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Quantum entanglement in the multicritical disordered Ising model
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Quantum entanglement at critical points is often marked by universal characteristics. Here, the entanglement
entropy is calculated at the quantum multicritical point of the random transverse-field Ising model (RTIM). We
use an efficient implementation of the strong disorder renormalization group method in two and three dimensions
for two types of disorder. For cubic subsystems we find a universal logarithmic corner contribution to the area
law b ln(�) that is independent of the form of disorder. Our results agree qualitatively with those at the quantum
critical points of the RTIM, but with new b prefactors due to having both geometric and quantum fluctuations at
play. By studying the vicinity of the multicritical point, we demonstrate that the corner contribution serves as an
“entanglement susceptibility,” a useful tool to locate the phase transition and to measure the correlation length
critical exponents.
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I. INTRODUCTION

Quantum critical points (QCPs) occur in the ground state of
quantum systems by tuning a quantum control parameter that
governs quantum fluctuations. Quantum multicritical points
(QMCPs) emerge at the junction of two or more quantum
phase transitions, resulting in novel universality classes [1].
While QCPs have been well characterized theoretically, our
understanding of QMCPs remains much more limited. From
an experimental perspective, QMCPs are expected to be less
elusive to study than QCPs [2–5] (see, for example, the re-
cent experimental work on the ferromagnetic QMCP in the
disordered compound Nb1−yF2+y [6]). On the theoretical side,
our recent study showed that the QMCP of the ferromagnetic
random transverse-field Ising model (RTIM) exhibits ultra-
slow, activated dynamic scaling [7], governed by an infinite
disorder fixed point (IDFP) [8,9]. The dominant role of dis-
order ensures that the applied strong disorder renormalization
group (SDRG) method [10,11] is asymptotically exact [9,12–
15], meaning that the obtained numerical results approach the
exact results at large scales.

In this paper, our goal is to quantify the universal aspects of
quantum entanglement at the QMCP of the RTIM. Our results
contribute to a better understanding of the universal properties
of quantum many-body systems in the vicinity of quantum
phase transitions [16–19]. We consider the ground state of
the system, |Ψ 〉, and measure the entanglement between a
subsystem A and the rest of the system B by the von Neumann
entropy of the reduced density matrix ρA = TrB|Ψ 〉〈Ψ | as

SA = −TrA(ρA log2 ρA). (1)
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Known as the “area law” [18], S is generally expected to
scale with the area of the interface separating A and B in
the ground state. At QCPs, however, there are often ad-
ditional universal corrections, which can be dominant in
one-dimensional systems [20–22]. In higher dimensions it is
much more challenging to study quantum entanglement in
interacting systems. At the QCP of two-dimensional interact-
ing systems there are additional logarithmic terms, which are
expected to be universal, as demonstrated for multiple models,
including the transverse-field Ising model [23], the antifer-
romagnetic Heisenberg model [24], and the quantum dimer
model [25,26].

Disordered systems have been also extensively studied,
with the RTIM as a prominent example [27], as at an IDFP
disorder fluctuations dominate over quantum fluctuations,
simplifying the analytic and numerical treatment [28–34]. In
addition to critical exponents, the SDRG method also offers
an efficient way to calculate the entanglement properties [35].
While the area law is again found to be valid in disordered
magnets, the total entanglement entropy is not universal and
not extremal at the critical point in higher dimensions. Yet, in
the RTIM there is a singular, logarithmic corner contribution
to the entanglement entropy that is universal and extremal at
the critical point, as shown in d = 2, 3, and 4 [35].

In this paper, we show that the same kind of scenario holds
at the so far uncharted QMCP of the RTIM in two and three
dimensions. As our main result, we quantify the logarithmic
corner contribution to the entanglement entropy of cubic sub-
systems with high precision and show that it is universal, i.e.,
independent of the form of disorder. In addition, we show that
just as at the QCP of the RTIM [35], the corner contribution
serves as an “entanglement susceptibility,” determining the
location of the QMCP as well as the correlation length critical
exponents [36].
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FIG. 1. Phase diagram of the RTIM in two and higher dimen-
sions. The QMCP (purple) emerges at the junction of the percolation
transition at the bond dilution parameter p = pc (blue line) and the
generic disordered universality class (red), when the h magnetic field
is tuned to its critical value. Deviations from the QMCP are governed
by two correlation length exponents, νθ and νp, corresponding to the
two control parameters.

II. MODEL AND METHODS

The Hamiltonian of the RTIM can be expressed as

H = −
∑
〈i j〉

Ji jσ
x
i σ x

j −
∑

i

hiσ
z
i , (2)

where the σ x,z
i Pauli matrices represent spins at sites i of a

d-dimensional cubic lattice. The spins interact through the Ji j

nearest-neighbor couplings, and are exposed to the hi trans-
verse fields. Both the couplings and the fields are non-negative
random numbers, drawn from some distributions. To test the
universality of the results we will use two different types of
disorder as in Refs. [7,28,34,35]. For both types of disorder,
the couplings are uniformly distributed in the interval (0,1].
The transverse fields are either constant hi = h, ∀i (fixed-h
disorder), or are drawn independently from the interval (0, h]
(box-h disorder). The choice of fixed-h disorder can be mo-
tivated by experimental realizations of the model where the
transverse field is homogeneous, e.g. in LiHoxY1−xF4 [37].

Just as for the QCP, the QMCP of the RTIM is studied with
the quantum control parameter given by the logarithmic vari-
able θ = ln(h) [28,34,35]. To arrive at the QMCP, the bond
percolation probability p must be tuned to its critical value
pc, as illustrated in Fig. 1. For sufficiently small fields, we
observe a quantum phase transition dictated by the classical
percolation transition of the lattice [38,39]. This percolation
line ends at the QMCP, where it meets the line of the generic
QCP transition. Along the generic transition line the critical
behavior falls in the same universality class as the undiluted
(p = 0) system [28,34,35]. At the QMCP a new universality
class emerges, characterized by a new set of critical expo-
nents, due to the interplay of both geometric and quantum
fluctuations (see Ref. [7] and Table I).

The SDRG method offers a very efficient way to obtain
the ground state of the RTIM [28,34] by iteratively creating
an effective description of the ground state and low-energy
excitations. At each decimation step of the process the largest
local term in the Hamiltonian in Eq. (2) is eliminated. There
are two options: The largest term could either be the strongest
J coupling or the largest h transverse field in the system.
Second-order perturbation theory then dictates the emergence
of new, weak couplings depending on the two options as
follows. J decimation: When the largest term in the system is a
coupling, Ji j , the two connected spins tend to be aligned at low
energies and can be merged into an effective spin cluster of the
joint moment, μ̃ = μi + μ j . This effective spin is then placed
in an effective transverse field, h̃ = hih j/Ji j . h decimation:
When the largest term in the system is a transverse field, hi,
the spin does not contribute to the magnetic properties of the
system at low energies and can be eliminated. However, new
weak effective couplings need to be placed between each pair
of neighboring spins, j and k, J̃ jk = JjiJik/hi. In the case when
a coupling is generated between a pair of spins that are already
interacting by another coupling, the maximum of the two J
couplings is taken. This choice is known as the maximum rule,
which is known to be a valid approximation at an IDFP where
the distribution of the couplings becomes extremely broad.
Note that as a result, in all cases, the new effective terms are
smaller than the eliminated terms. At each successive step of
the SDRG, another spin is eliminated as the energy scale is

TABLE I. Critical and multicritical properties of the RTIM: The universal b prefactors of the corner contribution to the entanglement
entropy at the QMCP are indicated in bold. “f” stands for fixed-h disorder, while “b” indicates box-h disorder. The results of this work are
indicated in bold. NA=not available.

Percolation Generic QMCP
QCP [33,42,43] QCP [35] [7]

d = 2 pc or θc 0.5 bond −0.17034(2) f −0.481(1) f
0.592746 site 1.6784(1) b 0.783(1) b

νθ NA 1.24(2) 1.382(7)
νp 4/3–1.333 NA 1.168(10)
b(2) − 5

√
3

36π
≈ −0.07657 −0.029(1) −0.0684(4)

d = 3 pc or θc 0.248812 bond −0.07627(2) f −0.5055(10) f
0.311608 site 2.5305(10) b 0.770(1) b

νθ NA 0.98(2) 1.123(10)
νp 0.8762(12) NA 0.86(1)
b(3) 1.72(3) 0.012(2) 0.155(10)
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FIG. 2. Subsystem shapes used in the geometric method in d = 3
[35]. Each subsystem spans the full L length in D directions, with a
size of � = L/2 in the remaining directions. With periodic boundary
conditions, the corner contribution is only present for the cubic
subsystem, D = 0.

continuously lowered, until all degrees of freedom have been
decimated out. In practice, the most efficient implementation
of the SDRG method works in a parallel manner [28], relying
on graph algorithms to obtain the same results as the above-
mentioned conceptual picture, but in nearly linear time as a
function of the number of spins. The ground state of the RTIM
is then obtained as a collection of independent ferromagnetic
clusters of various sizes—created at each h-decimation step.
In each cluster, all spins point in the same directions as all
others, known as a Greenberger-Horne-Zeilinger (GHZ) state

1√
2
(| ↑↑ · · · ↑〉 + | ↓↓ · · · ↓〉).
While the emerging clusters are generally fractal-like dis-

connected objects [35,40], each contributes equally to the
entanglement entropy of a subsystem, as long as it is in-
tersected by the subsystem in a way that there are some
site(s) inside and outside [41]. With the definition in Eq. (1)
each such intersected cluster contributes to the amount of
log2 2 = 1, turning the calculation of the entanglement en-
tropy into a cluster counting task.

Interestingly, the entanglement entropy depends sensitively
on the shape of the subsystem. As shown at the percolation
[36,42] and generic [35] QCPs, subsystems with sharp corners
lead to universal corner contributions. For example, a cubic
subsystem in d = 3 is expected to yield the critical result of

S (3)(�) = a2�
2 + a1� + S (3)

cr + O(1) (3)

in the limit of large system sizes 1/L → ∞ when the � lin-
ear size of the subsystem is proportional to the system size.
Here, S (3)

cr = b(3) ln(�) + O(1), and only the b(3) prefactor is
universal [35], with the values summarized in Table I. Outside
the critical point, the finite correlation length is expected to
lead to a finite corner contribution, as we will discuss later.
Form this form it is apparent that the corner contribution is
relatively small compared to the nonuniversal terms. Yet, it
can be measured directly to high precision using the so-called
geometric method [35,36], at least in the case of periodic
boundary conditions applied here. The idea is to use additional
measurements that have a different shape, fully spanning the
system in D dimensions, incorporating a different amount of
each term seen for a cubic subsystem due to a different amount
of surface elements, such as corners, edges, and facets. In
d = 3, in addition to cubes, we also consider columns (D =
1, has edges, but no corners) and slabs (D = 2, no edges,
and no corners), as illustrated in Fig. 2. More generally, in
d dimensions, we considered d different geometries with

D = 0, 1, . . . , d − 1 to obtain the corner contribution [35] as

S (d )
cr =

d−1∑
D=0

(
−1

2

)D(
d

D

)
S (d )

D . (4)

Note that the geometric method cancels out all other terms, not
only on average over samples, but exactly in each sample even
at small sizes, where there are additional finite-size effects
contributing to the asymptotic terms. Hence, the geometric
method often provides high-precision results with relatively
small finite-size effects.

III. RESULTS

The locations of the QCPs and QMCP are known to high
precision, as listed in Table I. Here, we also list the relevant
critical and multicritical exponents, all of which are known to
be universal, i.e., randomness independent [7]. The known b
values of the corner contribution to the entanglement entropy
are also listed here for d = 2, 3 at the percolation and generic
QCPs. We study large systems up to a linear size of L = 2048
in d = 2 and L = 64 in d = 3. The number of realizations
used in the numerical calculations at the QMCP is typically
100 000, apart from the largest sizes, where we have at least
50 000 samples. The total computational effort exceeded 10
CPU years.

We implemented the “geometric method” to obtain the cor-
ner contribution as well as the other prefactors ai in Eq. (3). As
expected, the area law is found to be valid at the QMCP, with
nonuniversal ai prefactors. In d = 2, a1 = 0.237(1) for box-h
disorder and a1 = 0.662(1) for fixed-h disorder. In d = 3,
a2 = 0.163(1) and a1 = −0.11(1) for box-h disorder, with
a2 = 0.546(1) and a1 = −0.24(1) for fixed-h disorder.

At the QMCP, we see clear evidence of a logarithmic
corner contribution in both d = 2 and d = 3, as shown in
Fig. 3, with the insets indicating the two-point fits of b(d ) from
consecutive sizes. As a clear sign of universality, the extrapo-
lated b(d ) values are found to be disorder independent, and are
listed in Table I. In both two and three dimensions, the b(d )

prefactors are between those at the generic and percolation
QCPs.

While the entanglement entropy is not extremal at higher-
dimensional QCPs or at the QMCP, the corner contribution is
only present at the phase transitions, suggesting an extremal
S (d )

cr as a function of either δθ = θ − θc or δp = p − pc. For
δ > 0 we arrive at the paramagnetic Griffiths phase, while
p − pc < 0 leads to a ferromagnetic Griffiths phase. Note that
along the p = pc critical line for θ < θc, we asymptotically
expect to see the percolation critical behavior as the Griffiths
phase is only present for θ > θc in this case. In Ref. [7] it was
found that the vicinity of the QMCP is highly anisotropic, as
the ν correlation length critical exponent is different for the
two control parameters, as listed in Table I. We have therefore
also studied the behavior of the corner contribution to the
entanglement entropy outside the critical point and measured
S (d )

cr (L, δ) as a function of either δθ or δp. In the upper panels
of Fig. 4, S (d )

cr (L, δ) is presented for box-h disorder in d = 2
for 104 samples, showing a clear peak at the QMCP in both
directions. Outside the multicritical point, the corner contri-
bution is limited by the finite correlation length, ξ ∼ |δ|−ν ,
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FIG. 3. Corner contribution to the entanglement entropy of cubic
subsystems in the d = 2 (top) and d = 3 (bottom) models for fixed-h
(+) and box-h (�) disorder realizations. Insets: Extrapolation of the
effective prefactors of the logarithm are shown as calculated by two-
point fits. As an indication of universality, the extrapolated values are
disorder independent as listed in Table I. The error of the data points
is smaller than the size of the symbols.

leading to the substitution � → ξ . Therefore, close to the mul-
ticritical point, in the Griffiths phase, the corner contribution
satisfies the scaling relation

S (d )
cr (L, δ) − b(d ) ln L = f (δL1/ν ), (5)

as illustrated by the data collapse in the lower panels of Fig. 4.
Here, we have used the known d = 2 estimates for the νp

and νθ correlation length critical exponents, listed in Table I.
These results underline that the corner contribution is not
only universal, but provides a systematic way to locate the
multicritical points in higher-dimensional interacting quantum
systems, as well as b and the νθ and νp critical exponents.
Let us emphasize again that the behavior of the corner term
is in stark contrast to the full entanglement entropy, which is
generally nonuniversal and nonmaximal at the critical point in
higher dimensions.

FIG. 4. Corner contribution to the entanglement entropy in the
vicinity of the QMCP for box-h disorder in d = 2. Left: Varying θ at
pc (brown in Fig. 1). Right: Varying p at θc (green in Fig. 1). Bottom:
Data collapse with the estimated value of b(2) as well as the known
values of the νθ and νp critical exponents, listed in Table I. The error
of the data points is smaller than the size of the symbols.

IV. DISCUSSION

We have studied the quantum entanglement properties at
the multicritical point (QMCP) of a paradigmatic interacting
quantum system (RTIM) in both two and three dimensions.
While the area law is found to be valid for cubic subsystems,
we have identified universal logarithmic corner contributions.
The results at the QMCP are found to be between that of the
two participating critical lines—corresponding to the percola-
tion and generic QCPs—in both d = 2 and d = 3. This work
contributes to the emerging picture of how universal features
of entanglement manifest at higher-dimensional QCPs and
QMCPs. For a single subsystem, geometric singularities, such
as corners, play an essential role and lead to a universal pref-
actor b, akin to a critical exponent, which is independent from
the usual set of exponents. In contrast to traditional critical
exponents b aggregates higher-order correlations [35], and is
expected to showcase a nontrivial dependence on the shape of
the subsystem.

Measuring the shape dependence of the entanglement en-
tropy at QCPs and at the QMCP is an interesting future
direction, also related to recently proposed models of quan-
tum communication [44]. For example, in d = 2 the shape
dependence can be confronted with the results of conformal
invariance. Currently, the most complete results are available
at the percolation QCP, where in two dimensions the system
is conformally invariant, enabling a full analytic treatment
supported by high-precision numerical methods [36,43]. De-
tailed shape dependences of the cluster counts have been also
obtained numerically for the percolation QCP in three dimen-
sions [36,45]. In general, especially in the lack of conformal
invariance, the shape dependence of the corner contributions
is expected to be universal but nontrivial, meaning that dif-
ferent subsystem shapes might extract different information
on the entanglement patterns. As the simplest possibility,
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line segments of length � are of special interest [36]. Line
segments are special cases of skeletal entanglement, where
the subsystem is a zero-measure volume of the full system,
offering additional universal results [46].

Another key question that arises is whether studying mul-
tipartite entanglement can provide further insights [47,48]. As
shown recently in the one-dimensional RTIM [49], the multi-
partite entanglement structure [50] is qualitatively different in
otherwise similar disordered quantum chains [51]. The RTIM
results also showed that in the appropriate geometric scaling
limit, multipartite entanglement measures are universal and
provide deeper information than bipartite entanglement. On
the contrary to the entanglement entropy, where only the
(leading order of the) corner contribution is universal, in the

case of both the entanglement negativity and mutual informa-
tion, the entire multipartite measure was found to be universal
[49]. Extending these results to nonadjacent subsystems in
higher-dimensional QCPs and QMCPs is an exciting future
direction. Our results can be also extended to the RTIM with
long-range interactions [52–54], motivated by materials such
as LiHoxY1−xF4 [37].
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