spin-flip processes. Thus, all of them can be viewed
as Anderson models on a graph having the form of an n-
dimensional hypercube, with hopping matrix elements (i.e.,
links) associated with the edges of the hypercube.

Two of the models are “conventional” many-body spin
models with pair interactions and a random Zeeman field:
one of them (1D model) is a spin chain with nearest-neighbor
interaction and another one (QD model) involves interactions
between all pairs of spins. In the Fock-space representation,
both these models are characterized by strong correlations
between energies Eα and between hoppings Tαβ (i.e., off-
diagonal elements of the corresponding covariance matrices
CE and CT ). For the QD model, these correlations depend
on the Hamming distance only, while for the 1D model, they
have a more complex structure reflecting the 1D real-space ge-
ometry. The further two models, uQD and u1D, are obtained
from the QD and 1D models, respectively, by removing corre-
lations of Fock-space hoppings, i.e., by setting off-diagonal
matrix elements of CT to zero. Finally, in the fifth model,
the QREM, both Fock-space energy and hopping correlations
(off-diagonal elements of CE and CT ) are absent.
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We have carried out an exact-diagonalization numerical
study of these models, complemented by an analytical treat-
ment. The central question in our study was the scaling of the
critical disorder Wc(n) with n. Our numerical results are in a
very good agreement with analytical predictions of the scaling
Wc ∼ n1/2 ln n for QREM, Wc ∼ n ln n for the uQD and u1D
models, n3/4(ln n)−1/4 � Wc � n ln n for the QD model (with
numerical data very well fitted to Wc ∼ n), and Wc(n) ∼ const
for the 1D model. Comparing these results, we can understand
implications of correlations of Eα and Tαβ . More specifically:

(i) A comparison of the scaling of W QREM
c with scaling

of W uQD
c and W u1D

c reveals that, for a model with uncorre-
lated random hoppings, strong Fock-space energy correlations
parametrically enhance delocalization. The mechanism of this
is enhancement of the probability of resonances by energy
correlations.

(ii) Comparing the scaling of W 1D
c with that of W u1D

c ,
we see that the scaling of the MBL transition in the 1D
model crucially depends on a combined effect of correlations
of Fock-space energies and hoppings. Making the random
hopping matrix elements uncorrelated strongly enhances delo-
calization. A similar conclusion is made from a comparison of
W QD

c scaling with that of W uQD
c , although in this case the effect

of removing Fock-space hopping correlations is less dramatic.
(iii) Finally, let us compare the scaling of W QD

c with that of
W 1D

c . Both these models are characterized by strong correla-
tions of Fock-space energies and hoppings. The key difference
is that the correlations depend only on the Hamming distance
in the QD model, while they have a more complex form in
the case of the 1D model. This is responsible for a very
different scaling of Wc in both models. Specifically, the behav-
ior Wc(n) ∼ const in the 1D model crucially depends on the
correlations being not simply a function of Hamming distance
but rather reflecting the real-space dimensionality.

We note that our conclusions differ essentially from those
in Refs. [64,71], which is related to flaws in these papers.
Specifically, Ref. [64] considers, motivated by Fock-space
approach to MBL, a model of RRG with strong correlations
of energies, Eq. (D1). As we explain in Appendix D, this
model is actually ill-defined (the covariance matrix is not
positive definite), in conflict with numerics in Ref. [64]. The
model can be defined on a hypercube, and the starting point
of the analytical study in Ref. [64] corresponds to our uQD
model. However, the disorder identified by a mean-field ar-
gumentation in Ref. [64] as a position of the localization
transition is, in our notations, W ∼ 1 and is deeply in the
ergodic phase, since the true critical disorder is Wc ∼ n ln n,
see the discussion below Eq. (63). In Ref. [71], the authors
replace the energy correlation CE by its average CE (rαβ ) over
Fock-space directions, thus making no distinctions between
1D and QD models (in our notations) and failing to appreciate
that they have dramatically different scaling Wc(n), see the
discussion at the end of Sec. II D 3. The model addressed
analytically in that work is essentially our uQD model but,
like in Ref. [64], the authors erroneously identify W ∼ 1 as
the critical disorder, while the correct location of the MBL
transition in this model is Wc ∼ n ln n.

In addition to the scaling of the critical disorder Wc, we
have analyzed the scaling of the transition width ln(W+/W−)
with n. For all five models, our numerical results yield

ln(W+/W−) ∼ n−μ, with μ ≈ 1.0 − 1.3, in the range n = 8 −
14. These results demonstrate sharpening of the MBL tran-
sition with increasing n. At the same time, the numerically
observed n−μ scaling of the transition width is different from
our analytical prediction n−3 ln2 n in the large-n limit for the
QREM, uQD, and u1D models. This difference is in full
consistency with our analytical results that predict a flowing
effective exponent μ(n) in the numerically observed range
for n studied in our simulations. We further predict that the
asymptotic behavior of the transition width in these models
is applicable for n > ncrit ≈ 22, i.e., already for moderately
large systems.

We close the paper with a few comments on our findings in
the general context of MBL research.

Rather generally, an MBL transition can be characterized
by the dependence Wc(n) of the critical disorder on the sys-
tem size n (number of spins, atoms, qubits, ...) and by the
n dependence of the transition width ln (W+(n)/W−(n)) ≈
�W (n)/Wc(n). If �W (n)/Wc(n) → 0 at n → ∞, one can
speak about a well-defined (sharp) transition in the large-n
limit. This notion of the MBL transition applies independently
of the large-n behavior of Wc(n); in particular, it does not rely
on whether Wc(n) has a finite large-n limit. In fact, for almost
all models, Wc(n) grows indefinitely with increasing n; one-
dimensional systems with a short-range interaction represent
a notable exception. While QREM is only a toy model for the
MBL transition, the corresponding analytical results for the
n-dependence of the critical disorder and transition width, see
Fig. 2, may serve as a guiding example.

The sharpening of the transition can be characterized by a
flowing exponent μ(n) defined by Eq. (73). For every transi-
tion, there should be a characteristic system size ncrit such that
a system of size n > ncrit is in the critical regime, implying
that the scaling of �W (n)/Wc(n) is close to its asymptotic
form. Our results for the QREM (as well as for uQD and
u1D models described by the RRG-like approximation) show
that one should be cautious when trying to interpret exact-
diagonalization data in terms of a large-n asymptotic critical
behavior. At the same time, a moderately large value ncrit ≈
22 estimated for these models gives hope that the critical
regime can be achievable in numerical or experimental studies
of some genuine MBL models.

The choice of particular, single-spin-flip models in this
paper was dictated by our wish to have models that have
identical Fock-space coordination numbers and identical dis-
tributions of Fock-space energies and hoppings, differing only
in correlations. This has allowed us to explore the role of
Fock-space correlations and to demonstrate differences in
scaling of Wc(n) in a particularly clear way. We emphasize,
however, that our conclusions are expected to have a high
degree of universality, with the 1D, QD, u1D, and uQD
models addressed in our work being representatives of broad
classes of models defined by Eq. (1). All models of 1D type
are characterized by Fock-space correlations reflecting the
1D geometry. Contrary to this, QD models have a structure
isotropic in Fock space, leading to a much more efficient
many-body delocalization. For each 1D model (QD model),
one can define the corresponding u1D model (respectively,
uQD model) by making the nonzero Fock-space hopping
matrix elements Tαβ random uncorrelated variables, which
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promotes delocalization. The scaling of Wc(n) for u1D and
uQD models can be determined from the RRG-like approxi-
mation. The difference in scaling between a 1D model (e.g.,
the XXZ model mentioned above in Sec. III D) and its u1D
counterpart is predicted to be particularly dramatic: W 1D

c ∼ 1
(up to a relatively weak finite-size drift) and W u1D

c ∼ n ln n.
We note that the Fock-space coordination number is generi-
cally ∼n for 1D and u1D models. For QD models (and their
uQD counterparts), the coordination number is frequently a
different power of n (specifically, ∼n2 for spin QD models
with two-spin-flip interaction and ∼n4 for fermionic QD mod-
els), which obviously affects the RRG-like result for W uQD

c .
The difference in scaling between W QD

c and W uQD
c is much

less dramatic than that between W 1D
c and W u1D

c . In particular,
for fermionic QD model and two-spin-flip spin QD model
considered in Refs. [20,33], this difference is limited to (at
most) a logarithmic factor. We note that the fermionic QD
model is essentially equivalent to the deformed Sachdev-Ye-
Kitaev model known as SYK4 + SYK2 model [12,28–32].

As a final comment, it was argued that MBL is essential
for ensuring stability of quantum computers [113,114]. Thus,
understanding the dependence Wc(n) for systems of coupled
qubits may be relevant to scalability of future quantum-
information devices of various architectures.
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APPENDIX A: ANALYTICAL RESULTS FOR THE RRG
MODEL AND QREM

In this Appendix, we present details of the derivation of
analytical results for the QREM (which are closely related to
those for the RRG model) presented in Sec. III A. Specifically,
we are interested here in the behavior of the critical disorder
Wc and of the finite-size transition width �W . We consider
first the RRG model and then “translate” the results to the
QREM.

1. RRG model

The RRG model with a large connectivity was studied in
Ref. [33]. We first outline some results of that study for an
Anderson model on an RRG with connectivity m + 1 � 1,
uncorrelated random energies Eα sampled from a box distri-
bution on [−W/2,W/2], and with hopping matrix elements
T = 1. In the “thermodynamic” limit of a very large number
of sites, N → ∞, the critical disorder Wc is a solution of the
equation

Wc = 4m ln(Wc/2). (A1)

The number of sites N is related to the linear size L of the
system via N � mL. For a finite (but large) N , the “finite-size
transition” Wc(N ) is determined by the condition Nξ (W ) =
N or, equivalently, ξ (W ) = L, where Nξ is the correlation
volume and ξ = ln Nξ / ln m is the corresponding correlation

length. In these notations, the asymptotic critical disorder,
i.e., the solution of Eq. (A1), is Wc(N → ∞) ≡ Wc(∞). The
correlation volume Nξ (W ) is given by

ln Nξ = 2π ln(W/2)

x
, (A2)

where x is a solution of the equation

sin x

x
= f (W )

f (Wc(∞))
; f (W ) = W

ln(W/2)
. (A3)

When the system volume N is large enough, the critical
disorder Wc(N ) is close to its asymptotic value Wc(∞), so that
the finite-size transition takes place at disorder W = Wc(N )
belonging to the critical regime defined by the condition

Wc(∞)

2
< W < Wc(∞). (A4)

For disorder strength W within the critical regime, Eqs. (A2),
(A3) yield the following asymptotic behavior of the correla-
tion volume,

ln Nξ (W ) = π ln m

[
3

2

(
1 − W

Wc(∞)

)]−1/2

. (A5)

[A more accurate form of Eq. (A5), which includes also
subleading corrections that decay slowly with m, is presented
in Eq. (27) of Ref. [62].] For a large coordination number,
m � 1, the condition (A4) of critical regime requires very
large system volume N , so that the critical regime cannot be
studied by exact diagonalization. At the same time, for large
m a parametrically broad precritical regime emerges, defined
by the condition

m < W <
Wc(∞)

2
. (A6)

In this regime, the correlation volume Nξ is given by

Nξ (W ) � W 2

m
exp

(
W 2

2m

)
. (A7)

The border Ncrit
ξ between the precritical and critical regimes

(which is, of course, not sharp) is obtained by substituting
W = Wc(∞)/2 in Eqs. (A2) and (A3), which yields

Ncrit
ξ � 1

m
(2m ln m)γ , γ ≈ 3.3. (A8)

Around this scale, Eq. (A5) crosses over into Eq. (A7).
After this summary of results of Ref. [33] relevant to our

paper, we are ready to use these results for a detailed analysis
of the finite-size scaling of the transition. We consider first
the critical regime, N > Ncrit

ξ . Combining Eq. (A5) with the
equation defining the finite-size transition point Wc(N ),

Nξ (Wc(N )) = N, (A9)

and using N = mL, we obtain the finite-size shift of the tran-
sition,

Wc(∞) − Wc(N )

Wc(∞)
= 2π2

3

1

L2
. (A10)

To determine the finite-size width of the transition, we recall
that observables that are used to detect the transition (such as
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the level statistics or the IPR) exhibit for W < Wc(∞) a “volu-
mic” scaling, with N/Nξ being the relevant scaling parameter
[9,54,55,59,61,65]. Thus, to estimate the width of the transi-
tion in a finite system, we should consider Nξ (W ) varying in
an interval [b+N, b−N], with b+, b− ∼ 1. The corresponding
disorder strengths are determined by the equations following
from Eq. (A9):

Nξ (W−(N )) = b−N, Nξ (W+(N )) = b+N. (A11)

The transformation N �−→ bN corresponds to an additive
change of the length L,

L �−→ L + ln b

ln m
. (A12)

Combining this with Eq. (A10), we obtain the following result
for the width of the transition, �W (N ) = W+(N ) − W−(N ), in
the critical regime:

�W (N )

Wc(N )
� �W (N )

Wc(∞)
= 4π2

3

ln(b+/b−)

ln m

1

L3
. (A13)

Importantly, the 1/L3 scaling of the transition width,
Eq. (A13), is different from the 1/L2 scaling of the shift
(A10). This implies that the transition sharpens much faster
than it approaches its asymptotic location. It is instructive to
understand the origin of this behavior. Inspecting the deriva-
tion, we can trace it back to an exponential relation between
the length L and the volume N = mL (and, correspondingly,
between the correlation length ξ and the correlation volume
Nξ ). For Anderson transition in d dimensions, one would have
instead N = Ld . Combining this with a power-law divergence
of the correlation length, ξ ∼ (Wc − W )−ν , and repeating the
above analysis, we would get an identical scaling for the
finite-size shift and width of the transition,

Wc(∞) − Wc(N )

Wc(∞)
∝ L−1/ν,

�W (N )

Wc(∞)
∝ L−1/ν . (A14)

At the same time, for the exponentially growing volume, N =
mL, we have a distinct scaling behavior,

Wc(∞) − Wc(N )

Wc(∞)
∝ L−1/ν,

�W (N )

Wc(∞)
∝ L−1−1/ν . (A15)

For the RRG model, ν = 1/2 on the delocalized side of the
transition, and Eq. (A15) reproduces the 1/L2 scaling of the
shift and 1/L3 scaling of the width obtained above.

We turn now to the pre-critical regime, N < Ncrit
ξ . Substi-

tuting Eq. (A7) into Eq. (A9), we obtain

Wc(N ) = 2m ln m (L − 1), (A16)

i.e., a linear drift of the critical disorder with the linear size
L of the system. Further, using Eqs. (A11) and (A12) to
determine the transition width, we find

�W (N )

Wc(N )
= ln(b+/b−)

ln m

1

L − 1
. (A17)

These results can be straightforwardly extended to a more
general RRG model, with distribution γ (E ) of (uncorrelated)
diagonal energies Eα and with some distribution of (uncorre-
lated) transition amplitudes Tαβ . (An underlying assumption is
that the distribution γ (E ) is characterized by a single energy

scale W .) Then one should perform a substitution [33]

1

W
�−→ γ (0)〈|T |〉, (A18)

where 〈|T |〉 denotes the average value of |Tαβ |. Since the
product γ (0)〈|T |〉 is proportional to 1/W , this amounts to a
rescaling of the disorder W (and correspondingly of Wc) in all
the formulas.

2. QREM

We are now going to apply the results obtained for the RRG
model (Appendix A 1) to the QREM defined in Sec. II F. In
Fock-space representation, QREM is a tight-binding model
defined on a n-dimensional hypercube graph (which is a Fock
space for n spins 1/2, see Sec. II A). This graph is regular
(with coordination number n) but not truly random. At the
same time, the key property of a random graph is suppression
of small-scale loops. For a large n, small-scale loops are rare
also for paths on an n-dimensional hypercube. Therefore, at
large n, QREM should exhibit properties of the RRG model.
Although some deviations may appear at moderately large n,
we will neglect them in the analysis below.

For our QREM, 〈|T |〉 is given by Eq. (21) and γ (E ) is
given by Eq. (50), so that we should perform in formulas of
Appendix A 1 a substitution (A18) with

γ (0)〈|T |〉 =
(

3

2n

)1/2 1

W
. (A19)

Therefore, all W RRG
c below in this subsection are obtained

from Wc of Appendix A 1 by multiplying by (3/2n)1/2. Fur-
ther, we should make a replacement m + 1 �−→ n for the
coordination number. (Since n is assumed to be large, we
will simply replace m �−→ n.) There is, however, one more
important difference between the RRG model and QREM.
Indeed, for the RRG model, the coordination number m + 1
and the system volume N = mL are two independent param-
eters. On the other hand, for the QREM, the coordination
number n and the system volume N = 2n are directly related
to each other. Thus, introducing a notation W RRG

c (m, N ) for
the critical disorder of the RRG model, we have for the critical
disorder of the QREM,

W QREM
c (n) � W RRG

c (n, 2n). (A20)

In the same way, we obtain

�W QREM(n) = �W RRG(n, 2n) (A21)

for the transition width. In the large-n limit, W QREM
c (n)

asymptotically approaches W RRG
c (n,∞), which is a solution

of Eq. (A1) [with m �−→ n and multiplied by (3/2n)1/2].
Adjusting RRG formulas to the QREM, we should also

take into account that N = mL for RRG and N = 2n for
QREM, so that

L �−→ n
ln 2

ln n
(A22)

(where we used m �−→ n). In the critical regime, Eqs. (A10)
and (A13) of the RRG model now translate into

W RRG
c (n,∞) − W QREM

c (n)

W RRG
c (n,∞)

= 2π2

3 ln2 2

ln2 n

n2
, (A23)
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and

�W QREM(n)

W QREM
c (n)

= 4π2

3 ln2 2
ln(b+/b−)

ln2 n

n3
. (A24)

In the same way, Eqs. (A16) and (A17) yield for the QREM
pre-critical regime

W QREM
c (n) =

√
6 ln 2 · n3/2 (A25)

and

�W QREM(n)

W QREM
c (n)

= ln(b+/b−)

ln 2

1

n
. (A26)

The border ncrit between the precritical and critical regimes
for the QREM is determined by the condition W QREM

c (n) =
(1/2)W RRG

c (n,∞), which yields ncrit ≈ 22. Let us emphasize
that this ncrit is a parameterless number “of order unity” (even
though its value is not so small numerically). This means that
the precritical regime is not parametrically defined in the case
of QREM but rather is restricted to “small” systems, n < 22.
Correspondingly, Eqs. (A25) and (A26) are not parametrically
controlled. This should be contrasted to the case of the RRG
model where the coordination number m and the system size
N are two independent parameters, so that for a large m the
pre-critical regime is parametrically broad, see Eq. (A8).

Results of this Appendix for the position of the transition
W QREM

c (n) and the associated transition width �W QREM(n)
for the QREM are presented in Sec. III A and, in particular,
in Figs. 2 and 3.

APPENDIX B: JUSTIFICATION OF NEGLECT OF V z

TERMS IN THE RRG-LIKE APPROXIMATION FOR UQD
AND U1D MODELS

In Sec. III B, we have derived the large-n scaling of the
critical disorder Wc(n) for the uQD and u1D models by using
the RRG-like approximation with energy correlations. In our
derivation there, we have discarded Vz contributions to the
energies since they are small compared to the main term at
large n (and thus large Wc), see a comment below Eq. (65). In
this Appendix, we perform a derivation including these terms
and verify that their effect is indeed negligibly small already
for our smallest n.

With V z terms taken into account, Eq. (65) takes the form

Eβ = ±εk ± 1√
n

n∑
l=1
l �=k

(
V z

kl + V z
lk

)
(B1)

for the QD model and

Eβ = ±εk ± (
V z

k,k+1 + V z
k−1,k

)
(B2)

for the 1D model. The random energies εk are uniformly
distributed on [−W,W ]. Since V z

kl are normally distributed
with unit variance, the total contribution of the Vz terms is
normally distributed with variance 2 in both cases. Thus, the
distribution γ1(Eβ ) of energies Eβ on a site directly coupled
to a site with energy Eα = 0, which is given by Eq. (59) when

V z terms are discarded, is modified as follows:

γ1(E ) =
∫

ds
1

2W
θ (W − |s|) 1

2
√

π
exp

(
− (E − s)2

4

)
= 1

4W

[
erf

(
E + W

2

)
− erf

(
E − W

2

)]
, (B3)

where erf (z) denotes the error function. Using 〈|T |〉 = √
π/2,

we thus get 〈|T |〉γ1(ε = 0) = (
√

π/4W )erf (W/2). Substitu-
tion of this result into Eq. (47) yields the modified equation for
the critical disorder Wc(n) in the uQD and u1D models,

Wc = n
√

πerf

(
Wc

2

)
ln

(
4Wc√

πerf
(Wc

2

))
. (B4)

For a large n, we have Wc ∼ n ln n � 1, and, Eq. (B4) reduces
to Eq. (61) [in view of erf (z) � 1 for z � 1], as expected.
Moreover, already for our smallest n = 8, the numerical dif-
ference between erf (Wc/2) and unity is extremely small, so
that the solution of Eq. (B4) is virtually indistinguishable from
that of Eq. (61).

APPENDIX C: LOWER BOUND FOR THE CRITICAL
DISORDER IN THE QD MODEL

In this Appendix, we present a derivation of the lower
bound (67) on the critical disorder W QD

c . The idea of this
derivation is analogous to the one developed in Ref. [20] (see
Appendix B there) but it requires a substantial modification
since we study here a different QD model. An important
difference is a parametrically weaker spectral diffusion in the
present QD model as compared to the two-spin-flip quantum-
dot model of Ref. [20]. Specifically, in the model of Ref. [20],
the amplitude of a two-spin-flip process and the shift of energy
of any spin due to this process are of the same order. At
the same time, in our single-spin-flip QD model defined in
Sec. II B 1, the amplitude of spin flip is of order unity, Eq. (19),
while a shift of energy of any other spin due to such process
is ∼1/

√
n � 1.

As discussed in Sec. III C, we consider a disorder W =
n/p, with 1 � p � n. In this case, any basis state α has ∼p
direct resonance partners; each of them is related to α by
flipping a certain spin Ŝi. Terms ∼1 in the Hamiltonian of such
resonant spin Ŝi are of the form

H (0)
i = (

εi + hz
i

)
Ŝz

i + hx
i Ŝx

i + hy
i Ŝy

i , (C1)

where (εi + hz
i ), hx

i hy
i ∼ 1 are random. Here the terms with

couplings hα
i originate from summation over n random in-

teraction terms with prefactors ∼n−1/2 in Eqs. (6) and (7).
The Hamiltonian (C1) describes a spin in magnetic field of a
strength ε̃i ∼ 1 and random orientation. Performing a unitary
rotation of the spin operators Ŝa

i , we can orient this field in z
direction,

H (0)
i = ε̃iR̂

z
i , (C2)

where R̂a
i is the spin operators in the new basis. We perform

this for all p resonant spins; the above rotations are random
and uncorrelated.

Now we include the terms describing interactions between
the resonant spins. These terms are of the type (the summation
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here goes over the subset of resonant spins)

Ĥint = 1√
n

p∑
i, j=1

a∈{x,y,z}

V a
i j

(
Ŝz

i Ŝa
j + H.c.

)
, (C3)

with random coefficients V a
i j ∼ 1. Upon unitary rotations of

spins, this takes the form

Ĥint = 1√
n

p∑
i, j=1

a,b∈{x,y,z}

Ṽ ab
i j

(
R̂a

i R̂b
j + H.c.

)
, (C4)

with random coupling Ṽ ab
i j ∼ 1. The total Hamiltonian of the

resonant subsystem,

Ĥres =
p∑

i=1

ε̃iR̂
z
i + 1√

n

p∑
i, j=1

a,b∈{x,y,z}

Ṽ ab
i j

(
R̂a

i R̂b
j + H.c.

)
, (C5)

is a Hamiltonian of a spin quantum dot with random two-
spin interactions (including two-spin-flip terms) studied in
Ref. [20]. The parameters of the model are the number of
spins and the interaction strength, which were N and α in
Ref. [20] and are, respectively, p and n−1/2 in our case. As
shown in Ref. [20], the upper bound for the critical value of
p (MBL transition point) in this system is (using notations of
the present work, at given n−1/2)

pc � n1/4 ln1/4 n. (C6)

The scaling p ∼ n−1/4 (up to a logarithmic factor) in Eq. (C6)
can be understood if one compares the two-spin-flip level
spacing ∼1/p2 to the interaction matrix element ∼n−1/2.

The argument now is that, for large n, the level spacing
∼2−p in the ergodic resonant subsystem is much smaller than
power-law functions of n. As a consequence, in analogy with
Appendix B of Ref. [20], this ergodic subsystem can serve
as a “bath” and assist delocalization (spin-flip processes) in
the rest of the system. This argument also bears similarity
to the avalanche mechanism of many-body delocalization in
systems with a structure in real space [83,84]. Substituting
Eq. (C6) into W = n/p, we obtain the lower bound for the
critical disorder in our QD model,

W QD
c (n) � n3/4(ln n)−1/4, (C7)

which is Eq. (67) of the main text.

APPENDIX D: LIMITATIONS OF IMPLEMENTING
GAUSSIAN CORRELATED RANDOM FIELDS ON RRG

As discussed in detail in Sec. II, all the models studied
in this work are characterized by multivariate Gaussian dis-
tributions. Let us focus for definiteness on the uQD model,
which is characterized by energy correlations that depend
only on Hamming distance rαβ . The corresponding covariance
matrix CQD

E is given by Eq. (18), with states α being vertices
of an n-dimensional hypercube. This multivariate Gaussian
distribution on a hypercube graph emerges, by virtue of the
central limit theorem, since energies Eα of the uQD model are
given by Eq. (12).

One may be interested in generalizing the problem by
considering a model with a multivariate Gaussian distribu-
tion N (0,CE ) of energies defined by a covariance matrix
CE = f (rαβ ) on a certain graph. Importantly, this distribution
is defined only if the matrix CE is positive definite, i.e., all
its eigenvalues are positive. In the case of uQD model, this
condition is fulfilled, as the hypercube graph is the Fock space
of the model of n spins, and the covariance matrix CQD

E given
by Eq. (18) follows from Eq. (12). Similarly, multivariate
Gaussian distributions characterizing Fock-space representa-
tions of QD, 1D, and u1D models are well defined. However,
in general, the positive definiteness of CE is by no means
guaranteed if one picks up a certain structure of the graph and
a certain correlation function f (rαβ ).

In view of connections to the RRG model, it may be tempt-
ing to define a model of the uQD type not on the hypercube but
rather on RRG with 2n nodes and coordination number m + 1.
This would require implementing a multivariate Gaussian en-
ergy distribution on RRG, with energy correlations similar to
CQD

E , i.e., given by f (rαβ ) analogous to Eq. (18). If possible,
this would provide an additional link between the uncorrelated
RRG model (where m and n are independent parameters)
and the uQD and u1D models for which we developed the
RRG-like approximation with energy correlations, Sec. III B,
and for which the coordination number is strictly bound to
m + 1 = n.

We show, however, in this Appendix that an attempt to
implement energy correlations on RRG, with a correlation
function of the type (18), i.e., with strong correlations ex-
tending up to the largest Hamming distance on the graph in
general fails. Specifically, we show that, for a typical covari-
ance function f (rαβ ) of this class, the requirement of positive
definiteness of the matrix is strongly violated, with approx-
imately half of its eigenvalues being negative. Only when
correlations are strongly suppressed (e.g., by reduction of the
correlation length down to a value ∼1), one finds a positive
definite covariance matrix and thus a well-defined model.

We choose a correlation of the form

(CE )αβ = f (rαβ ) = C0 e−rαβ/�, (D1)

as was proposed in Ref. [64]. Here � > 0 is a correlation
length; the limit � → 0 corresponds to an uncorrelated model.
The overall constant prefactor C0 is of no importance for the
discussion in the present Appendix. It is easy to check that,
if considered on a hypercube (the Fock-space graph of the
models studied in this paper), the covariance matrix (D1) is
positive definite for any �. [The corresponding eigenvalues
can be straightforwardly calculated analytically by diagonal-
izing the matrix (D1) on a hypercube by Fourier transforma-
tion.)] Taking in this case � ∼ n, one gets strong correlations
analogous to the case of uQD model, Eq. (18). We show now
numerically that the situation changes dramatically if one tries
to define such a model on RRG, since the matrix (D1) is then
positive definite only for a short correlation length �.

In the left panel of Fig. 15, the fraction pneg of negative
eigenvalues of the matrix (D1) on RRG is shown as a function
of correlation length �, for the system size N = 2n with n =
10 and for several values of the coordination number m + 1.
It is seen that pneg = 0 for small �, so that Eq. (D1) defines
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FIG. 15. Emergence of negative eigenvalues of the matrix (D1) on RRG with coordination number m + 1 and number of vertices N = 2n.
(Left) Fraction of negative eigenvalues pneg as a function of correlation length � on RRG with n = 10 and m = 2, 3, 7, and 15. (Middle)
Distribution of eigenvalues for n = 10, m = 2, and three values of correlation length (shown by vertical-dashed lines in the left panel). For
� = 1 there are no negative eigenvalues; for � = 6 many eigenvalues are negative though this is still a relatively small fraction of all eigenvalues;
for � = 30 approximately a half of all eigenvalues are negative. (Right) pneg for m = 2 and 7, and various values of system size: n = 8, 9, and
10. It is seen that the threshold �∗ does not depend on n.

a valid covariance matrix. On the other hand, for � > �∗, a
macroscopically large number of eigenvalues is negative, so
that CE is not a valid covariance matrix any longer. Emergence
of negative eigenvalues and increase of pneg with increasing
� is illustrated in the histograms shown in the middle panel.
We find that the threshold value of the correlation length is
�∗ � c∗/ ln m with c∗ ≈ 3.56. As demonstrated in the right
panel, at given m, the threshold �∗ (and thus the constant
c∗) does not depend on n (i.e., on the number of graph ver-
tices N = 2n). Equivalently, one can define the “correlation

volume” for CE via N� = m�. Once N� becomes larger than
N�∗ = ec∗ ≈ 35, negative eigenvalues arise and CE ceases to
be a valid covariance matrix.

Our results show, in particular, that one cannot define on
RRG an ensemble with energies obeying Gaussian statistics
with covariance (D1) and correlations extending over the
whole system (i.e., with � ∼ L = ln N/ ln m). Indeed, such
large � is deeply in the regime where nearly half of all
eigenvalues are negative. Our conclusion is in conflict with
a numerical study in Ref. [64].
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