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Nuclear spins in solids offer a promising avenue for developing scalable quantum hardware. Leveraging
nearby single-color centers, these spins can be efficiently addressed at the single-site level through spin
resonance. However, characterizing individual nuclear spins is quite cumbersome since the characterization
protocols may differ depending on the strength of the hyperfine coupling, necessitating tailored approaches and
experimental conditions. While modified electron spin Hahn echoes like Carr-Purcell-Meiboom-Gill (CPMG)
and phase cycled CPMG (XY8) pulse sequences are commonly employed, they encounter significant limitations
in scenarios involving spin-1/2 systems, strongly coupled spins, or nuclear spin baths comprising distinct
isotopes. Here, we present a more straightforward approach for determining the hyperfine interactions among
each nuclear spin and the electron spin. This method holds promise across diverse platforms, especially for
emerging S = 1/2 group IV defects in diamond (e.g., SiV, GeV, SnV, PbV) and silicon (T center, P donors).
We provide a theoretical framework and adapt it for color centers exhibiting various spins. Through simulations
conducted on nuclear spin clusters, we evaluate different protocols and compare their performance using the
Fisher information matrix and Cramér-Rao bounds.
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I. INTRODUCTION AND BACKGROUND

Optically active defects in solids, known as color centers,
have been utilized in various quantum applications [1], in-
cluding quantum networks [2], quantum sensing [3,4], and
quantum registers [5–9]. Each center contains an electron
spin that can be directly controlled using microwaves, and
it can be initialized and read out through optical excitation.
The potential hyperfine interactions with a bath of numerous
nuclear spins are crucial for diverse applications, as they
offer long-lived quantum memories and enable the creation
of an optically accessible nuclear spin qubit register. To im-
plement efficient quantum control for these memories, it is
imperative to have precise knowledge of the full Hamiltonian
governing the register [10,11]. However, characterizing the
hyperfine coupling of nuclear spins can be both challeng-
ing and time-consuming [12,13]. Traditionally, nuclear spin
characterization is accomplished through optically detected
magnetic resonance [7,14], but the spectroscopic resolution is
constrained by the 1/T ∗

2 of the electron spin. To overcome this
limitation, Hahn-echo-type sequences have been employed to
refocus the electron spin and extend its coherence time [15],
thereby improving the resolution to 1/T2. This method can
be applied to defects with a specific configuration of nuclear
spins, particularly those with a certain relation to the magnetic
field and the coupling of the nuclear spins, such as weakly
coupled nuclear spins. Also, the protocols can be applied only
to electron spins with a specific spin multiplicity. Depending
on the applied protocol for the nuclear spin characterization,
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the number of identifiable nuclear spins can be different.
Electron spin echo envelope modulation (ESEEM) types of
sequences allow access to the highest number of nuclear
spins, as the spectroscopy resolution is limited to the longi-
tudinal relaxation time T1 of the system (see Fig. 1) [16,17].
In particular, we consider the following common examples
of nuclear spin registers that are ubiquitous in applications.
First, we consider the NV-like case with S = 1 and weakly
coupled nuclear spins, operating at high magnetic fields where
γnB � Azx, which has been extensively studied [12,18,19].
The capability to observe narrow peaks with analytically pre-
dictable positions and contrasts enables the solution of the
inverse problem concerning the characterization of the cou-
pling between nuclear and electron spins. The second case [as
depicted in Fig. 1(b)] corresponds to a scenario similar to the
first, but with the presence of a strongly coupled nuclear spin,
which obstructs the observation of weakly coupled nuclear
spins. This case is particularly relevant in situations where, in
addition to the weakly coupled register, a strongly coupled nu-
clear spin is utilized, for instance, for repetitive enhancement
of readout [20]. This enhancement is achieved by exploiting
the strongly coupled ancilla, which is discernible in electron
spin resonance spectra. The third case [Fig. 1(c)] pertains
to the S = 1/2 scenario, where the lack of offset in the av-
erage evolution of the nuclear spin results in its dynamics
weakly depending on Azz and only second-order dependence
on Azx. Consequently, this leads to a limited ability to distin-
guish between multiple nuclear spins and a lack of individual
addressability of nuclear spins. Last, in the case of other
material host platforms, a bispecies nuclear spin bath may be
observed, where resonance peaks corresponding to different
Larmor frequencies of different species further complicate the
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FIG. 1. Comparing DD and five-pulse ESEEM as two nuclear spin characterization methods in different systems. (a) Electron spin-1
system: In the DD signal, each nuclear spin exhibits a distinct resonance time up to the first order of Azz; the accuracy of the obtained hyperfine
interaction is limited to T2 of the electron spin. In the Fourier transform of the ESEEM signal, the two resonance frequencies of each spin are
present; the accuracy of the obtained hyperfine interaction is limited to T1 of the electron spin. (b) Electron spin-1 system with two strongly
coupled nuclear spins and many weakly coupled spins: No resonance time is detectable since the required condition for DD (ωL � Azz, Azx)
does not hold. However, resonant frequencies are still obtainable in the ESEEM signal. (c) Electron spin-1/2 system: Nuclear spins have more
or less the same resonance time because it depends on the second order of hyperfine coupling. However, the resonant frequency of each spin is
distinguishable in the ESEEM signal. (d) System containing two different nuclear spin species: Two nuclear spin baths can interfere in the DD
signal, making the signal analysis more challenging. However, the species can be inferred from the ESEEM signal since species have different
Larmor frequencies.

reconstruction of the Hamiltonian. For unambiguous recon-
struction of the interactions, additional measurements, such
as those at different magnetic field strengths, would be re-
quired. While double-resonance methods [5,21] hold large
promise for nuclear spin spectroscopy, they require addi-
tional experimental hardware and often are not available.
Thus, in this work, we investigate the limits of electron
spin driven schemes, in particular correlation-type sequences,
which could serve as a general framework and hold promise
for the reconstruction of the interactions in all of the afore-
mentioned cases.

II. RESULTS

We consider a central spin system of noninteracting nu-
clear spins I = 1/2 coupled to a central electron spin S.

The central electron spin is manipulated resonantly with mi-
crowave pulses, which transfer the population between the
two sublevels denoted as ms = s0 and ms = s1. These two
spin sublevels are separated due to the Zeeman effect and/or
zero-field splitting, forming a two-level subsystem with an
energy splitting of ωa. The Hamiltonian of the system in
the secular approximation and in the rotating frame of the
applied microwave ωmw can be written as (see the derivation
in Appendix B)

H = �Sz +
∑

k

(
ω

(k)
L + A(k)

zz Sz
)
I (k)
z + A(k)

zx SzI
(k)
x , (1)

where � = ωa − ωmw is the detuning; ω
(k)
L = γ (k)

n B is the
nuclear Rabi frequency, with γ (k)

n being the nuclear spin
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gyromagnetic ratio and B being the external magnetic field;
and Azz and Azx are the parallel and perpendicular secular com-
ponents of the hyperfine tensor, respectively. The Hamiltonian
is diagonal in the electron spin subspace; thus, the Hamil-
tonian for the nuclear spins can be rewritten in the electron
spin subdomains si (i = 0, 1). The nuclear spin Hamiltonian
can be solved for eigenenergies, which determine the preces-
sion frequencies of ωi =

√
(ωL + siAzz )2 + (siAzx )2, i = 0, 1,

along the eigenvector axes −→n i = ( siAzx
ωi

, 0,
ωL+siAzz

ωi
). It is as-

sumed that the pulse duration tp is short enough (ωLtp � 1)
that the nuclear spin dynamics during this time is negligible.
For completeness, we start our analysis with the simplest
characterization sequence, which is the electron spin Ramsey
sequence (free induction decay of the electron). The Ramsey
signal can be obtained as follows:

〈σz〉Ram = cos(�τ )
n∏

j=1

[
cos

(
ω0τ

2

)
cos

(
ω1τ

2

)

+ (−→n0 · −→n1 ) sin

(
ω0τ

2

)
sin

(
ω1τ

2

)]( j)

. (2)

We note that the expressions do not account for any relaxation
processes. The Ramsey sequence is sensitive to detuning since
the electron spin is not refocused and it decays with the elec-
tron spin T ∗

2 ; however, it is possible to sense nuclear spins
with vanishing perpendicular hyperfine coupling.

To extend the relaxation time and access more nuclei, one
can insert a π pulse in the Ramsey sequence, creating a Hahn
echo sequence, and obtain the following signal:

〈σz〉HE =
n∏

j=1

[
1 − 2k2 sin2

(
ω0τ

2

)
sin2

(
ω1τ

2

)]( j)

, (3)

where k = (s1−s0 )ωLAzx

ω0ω1
is the modulation amplitude of each nu-

clear spin. Without any nuclear spin, the Hahn echo sequence
creates an electron spin echo signal with an envelope of
stretched exponential decay with T HE

2 . However, in the pres-
ence of nuclear spins, the electron spin echo envelope will be
modulated due to interaction with the nuclei. Hence, this se-
quence is also called electron spin echo envelope modulation.
Even though the coherence time is increased, distinguishing
the effects of different nuclear spins in the total signal is
very complicated. The Hahn echo sequence can be used for
defects that contain a few strongly coupled nuclei. In order
to differentiate the resonance frequency of each nuclear spin
or to sharpen the oscillations, one can add more π pulses,
creating the so-called dynamical decoupling (DD) sequence
to separate the resonance conditions for individual nuclear
spins. For an even number of π pulses N , the DD signal can
be obtained (neglecting decoherence terms) as

〈σz〉DD =
n∏

j=1

[
1−2k2 sin2

(
ω0τ

2

)
sin2

(
ω1τ

2

)
sin2

(
N
2 θ

)
cos2

(
1
2θ

)]( j)

,

(4)

where

θ = arccos[cos(ω0τ ) cos(ω1τ )

− −→n 0 · −→n 1sin(ω0τ ) sin(ω1τ )], (5)

where −→n 0 · −→n 1 = ω2
L+(s0+s1 )Azz+s0s1(A2

zz+A2
zx )

ω0ω1
, which is the inner

product of the precession axes of a nuclear spin condition on
the electron spin sublevel. This expression indicates the ad-
vantage of using the DD sequence for sublevels where either
s0 or s1 is zero: only first-order parallel hyperfine coupling Azz

ωL

plays a role. On the other hand, in spin-1/2 systems (s0 = − 1
2

and s1 = 1
2 ), the first-order perturbation correction with re-

spect to hyperfine coupling vanishes, and only second-order
perturbation term with respect to parallel ( Azz

ωL
)2 and perpen-

dicular coupling ( Azx

ωL
)2 remains present. This indicates weak

sensitivity of the DD sequence to different nuclear spins. At
this point, it should be clear that the number of pulses can
be used as an additional parameter to modify the modulation
depth of each nuclear spin. A detailed investigation of the
obtained DD signal reveals that by sweeping the time interval
between pulses, an exponential decay with a rate of 1/T2 is
observed, except for some resonance times when the electron
spin becomes entangled with a particular nuclear spin, result-
ing in a sharp drop in the signal. This resonance time can be
obtained assuming ωL � Azz, Azx is satisfied:

τp ≈ (2p + 1)π

ω0 + ω1
≈ (2p + 1)π

2ωL
(
1 + s0+s1

2
Azz

ωL
+ s2

0+s2
1

4
A2

zx

ω2
L

) . (6)

Experimental observation of the resonance times provides
valuable information about the nuclear spins. For instance,

in the case of an NV center, the second-order term A2
zx

ω2
L

can
be neglected, allowing for the direct determination of the Azz

hyperfine component from the resonances. To proceed with
the characterization, Eq. (4) needs to be further simplified,
requiring stronger assumptions. Focusing on weakly coupled
nuclear spins or high magnetic fields, the multiplication over
all nuclear spins in Eq. (4) can be approximated by a summa-
tion rule, neglecting the higher-order cross-resonance terms:

〈σz〉DD ≈1−2
n∑

j=1

[
k2 sin2

(
ω0τ

2

)
sin2

(
ω1τ

2

)
sin2

(
N
2 θ

)
cos2

(
1
2θ

)]( j)

.

(7)

Assuming nonoverlapping resonance times (which does not
hold true for spin-1/2 systems) and expanding the signal
around the jth nuclear spin resonance (τ = τ

( j)
p + δτ ) up to

the first order of δτ result in the ability to approximate each
drop with a Lorentzian function:

〈σz〉DD(δτ )≈1−2 sin2

(
N

2

(s1 − s0)Azx

ωL

) ( (s1−s0 )Azx

2ω2
L

)2

δτ 2 + ( (s1−s0 )Azx

2ω2
L

)2 .

(8)

This simplification allows for the determination of the parallel
component of the hyperfine interaction for each nuclear spin,
possibly in two ways. First, a Lorentzian with a width of
(s1−s0 )Azx

ω2
L

can be fitted to a dip to identify Azx. Second, by
keeping track of the minima of a dip while varying the number
of pulses, the periodic function 1 − 2 sin2 ( N

2
(s1−s0 )Azx

ωL
) can be

fitted to obtain Azx.
Although the DD sequence is well understood and used to

characterize nuclear spins, it is not applicable to all systems.
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FIG. 2. Simulated DD signal with 64 π pulses for the register reported in [12] consisting of 23 nuclear spins, assuming the electron spin
is (a) a spin S = 1 system and (b) a spin S = 1/2 system. Simulated Fisher information matrix for the case of the electron spin for (c) a spin
S = 1 system and (d) a spin S = 1/2 system. The first 23 hyperfine parameters are Azz, and the second 23 parameters are Azx from the nuclear
spin register.

First, DD works only for defects in high magnetic fields with
weak hyperfine coupling (ωL � Azz, Azx). Second, the signal
is limited to the electron spin T2, which only gradually ap-
proaches T1. Third, signal analysis is rather complicated and
time-consuming; one has to collect enough data to ensure
that no two nuclear spins overlap in the signal. Fourth, this
sequence does not work for spin-1/2 systems, such as group
IV defects in diamond, since the parallel component of the
hyperfine coupling cancels their effect on the first-order elec-
tron spin signal. Hence, the resonance signal depends on the
second order of the perpendicular hyperfine component.

In this work, we consider the 23-nuclear spin cluster
characterized previously in [12] as a realistic case for our
comparison. Each nuclear spin is identified by two hyperfine
parameters, Azz and Azx, which show coupling to the central

electron spin. Hence, characterizing these 23 nuclear spins
requires identifying 56 hyperfine coupling parameters. First,
we apply the DD sequence to this nuclear spin register and
visualize the obtained results. Figure 2 compares the DD
signal for the same nuclear spin register but different defects
in diamond. An intuitive description of the sensitivity of a se-
quence to the variation of hyperfine coupling can be estimated
by considering the width and sensitivity of the position of the
resonances. First, we consider the case of an NV center in
diamond. The width of a dip is δτ = Azx

ω2
L

. Taking the derivative
of the resonance time, we define the sensitivity of the longitu-
dinal hyperfine coupling, using Eq. (6) to simplify it:

δAzz ≡ δτ∣∣ ∂τp

∂Azz

∣∣ = 2

τp

Azx

ωL
� 4

T HE
2

Azx

ωL
. (9)
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If we assume typical values of T HE
2 = 100 µs and ωL =

500 kHz, a weakly coupled nuclear spin Azx = 5 kHz can
be distinguished from another weakly coupled nuclear spin
with δAzz = 400 Hz. For S = 1/2, like in group IV defects
in diamond, the resonance times are sensitive to the second
order of Azx and show no sensitivity to Azz. Hence, even at
large τ , the resonances related to nuclear spins will not be well
separated. We define the sensitivity of the spin-1/2 system as
follows:

δAzx ≡ δτ∣∣ ∂τk
∂Azx

∣∣ = 4

τk
� 8

T HE
2

. (10)

Assuming typical values of T HE
2 = 100 µs, a nuclear spin can

be distinguished from another one if their transverse hyperfine
coupling is separated by δAzx = 80 kHz, which is quite inac-
curate and approximately 160 times worse than for S = 1.

To quantify the difference in sensitivity for estimating the
hyperfine parameters, we perform calculations of the Fisher
information matrix for the 23-nuclear-spin cluster, with 23 Azz

and 23 Azx parameters [see Figs. 2(c) and 2(d)]. The Fisher
information matrix is estimated for the probability to measure
state |0〉 and reads

Fi j (A) =
∑

τ

∂ p(0, τ, A)

∂Ai

∂ p(0, τ, A)

∂Aj

1

p(1 − p)
. (11)

The summation is over τ , the pulse timing used in the
sequence, and A is the array including all hyperfine cou-
pling parameters. For the considered nuclear spin register, A
includes 56 hyperfine coupling parameters; the first 23 pa-
rameters are Azz of different nuclear spins, and the second 23
parameters are Azx, resulting in the Fisher information being
a 56 × 56 matrix. Figures 2(c) and 2(d) visualize the Fisher
information matrix element for the DD sequence in spin-1 and
-1/2 systems. For the typical case of an NV center with S = 1,
since all the nuclear spin resonances are clearly resolved, the
Fisher information matrix takes a diagonal shape, revealing
low covariances between the various nuclear spin resonances.
There is cross talk between Azz and Azx for a nuclear spin, as
the position of the peak depends on both values. The Fisher
information provides a bound for the precision of parameter
estimation, known as the Cramér-Rao bound:

δA2 � 1

N
F (A)−1. (12)

=10 The striking difference from the S = 1 Fisher informa-
tion matrix is the behavior of the defect with S = 1/2. First of
all, for both spin S = 1/2 and S = 1, the sequence’s spectral
resolution is limited by the T1 relaxation time of the electron
spin. On the other hand, the sequence’s sensitivity is limited
by T2. The main principle of five-pulse ESEEM [22] is to
create entanglement (via, e.g., a Hahn echo or Carr-Purcell-
Meiboom-Gill (CPMG) block) before the free evolution of the
nuclear spins and then to apply a second correlating sequence
afterwards. In other words, the initial density matrix for the
Hahn echo sequence is modified so that entanglement already
exists in the electron polarization terms of the density matrix,
thus limited by time T1. Figure 6 shows the sequence, which
can be interpreted as two Hahn echoes separated by a long free
evolution T � T ∗

2 such that the coherence of the electron spin
vanishes. The analytical formula for this sequence is provided
in Appendix C. During the free evolution time, each nuclear

spin oscillates with one of two resonance frequencies obtained
from Eq. (1).

Figure 3 shows the Fourier transform of the signal. Zoom-
ing into the area close to the Larmor frequency reveals the
weakly coupled nuclei. Each nuclear spin has two peaks in the
spectrum, ωa and ωb. Expanding the resonance frequencies
up to first order with respect to hyperfine coupling shows
that nuclear spins appear in order of their coupling strength,
making their characterization rather straightforward. To ob-
serve the weakly coupled nuclei more clearly, one can use
the DD-ESEEM sequence by adding more π pulses in the
entangling periods. To distinguish other nuclei, extra measure-
ments are required. One method is to use two-dimensional
hyperfine correlation spectroscopy (2D HYperfine Sublevel
CORrelation sequence (Hyscore)) [17]. However, this method
is rather time-consuming because two time variables have to
be swept. Optimum time sampling techniques might be used
to optimize the timing of 2D sampling. Here, we suggest an
alternative method which is conventionally used in electron
spin resonance, i.e., sweeping the τ parameter and keeping
track of the frequency amplitude as a function of τ . Two
frequencies that belong to the same nucleus are correlated
because the modulation depth oscillates with blind spot terms
of both frequencies sin2( ω0τ

2 ) sin2( ω1τ
2 ). Figure 4 shows two

frequencies going to bright and blind spots simultaneously.
Hence, by taking a two-dimensional correlation of the spec-
trum, one can deduce which two frequencies are correlated
and belong to the same nucleus.

To simulate a realistic experimental situation, we model the
electron spin state as projected to 0 and 1 with a binomial
distribution where the probability is determined by analytical
expressions. Then, we assume the bright (dark) state emits 3
(0.1) photons on average with a Poissonian distribution. We
repeat the measurement at each point 10 000 times to reduce
classical photon shot noise.

To estimate the number of nuclear spins that can be iden-
tified, we consider the duration of the free evolution time and
the choice of interpulse timing τ . For a realistic scenario with
T1 = 1 s and T2 = 100 μs, sweeping the relevant parameter
in 1000 steps, we can estimate the Fisher information matrix
for various protocols. We will approach the system with a
moderate number of pulses, say, N = 16, for the dynamical
decoupling sequence and the simplest five-pulse ESEEM for
the correlation protocol for simplicity of calculation, as ana-
lytical expressions are available in that case.

Figure 5 illustrates the manifestation of the correlation pro-
tocol for a spin-1/2 system in terms of the number of nuclear
spins one can estimate with each of the protocols. The dots on
the Azz and Azx axes represent the points, with an area bounded
by the Cramér-Rao bound around each point. A nuclear spin is
considered detectable (blue points in Fig. 5) if the uncertainty
of one of the two hyperfine parameters is less than both the
absolute value of that parameter and the distance to the closest
hyperfine coupling. Otherwise, it is considered nonidentified
(shown as red points). Additionally, covariance between var-
ious parameters is calculated from the off-diagonal elements
in the inverse Fisher information matrix. To illustrate them,
an ellipse for each covariance parameter is plotted (colored
orange and pink), with two nuclei being the vertices of the
ellipse and the small axis size being the Cramér-Rao bound.
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(a) (b)

(c) (d)

FIG. 3. (a) Simulated FFT of the ESEEM signal with a zoom into weakly coupled nuclear spins for the register reported in [12] consisting
of 23 nuclear spins, assuming the electron spin S = 1/2 system. (b) Enhancing the sensitivity to weakly coupled spins by increasing the number
of π pulses to N = 72 pulses in each entangling period. τ is set to the Larmor bright spot. Simulated five-pulse ESEEM Fisher information
56 × 56 matrix for the cases of the electron spin (c) S = 1 and (d) S = 1/2 systems. The first 23 hyperfine parameters are Azz, and the second
23 parameters are Azx from the nuclear spin register. It indicates the covariance between two parameters. The main diagonal appears because
each parameter is correlated with itself. The side diagonals indicate the two hyperfine parameters that belong to the same nuclei.

This means that in the case of zero covariance between two
nuclei, this ellipse turns into a line. To keep the plot read-
able, for each nuclear spin, only the ellipse with the largest
covariance value is plotted. These covariances mostly show
the cross talk between different parameters in the presented
data and are more strongly present in the DD S = 1/2 case.
The idea behind the ellipse representation is that when the

covariance is larger than the self-variance, the spins become
indistinguishable. While this cross talk is not the limiting
factor of the informational approach, it might be important
when considering a realistic estimator. It is important to note
that this is not strictly the same condition as in experimental
identification and is idealized. We consider only the available
information in the plot, assuming that an optimum estimator

Frequency (kHz)

(
s)

Frequency (kHz)

Fr
eq
ue
nc
y
(k
H
z)

(a) (b)

FIG. 4. (a) FFT of the ESEEM signal for τ from 10 to 500 µs with a step of 10 µs (b) Two-dimensional correlation of each frequency for
different τ .
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(a) (b)

(c) (d)

FIG. 5. Visualization of the Cramér-Rao bound for various protocols on an existing nuclear spin dataset from [12].

for the extraction of that information already exists. In reality,
one has to additionally assume a nonideal estimator proce-
dure, which involves the extraction of the hyperfine parameter
values from the raw data. But that is a subject for future work.
As a result, we see that while for the DD method a spin-1/2
case for N = 16 pulses allows for the identification of only 3
out of 23 nuclear spins, the five-pulse ESEEM method works
with similar success for both S = 1 and S = 1/2 systems. In
total, it is capable of detecting 17–18 out of 23 spins within the
measurement time constraint. This could be further boosted
by using the DD-ESEEM method with multiple pulses in each
sensing block analogous to Fig. 3.

III. DISCUSSION

In this work, we conducted a theoretical and numerical
comparison of various ESEEM methods for characterizing
the nuclear spin clusters around S = 1 and S = 1/2 types of
defects. We found that for S = 1 systems, modified spin echo
sequences such as phase cycled CPMG (XY8) are most suited
for single nuclear spin qubit spectroscopy, but for S = 1/2
systems, their performance is limited. On the other hand,
correlation-type sequences like three- and five-pulse ESEEM
show greater potential for characterizing a diluted nuclear
spin bath and perform at least as well as in the S = 1 case.
We believe that these methods hold significant potential for
preliminary screening of nuclear spin clusters for S = 1/2
potential qubit candidate systems, such as G-IV defects in
diamond. Additionally, our method does not require strong
microwave pulse fields since the pulses do not need to cope
with the nuclear spin Larmor frequency. While we explored
various sensing methods in this work, we did not delve into
estimator performance. We believe that this aspect should be
considered in conjunction with adaptive and optimal strategies
for controlling the experimental parameters, such as Bayesian
optimal experimental design and machine learning, to in-
crease the efficiency of estimation. This could further enhance
the characterization capabilities of these methods in practical
experimental scenarios.

ACKNOWLEDGMENTS

We acknowledge financial support from the European
Union’s Horizon 2020 research and innovation program AS-
TERIQS under Grant No. 820394, as well as Federal Ministry
of Education and Research (BMBF) projects MiLiQuant and

Quamapolis, Spinning and QR.X, the DFG (FOR 2724, INST
41/1109-1 FUGG), the Max Planck Society, and the Volkswa-
gentiftung. M.Z. thanks the Max Planck School of Photonics
for financial support.

APPENDIX A: SEQUENCES

The details of the sequences mentioned in the main text can
be found in Fig. 6.

APPENDIX B: HAMILTONIAN

The spin Hamiltonian for many color centers can be written
as [23]

H = DᵀSD + βeBᵀgS + βn

m∑
k=1

g(k)
n BᵀI(k)

+
∑

Ik>1/2

(IᵀPI)(k) +
m∑

k=1

g(k)
n (SᵀAI)(k), (B1)

FIG. 6. Pulse sequences: (a) Ramsey, (b) Hahn echo, (c) dynam-
ical decoupling, and (d) DDESEEM.
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where S and I(k) are electron and nuclear spin vector oper-
ators, D is the zero-field-splitting tensor, B is the magnetic
field vector, P is the nuclear quadrupole tensor, A is the
hyperfine interaction tensor, and βe = eh̄

2me
and βn = −eh̄

2mn
are

the electron and nuclear Bohr magnetons. Here, we neglected
nuclear-nuclear interactions. Also, due to axial symmetry, the
zero-field splitting can be simplified. We assume the magnetic
field is only along the symmetry axis, which we denote as the z
direction. Moreover, the secular terms (SzIx, SzIy, SzIz) are just
a shift of the energy level that are relevant up to first order,
while the nonsecular terms (SxIx, SyIx, SzIz, SxIy, SyIy, SzIy)
mix the electron spin levels, which are largely detuned due to
the large zero-field splitting. Hence, the nonsecular terms of
the Hamiltonian are neglected. Furthermore, for each nuclear
spin, one can go to the xy frame such that the Azy term is
zero. All in all, the spin Hamiltonian with the mentioned
considerations can be simplified to

H = DzS
2
z + γeBSz + γnBI (k)

z + P(k)
z I2(k)

z

+ A(k)
zz SzI

(k)
z + A(k)

zx SzI
(k)
x . (B2)

The summation over k is omitted for convenience. The coef-
ficients γe and γn are the electron and nuclear gyromagnetic
ratios. The coefficients’ values for the case of a NV center in
diamond are Dz = 2.87 GHz, γe = −2.802 MHz/G, γ (13C)

n =
1.07 kHz/G, γ (14N )

n = 0.31 kHz/G, and P(14N )
z = −5.04 MHz.

The electron spin in general can take any value; however,
resonant microwave pulses are applied only for two of the
sublevels. Hence, the electron spin is effectively a two-level
system. The electron spin occupies two of its sublevels, which
are denoted as |0〉 = |ms = s0〉 and |1〉 = |ms = s1〉; in other
words,

Sz =
(

s1 0
0 s0

)
. (B3)

One can show that S2
z = (s1 + s0)Sz − s1s01. We define the

transition frequency between two spin sublevels of the elec-
tron spin as ωa = Dz(s1 + s0) + γeB. Moreover, we note that
since we consider nuclei with a spin of 1/2 in the system, the
nuclear quadrupole term vanishes. The Hamiltonian can be
written in terms of Pauli matrices:

H = ωaSz + γnBI (k)
z + A(k)

zz SzI
(k)
z + A(k)

zx SzI
(k)
x . (B4)

The Hamiltonian presented so far does not include the
microwave drive field. Indeed, the microwave pulses are as-
sumed to be instantaneous, but considering the drive field,
the Hamiltonian should be written in the rotating frame and
assume the rotating wave approximation. This frame should
be respected for the rest of the sequence. Since the rotating
frame unitary operator commutes with σz, the expectation
value of this operator in the rotating frame is the same as in the
laboratory frame. Eventually, the free evolution Hamiltonian
in the rotating frame is written as follows:

H = �Sz +
∑

k

(
ω

(k)
L + A(k)

zz Sz
)
I (k)
z + A(k)

zx SzI
(k)
x , (B5)

where � = ωa − ωmw is the detuning.

APPENDIX C: FIVE-PULSE ESEEM FORMULA

To define the unitary operators, let us introduce three sets
of operators representing the evolution during the sequence:
(1) The evolution during the first Hahn echo is given by the V
operators. (2) The middle free evolution is represented by the
F operators. (3) The second Hahn echo is governed by the W
operators:

V0 = U0(τ1)U1(τ1), V1 = U1(τ1)U0(τ1), (C1)

F0 = U0(T ), F1 = U1(T )U0, (C2)

W0 = U0(τ2)U1(τ2), W1 = U1(τ2)U0(τ2). (C3)

These operators define the trajectory of the electron spin
during the five-pulse ESEEM sequence. The signal can be
obtained from four different types of trajectories that the elec-
tron spin can take. We can express every unitary operator in
terms of a rotation angle, axis, and Pauli matrices −→σ . We
denote the unitary operator U as U = exp(−iθU n̂U · −→σ ) =
M cos(θU )I − i sin(θU )n̂U · −→σ . The signal for five-pulse ES-
EEM can be obtained as follows:

〈σz〉5p = 1

4

{
n∏

j=1

[
cos

(
θW1F1V0V †

1 F †
1 W †

0

)]( j)

−
n∏

j=1

[
cos

(
θW1F1V1V †

0 F †
1 W †

0

)]( j)

+
n∏

j=1

[
cos

(
θW1F0V0V †

1 F †
0 W †

0

)]( j)

−
n∏

j=1

[
cos

(
θW1F0V1V †

0 F †
0 W †

0

)]( j)

}
. (C4)

Multiplying the matrices and finding the rotation angles give
an expectation value of σz for the five-pulse ESEEM sequence
as it can be found in this article [22]:

〈σz〉5p = 1

4

(
n∏

j=1

E ( j)
α+ −

n∏
j=1

E ( j)
α− +

n∏
j=1

E ( j)
β+ −

n∏
j=1

E ( j)
β−

)
,

(C5)

where each term can be calculated as follows:

E (k)
α± = E2p(τ1)E2p(τ2) ∓ B[−4k2Cα

+ 4k cos4(η) cos(ωαT + φα+ + φβ+ )

+ 2k2 cos(φβ− ) cos(ωαT + φα+ )

+ 4k sin4(η) cos(ωαT + φα+ − φβ+ )]. (C6)

E2p is a two-pulse ESEEM sequence signal:

E2p(t ) =
(

1 − k

2

)
+ k

2

[
cos(ωαt ) + cos(ωβt )

− 1

2
cos(ω−t ) − 1

2
cos(ω+t )

]
, (C7)
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where ω± = ωα ± ωβ , B is the blind spot term, and Cα is a
constant term:

B = sin

(
ωατ1

2

)
sin

(
ωατ2

2

)
sin

(
ωβτ1

2

)
sin

(
ωβτ2

2

)
,

(C8)

Cα = cos

(
ωατ1

2

)
cos

(
ωατ2

2

)
sin

(
ωβτ1

2

)
sin

(
ωβτ2

2

)
.

(C9)

The resonance frequencies are ωα(β ) =√
(ωL + s0(1)Azz )2 + (s0(1)Azx )2. The quantization axis of

nuclear spins is tilted by ηα(β ) = arctan( s0(1)Azx

ωL+s0(1)Azz
), which

gives the parameter η = ηα−ηβ

2 . The modulation depth of
each nuclear spin is k = sin2(2η) = ( (s1−s0 )ωLAzx

ωαωβ
)2, and the

phase shifts are φα± = ωα (τ1±τ2 )
2 and φβ± = ωβ (τ1±τ2 )

2 . The two
expression for the β pathways can be obtained by exchanging
α and β in Eqs. (C6), (C8), and (C9).

As demonstrated, the signal from the nuclear spin register
arises from the multiplication of signals from individual nu-
clear spins. Consequently, if the modulation depth is not low
(indicative of low magnetic field conditions), higher-order fre-
quencies will manifest in the spectrum. Thus, the product rule
gives rise to internuclear peaks at multiquantum frequencies,
which can represent sums or subtractions of single quan-
tum frequencies from various nuclei. However, these multiple
quantum resonance peaks are informative for electron spin-
1/2 systems because they enable the deduction that two peaks
added or subtracted belong to the same electron spin mani-
fold, allowing for the determination of the relative phase of
the nuclei. Another consequence of the product rule is the
cross-suppression effect, in which the presence of strongly
coupled nuclei suppresses the amplitude of weakly coupled
nuclei, while weakly coupled ones do not suppress the am-
plitude of strongly coupled nuclei [24]. However, assuming
a relatively high Larmor frequency or low modulation depth,
both of these effects will vanish because the product rule can
be approximated by a summation rule:

Eα =
n∏

j=1

E ( j)
α+ −

n∏
j=1

E ( j)
α−

≈
n∑

j=1

[−8Bk cos4(η) cos(ωαT + φα+ + φβ+ )]( j). (C10)

The blind spot term B shows how this sequence can be
engineered to increase or reduce the signal amplitude of one
nuclear spin from the spectrum. Equation (C8) suggests the
bright and blind spots of a frequency can be obtained as
follows:

τ = even
π

ω
(C11)

for blind spots and

τ = odd
π

ω
(C12)

for bright spots. The blind spot term depends on both τ1

and τ2. This means that if one resonant frequency is blinded,
the other resonant frequency and all the multiple quantum
resonances also vanish. This can be used as an indication of
which two peaks in the frequency spectrum originate from the
same nuclei. In other words, if one chooses a τ such that a
particular resonant frequency in the spectrum is blinded, the
other resonant frequency of the same nuclear spin will also
be blinded, and both of them disappear from the frequency
spectrum together. Moreover, this is especially helpful in the
presence of strongly coupled nuclear spins that suppress other
nuclei. By sweeping τ1 and τ2, one can go through different
bright and blind spots of each nuclear spin and observe the
correlations between different peaks.

APPENDIX D: DD ANALYSIS FOR BISPECIES SYSTEMS

Consider a single color center that is surrounded by two
nuclear spin species. Each species has a distinct bath which
is processed with its corresponding Larmor frequency. As-
suming large Larmor frequency with respect to hyperfine
couplings, one can write Eq. (7) for two baths (ω0 ≈ ω1 ≈ ωL)
as follows:

〈σz〉bath ≈ 1 − 2k2
1 sin4

(
ω

(1)
L τ

2

)
− 2k2

2 sin4

(
ω

(2)
L τ

2

)
. (D1)

This means that two baths interfere, and the periodicity of the
total bath is not straightforward anymore. Hence, if there is
a narrow peak next in the DD signal, it can be attributed to
both of the baths. To clarify the type of nuclear spins, one
has to perform further experiments, e.g., in various external
magnetic fields.
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