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Stacking fault energies (SFEs) are key parameters to understand the deformation mechanisms in metals and
alloys, and prior knowledge of SFEs from ab initio calculations is crucial for alloy design. Machine learning
(ML) algorithms used in the present work show a ∼ 80 times acceleration of generalized stacking fault energy
predictions, which are otherwise computationally very expensive to get directly from density functional theory
calculations, particularly for alloys. The origin of the features used for training the ML algorithms lies in the
physics-based Friedel model, and the present work uncovers the connection between the physics of d electrons
and the deformation behavior of transition metals and alloys. Predictions based on the ML model agree with the
experimental data. Our model can be helpful in accelerated alloy design by providing a fast method of screening
materials in terms of stacking fault energies.
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I. INTRODUCTION

Stacking fault (SF) in face-centered-cubic (fcc) materi-
als is a planar defect that arises during plastic deformation
through dissociating a perfect dislocation into two Shockley
partial dislocations. Stacking fault energy (SFE) is a cru-
cial parameter that determines the deformation mechanisms
of fcc materials. Materials with low-to-medium SFE gener-
ally deform via transformation-induced plasticity (TRIP) or
twinning-induced plasticity (TWIP), while those with high
SFE deform via dislocation slip. SFE depends on several
parameters such as temperature [1,2] and stress [3,4] and it
can be tuned via alloying [5–8]. Since SFE dictates dislo-
cation dissociation, it is one of the determining factors for
the dislocation pile-up at the twin boundaries (TBs), result-
ing in fatigue cracking [9]. Deformation processing (such as
ball milling, rolling, and torsion) or lattice mismatch-induced
interface strain can form high-density SFs in low-to-medium
SFE metals, leading to strain hardening while maintaining
good ductility [10]. SFE plays a major role in the mechani-
cal properties of bulk nanostructured materials processed via
severe plastic deformation [11]. The creep life of Ni-based
superalloys improves due to SFE reduction by alloying with
Co [12]. Due to its importance in the mechanical behavior of
metals, several experimental and computational methods have
been developed for SFE estimation, as discussed below.

Experimentally, SFEs are estimated by transmission elec-
tron microscopy (TEM) or by x-ray diffraction (XRD) and
neutron diffraction (ND). Using TEM, the intrinsic SFE is
estimated by measuring the stacking fault width, which is de-
fined as the separation distance of isolated pairs of leading and
trailing partial dislocations. This method assumes a balance
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between the excess energy stored in the stacking fault and
the elastic strain energy responsible for the mutual repulsion
of leading and trailing partials [13]. The determination of
SFE through XRD and ND involves analyzing the shift and
broadening of the Bragg peak, considering the relationship
between stacking fault probability, dislocation density, and
intrinsic SFE [14]. An in situ XRD method to measure the
critical stress in the early stage of plastic deformation provides
another way to estimate SFE experimentally [15,16].

The experimental methods mentioned above have one
limitation—SFE at any unstable point (lying between per-
fect and faulted crystal) cannot be estimated. Such curves
with SFE values at multiple points between perfect and
faulted crystals are known as the generalized stacking fault
energy (GSFE) profile or γ surface. Computational methods
such as density functional theory (DFT) or classical molec-
ular dynamics (MD) are used to calculate the γ surface
[4,17–21]. The γ surface represents the potential energy land-
scape between adjacent planes in a slip system. The simulated
γ surface acts as an input for calculating the Peierls stresses
via the Peierls-Nabarro model (P-N model) for studying dis-
locations [22–30], plastic deformation in high-entropy alloys
[31,32], and phase transitions [33,34]. Due to its ab initio
nature, the γ surface predicted by DFT is believed to be very
accurate, and the SFE values are in reasonable agreement with
experimental findings. However, the DFT calculation predicts
negative SFEs for some materials such as metastable alloys,
which are experimentally reported to have small but positive
SFE [35–41]. Several attempts have been made to understand
the reasons behind the discrepancy, further establishing the
reliability of DFT for SFE prediction [14,42].

The accuracy and reliability of DFT for SFE prediction lies
in its ability to accurately incorporate the effect of electronic
contributions [43–49]. For example, Harris et al. showed the
connection between the electronic structure (empty d states)
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FIG. 1. Workflow for physics-based accelerated generalized stacking fault energy (GSFE) calculation: ab initio electronic density of states
(DOS) calculation, followed by machine learning based prediction of stacking fault energy and GSFE curve.

and SFE [50]. Datta et al. found that the electronic density of
states (DOS) plots for the faulted structures are considerably
smoother compared to the pristine materials [51]. A study of
the influence of solute substitutions in Ni on its GSFE found
a correlation between density of state (DOS) and intrinsic
stacking fault (ISF) energy [52]. The energy barriers for both
deformation slip and twinning formation decrease with the
increased electron concentrations in ZnS, ZnTe, and CdTe
[53]. A recent study also revealed a direct correlation of SFE
with the width of the d band of fcc transition metals [4]. As
suggested by the previous studies, a deep connection exists
between the electronic band structure and SFE, which we
would like to explore in detail in the present work.

In contemporary times, machine learning (ML) algorithms
have emerged as practical tools capable of achieving robust
predictive outcomes for a given input dataset. Recent reports
highlight the application of ML in several domains of mate-
rials science and engineering, such as potential development
[54], microstructure modeling [55], and structure-property
correlation [56,57]. In alloy development, ML has been em-
ployed to predict phase stability, glass forming ability, and
properties as a function of alloy composition [58–60]. Stack-
ing fault energy, the subject matter of this paper, has also been
predicted using ML models using local composition, atomic
size, electronic structure, and physical, thermomechanical,
and elastic properties as descriptors [61–66]. However, it is
noteworthy that the values of these fundamental properties for
alloys are often estimated using the rule of mixture, introduc-
ing potential discrepancies in the results. A few studies have
attempted to predict SFE using the charge density obtained
from DFT calculations [67,68].

The focus of the present work lies in its use of the
physics-based Friedel model to derive the features for ma-
chine learning. The physics-based model helps us to uncover
the connection between the SFE and electronic band structure
of fcc transition metals and alloys. A schematic diagram is
illustrated in Fig. 1. First, we calculate the electronic density
of states (DOS), a routine job for DFT packages. Using the
electronic DOS data, we calculate some parameters such as
the width of the d band (Wd ), energy at the band center (εd ),
electrons in the d orbital (zd ), and electrons in the s orbital (zs).
Using various machine learning models [Gaussian process re-
gression (GPR), support vector regression (SVR), deep neural

network (DNN), and random forest], we are able to predict the
stacking fault energy and shear modulus of transition metals
and alloys using the parameters obtained from DOS. Values
predicted by the ML models agree with the experimental data.
We are also able to predict the GSFE curve with reason-
able accuracy, and our combined ab initio–ML approach can
accelerate the GSFE calculation 80x faster compared to the
solely ab initio based approach in the case of alloys. Our work
paves the way for fast and accurate computational prediction
of transition metal alloys with desired SFE values, providing
a valuable understanding of the deformation mechanism and
mechanical behavior.

II. METHODOLOGY

Density functional theory (DFT) calculations, as imple-
mented in the Vienna ab initio Simulation Package (VASP)
[69], are performed using a plane-wave basis set (with a
400 eV kinetic energy cutoff) and projector augmented wave
(PAW) potentials [70]. The generalized gradient approxima-
tion (GGA), applying Perdew, Burke, and Ernzerhof (PBE) as
the exchange-correlation functional [71], is used. The unit cell
parameters and atomic coordinates are fully relaxed until the
energy converges to within 10−6 eV and the atomic force dips
below 0.01 eV/Å. Further details about the supercell size and
k-point mesh used for Brillouin zone sampling are given in the
respective sections.

III. RESULTS AND DISCUSSION

A. Stacking fault energy calculations

1. SFE using periodic supercell

We consider an ideal fcc structure composed of nine layers
stacked in an. . . ABCABCABC . . . pattern [Fig. 2(a)]. Two of
the cell vectors, 1

2 [110] and 1
2 [101], lie on the (111) plane,

while the third one is perpendicular to the (111) plane and
aligned along the [111] direction. An intrinsic stacking fault
(ISF) has a stacking sequence of . . . ABCABABCABC . . . , as
shown in Fig. 2(a).

An ISF is created by fixing the bottom five layers and
displacing each of the top four layers by the Burgers vector
�b = 1

6 [211]. Simultaneously, we shift the out-of-plane cell
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FIG. 2. (a) Supercell method: side view (first row) and top view
(second row) of the supercell of the face centered cubic (fcc) (left),
intrinsic stacking fault or ISF (center), and extrinsic stacking fault
or ESF (right). Starting from the fcc structure, all the atoms located
above the dotted line and the out-of-plane cell vector are displaced by
�b (2�b) to go from the fcc to ISF (ESF) structure. (b) ANNNI model:
fcc, hexagonal closed packed (hcp), and double hexagonal closed
packed (dhcp) cells used for the stacking fault energy calculations.
In both (a) and (b), the A, B, and C stacking sequence of atoms along
the closed packed direction is represented in red, blue, and green
colors, respectively.

vector (initially oriented along the [111] direction) by the
same vector �b to preserve the unit cell’s periodicity. This ap-
proach enables us to compute the stacking fault energy using
periodic cells, eliminating the need to introduce surface layers
[76]. We define the intrinsic stacking fault energy γISF as the
energy difference between the faulted and ideal structures per
unit area,

γISF = EISF − Efcc

A
. (1)

To get the energy values for metals from DFT calculations, we
use a 21 × 21 × 2 k-point mesh.

An extrinsic stacking fault (ESF) has a stacking sequence
of . . . ABCABACABC . . . , as shown in Fig. 2(a). Starting
with the ISF structure, we now fix the bottom six layers and

FIG. 3. Generalized stacking fault energy (GSFE) curves for fcc
metals, illustrated along the [211] direction. Energy values are plot-
ted from 0 to 2�b, where Burgers vector �b = 1

6 [211]. Symbols depict
DFT values, while the curves are fitted using Eq. (2).

displace the top three layers by �b = 1
6 [211]. The out-of-plane

cell vector is also shifted by �b, yielding the ESF stacking
sequence [Fig. 2(a)]. Notably, in the case of ESF, the top three
layers and the out-of-plane cell vector are displaced by 2�b
relative to the ideal fcc configuration. To determine the γESF

value, we employ an expression similar to Eq. (1).
Apart from the γISF and γESF, we compute stacking fault

energies at various displacements, ranging from 0 to 2b, with a
step size of 0.1b to delineate the entire GSFE curve, as shown
in Fig. 3. Two significant peaks along the GSFE curve are
noteworthy: one situated at approximately the middle of the
ideal fcc and ISF [referred to as the unstable stacking fault
(USF)] and the other located at approximately the middle
of ISF and ESF [referred to as the unstable twinning fault
(UTF)]. These peaks represent the energy barriers for forming
ISF and ESF, respectively.

We illustrate the GSFE curves of all the transition and
noble metals having a fcc ground state in Fig. 3. The symbols
in the figure represent the values calculated from DFT. The
curves are drawn using the following expressions:

γ =
{

cG sin2(πx) + γISFx, 0 � x � 1

cG sin2(πx) + γISF(2 − x) + γESF(x − 1),1 � x � 2,

(2)

where γISF, γESF, and shear modulus G are calculated from
DFT, c is a constant, and x is the fractional displacement in
terms of Burgers vector �b. The values of c are 5.01 for Ag,
5.67 for Au, 3.43 for Cu, 3.74 for Pd, 2.96 for Pt, 2.61 for Ni,
3.04 for Rh, and 2.81 for Ir. We calculate the shear modulus
via the strain-energy approach [77] by using the VASPKIT tool
[78], details of which are given in Sec. I of the Supplemental
Material (SM) [79]. In conclusion, one can generate the entire
GSFE curve with reasonable accuracy by calculating three
numbers, i.e., γISF, γESF, and G, from DFT. Such an approach
is computationally cheaper than calculating the entire GSFE
curve from DFT, particularly when dealing with alloys.
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TABLE I. Comparison of SFEs obtained from DFT using two approaches (supercell and ANNNI model), predicted SFEs (using deep neural
network or DNN), and experimental data in Refs. [72]a, [73]b, and [74]c. A similar comparison for shear modulus values obtained through
DFT, predicted using DNN and experimental values [75]d. Both DFT and ML-predicted values are in good agreement with the experimental
values. Note that experimental values are indirect measurements using XRD and TEM at room temperature, while the DFT calculations are
carried out at 0 K.

Metals DFT Predicted Expt.

Supercell ANNNI G γISF γESF G γISF Gd

γISF γESF γISF γESF

Ag 16.9 16.3 17.5 18.4 22.0 18.1 23.2 22.8 25.0a 27.0
Au 32.6 31.7 23.6 23.3 15.4 32.8 37.5 19.2 45.0a 27.7
Cu 42.4 44.6 48.7 53.3 49.8 43.8 56.3 39.6 55.0b 48.3
Ir 357.2 333.1 348.3 334.3 214.4 359.6 400.3 216.1 480.0c 210.0
Ni 136.6 133.9 140.8 135.0 95.1 138.5 162.7 95.1 125.0c 75.0
Pd 139.5 134.3 146.6 139.5 44.4 137.1 148.3 45.1 130.0a 43.6
Pt 309.1 299.5 277.0 282.6 48.6 299.8 315.6 50.6 322.0c 61.0
Rh 203.4 194.3 190.2 188.2 146.8 207.0 240.4 150.5 330.0a 150.0
Pd-Pt 190.8 180.9 176.0 172.0 45.8 172.2 186.5 47.0
Ir-Pt 359.5 342.9 328.5 326.2 163.5 326.6 371.5 150.5
Pd-Au 131.4 128.2 118.0 112.0 37.4 116.0 123.9 37.5

2. SFE using ANNNI model

The axial-next-nearest-neighbor Ising (ANNNI) model is
an alternate route to find SFEs. Although the model is com-
putationally less expensive, one can only get the ISF and
ESF values instead of the entire GSFE curve. The ANNNI
model uses specific combinations of energies corresponding
to different short-period stacking sequences of close-packed
(111) planes. For example, the second-order approximation
to obtain the ISF and ESF energies is given by the following
combinations:

EISF = Ehcp + 2Edhcp − 3Efcc

A
,

EESF = 4(Edhcp − Efcc)

A
. (3)

In the above equations, A =
√

3
4 a2, where a is the lattice

parameter of a conventional fcc unit cell. Energies of the face-
centered-cubic (ABCABC stacking), hexagonal close-packed
(ABAB stacking), and double hexagonal close-packed (ABA-
CABAC stacking) structures are denoted by E f cc, Ehcp, and
Edhcp, respectively. The fcc, hcp, and dhcp unit cells used for
the SFE calculation using the ANNNI model are illustrated in
Fig. 2(b). To get the energy values for metals from DFT calcu-
lations, we use 12 × 12 × 12, 21 × 21 × 5, and 21 × 21 × 5
k-point mesh for fcc, hcp, and dhcp, respectively. SFE values
calculated from the supercell method and ANNNI model are
compared in Table I. Besides Au, values obtained from both
models are in remarkable agreement. Note that the ANNNI
model used in this work is a second-order approximation.
One can further improve the accuracy by using a higher-
order approximation [80]. Using machine learning tools such
as Gaussian process regression, one may also do a thor-
ough uncertainty analysis, which is beyond the scope of this
work.

B. Friedel model

An understanding of the electronic structure is the primary
building block for a comprehensive study of a material’s
properties. Electrons serve as the quantum glue that keeps
the nuclei of a solid together and influences the mechanical,
electrical, optical, and magnetic properties of materials. It is
well known that d electrons play a significant role in transition
metals’ electronic and magnetic properties. Figures 4(a) and
4(b) illustrate the DOS of the s electrons and d electrons of
Ag and Ir, respectively. Unlike the DOS of s states, the DOS
of d states is sharply peaked, which indicates that d states
are relatively localized compared to the s states. Although
the DOS curves are quite intricate, Friedel proposed a sig-
nificant simplification. The DOS of s states, denoted by gs(ε),
is approximated to be free-electron like, obeying gs(ε) ∝ √

ε

[Fig. 4(c)]. The DOS of d states, denoted by gd (ε), is approx-
imated to be a step function [Fig. 4(c)], expressed as

gd (ε) = 10

Wd
, εd − Wd

2
< ε < εd + Wd

2
,

= 0 otherwise. (4)

The center of the d band and its width are denoted by εd

and Wd , which are related to the projected density of states
(PDOS) of the d band. The first moment of the DOS with
respect to the Fermi energy (εF ) is

μ =
∫

(ε − εF )gDFT
d (ε)dε, (5)

where gDFT
d (ε) is the PDOS of the d band, obtained from the ab

initio calculations. The number εd = (εF − |μ|) corresponds
to the center of the d band. Further, we calculate the second
moment of the DOS with respect to εd ,

σ 2 =
∫

(ε − εd )2gDFT
d (ε)dε. (6)
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FIG. 4. Orbital projected density of states for (a) Ag (completely full narrow d band, low SFE) and (b) Ir (partially full wide d band, high
SFE). The black solid line denotes the d-band center (εd ), while the dotted line represents the Fermi energy (EF ). (c) Schematic s-band and
d-band electronic density of states, according to the Friedel model.

We define the width of the d band as Wd = 2σ . As shown
in Figs. S1 and S2 in the SM [79], the periodic trend of the
calculated εd and Wd agrees with the solid-state table [81].

It is evident that unlike s states, d states cannot be treated
using free-electron theory, and a tight-binding-like description
would be more appropriate. In a tight-binding description,
the bandwidth is an important parameter that depends on the
overlap of atomic orbitals. For example, core states have zero
width because of no overlap. Valence d states have a finite
width, leading to some energy gain, depending on Wd . Using
the DOS expression in Eq. (4), one can illustrate that the
energy gain is

Ed = 5Wd

[
− zd

10
+

( zd

10

)2
]
, (7)

where zd is the number of electrons in the d band. We compute
zd from the ab initio calculations by integrating the d-band
PDOS up to the Fermi energy. We obtain Wd from ab initio
calculations using Eq. (6). We define Ed as the cohesive en-
ergy due to the overlap of adjacent d bands. The term within
the square bracket in Eq. (7) has a minimum at zd = 5 (middle
of the transition metal series), and it is zero at zd = 10 (noble
metal). Our ab initio calculations confirm that zd increases
as we move from left to right of a row in the periodic table
(Fig. S3 in the SM [79]). However, zd is slightly less than
10 in noble metals, as some electrons are transferred to the
free-electron-like band. Interestingly, we also find a periodic
trend in Wd along a particular row; values increase from the
left to the center and decrease from the center to the noble
metal. In other words, Wd has a maximum near the middle of
the transition metal series (Fig. S2 in the SM [79]). According
to the Friedel model, the binding energy [Eq. (7)] of transition
metals is maximum near the middle of a row (Fig. S4 in the
SM [79]). This trend is in reasonably good agreement with
experimental values. For example, the melting point is higher
near the middle of the transition metal series (Fig. S4 in the
SM [79]). Such a correlation makes the Friedel model credible
despite its simplicity.

We calculate the Wigner-Seitz radius r0 by equating the
volume per atom (obtained from ab initio) to 4πr3

0/3. Values
of r0 obtained from ab initio agree well with the ones reported
in the solid-state table (Fig. S5 in the SM [79]). Since d-band
overlap decreases with increasing distance between the atoms,
we assume bandwidth Wd ∝ r−α

0 . As a result, the volume

dependence of Ed , denoted by κd , can be expressed as

κd = ∂Ed

∂r0
= 5αWd

r0

[
zd

10
−

( zd

10

)2
]
. (8)

Similar to Ed , κd also peaks near the middle of the transition
metal series (Fig. S6 in the SM [79]).

In summary, the Friedel model defines binding among d
electrons in terms of specific material parameters, which can
be computed from the electronic density of states obtained
from ab initio calculations. In the following section, we use
these parameters to fit a machine learning model, which can
predict SFE values of transition metals and binary alloys.

C. Machine learning

1. Data generation using ANNNI model

We use the ANNNI model to generate an extensive
database of γISF and γESF values for Au-Pd, Pd-Ag, Ag-
Au, Rh-Pd, Ir-Pd, Pd-Pt, Cu-Pt, Ir-Pt, Ni-Ag, Ni-Au, Ni-Pd,
Ni-Pt, Ni-Rh, and Ni-Cu binary alloys. These alloys are

FIG. 5. Heat map of Pearson correlation coefficient ma-
trix: target variables are γISF, γESF, G and feature variables are
Wd , εd , zs, zd , r0, Ed , κd . Values close to black (white) indicate
strongly positive (negative) correlations.
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FIG. 6. (a),(c),(e) Comparison between actual and predicted values from DNNs for G, γISF, and γESF, respectively. (b),(d),(f) The same for
selected features using Eqs. (9), (10), and (11), while the insets illustrate the outcomes of random forest regression with all of the features.

selected because of the solid solubility of the two elements
throughout the composition range, spanning from 12.5% to
87.5%, with intervals of 12.5%, encompassing seven com-
positions for each alloy. Using the ATAT package [82], we
generate special quasirandom structures (SQS) to describe
the random arrangement of constituent atoms in a binary
alloy. We generate three types of supercells, each contain-
ing 32 atoms: a conventional 2 × 2 × 2 fcc supercell, a
2 × 2 × 4 hcp supercell, and a 2 × 2 × 2 dhcp supercell.
We use a k-point mesh of 12 × 12 × 12 for fcc, and 21 ×
21 × 5 for hcp and dhcp supercells. The complete dataset
for training and testing the ML model contains γISF, γESF,
and G values for eight metals and all the binary alloys

mentioned above. We also calculate the d-band PDOS and
related parameters [Fig. 4(c)] using the fcc supercell of the
metals and alloys.

2. Feature and model selection

We aim to train a model to predict γISF, γESF, and G of a
material from its DOS, such that one can generate the GSFE
curves using Eq. (2). For the purpose of prediction, we use
εd ,Wd , zd , r0, and zs (number of s electrons) as feature vari-
ables. Except r0, the rest of the features have moderate to high
values of correlation coefficients (Fig. 5). Notably, zd (num-
ber of d electrons) has a very high negative correlation with
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SFEs, which implies lower SFE for a material with higher zd .
This observation agrees with the experimental facts that noble
metals (Au, Ag, Cu) have low SFEs, as they have the highest d
electrons. Bandwidth Wd has a very high positive correlation
with SFEs, which is again consistent with the fact that noble
metals have narrow bands compared to others (Fig. 4 and
Figs. S7, S8 in the SM [79]), resulting in low SFEs.

Although some features have high correlation coefficients,
a multivariable linear regression fails to accurately predict
the target variables. Thus, we use other regression methods
such as deep neural network (DNN), support vector regres-
sion (SVR), Gaussian process regression (GPR), and random
forest. We split the data set for training and testing (80:20).
The latter is used to test the trained model and compute the
test error. The mean absolute error between the actual and pre-
dicted values gives the loss. We select the model that exhibits
the highest coefficient of determination for total average R2

for the test set and the highest total R2 for the training set as
the optimal one for each approach. The following discussion
covers DNN and random forest, while SVR and GPR are
given in Sec. II and Fig. S9 in the SM [79].

3. Deep neural network

DNNs can capture highly nonlinear relationships and com-
plex patterns because of their highly flexible and expressive
interconnected architecture [83]. We evaluate the perfor-
mance of different activation functions, such as rectified linear
unit (ReLU), leaky ReLU, and parametric ReLU (PReLU).
PReLU demonstrates superior overall performance, achieving
the highest accuracy among the tested activation functions
with a test R2 of 0.995 for γISF prediction, compared to leaky
ReLU (0.993) and traditional ReLU (0.988). The neural net-
work with PReLU activation showcases enhanced resistance
to sample bias because of its adaptive nature to effectively
modulate activation for negative inputs and minimize outliers’
impact, while promoting superior generalization for a more
reliable and stable predictive model than leaky ReLU and
ReLU counterparts. Figures 6(a), 6(c), and 6(e) show the
predicted vs actual values for the best models of DNN, which
we train with 5–7 dense layers with a learning rate of 10−3

with around 200–500 epochs for iterations. We evaluate the
model’s performance based on the test error and the change in
loss with the iterations. Convergence with the number of iter-
ations is shown in Fig. S10 in the SM [79]. The test R2 values
of G, γISF, and γESF are 0.973, 0.995, and 0.993, respectively.
The mean absolute errors (MAEs) of G, γISF, and γESF are
2.69 GPa, 3.24 mJ/m2, and 2.65 mJ/m2, respectively.

4. Random forest

While the DNN exhibited impressive accuracy in predict-
ing, it is not possible to understand how γISF, γESF, and G
depend on the feature variables. Our next objective is to pre-
dict the expression for γISF, γESF, and G in terms of the feature
variables. For this purpose, one must perform high-order poly-
nomial regression, such as quadratic regression. This method
expands the sample space from the initial five parameters
(εd ,Wd , zd , r0, and zs) to 20 parameters by incorporating
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FIG. 7. Feature importance plot for G, γISF, and γESF.

quadratic combinations. However, employing this approach
may introduce redundant parameters, potentially leading to
overfitting.

A strategy to mitigate overfitting is to utilize a random
forest regressor, incorporating the quadratic terms. The advan-
tage of employing random forest lies in its ability to perform
regression and simultaneously provide insights into the mini-
mum number of terms essential for optimal prediction without
the issue of overfitting by performing a search using its ran-
domly ensembled decision trees. This process is called feature
importance analysis. Details of feature importance analysis
using random forest are given in Sec. III in the SM [79]. After
feature importance analysis, we select only six terms for shear
modulus prediction and 10 terms for SFE prediction (Fig. 7).
Finally, we do a multivariable linear regression with the se-
lected features to obtain the following expressions, which can
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FIG. 8. (a) Supercell for GSFE calculation of alloys; numbers adjacent to the atomic planes represent the layer number. (b) GSFE curves
for Pd0.75Pt0.25, Ir0.75Pt0.25, and Pd0.75Au0.25 alloys. The symbols are from DFT calculations, while the curves are generated from Eq. (2), using
γISF, γESF, and G values predicted via ML. (c) γUTF/γUSF scales linearly with γISF/γUSF , as shown by the dotted line. Comparison of actual
values from DFT calculations (solid symbols) and predicted values (open symbols).

be directly used for prediction:

G = 51.07z2
d − 63.21r2

0 + 25.82εd

− 876.15zd + 33.80Wd zs − 60.14εd zs + 3877.91, (9)

γISF = − 22.66W 2
d − 579.36z2

s − 522.06r2
0 − 220.46εd

+ 27.77zd + 64.57Wd + 18.51Wdεd + 278.81Wd zs

− 49.31εd zs + 74.77εd r0 + 996.58, (10)

γESF = − 21.29W 2
d − 730.97z2

s − 453.58r2
0 − 178.69εd

+ 31.77zd + 78.59Wd + 16.30Wdεd + 249.45Wd zs

+ 0.80εd zs + 41.06εd r0 + 781.64. (11)

Note that before applying the feature importance selection
analysis, the mean absolute error obtained by including all 20
terms are 6.38 GPa, 9.28 mJ/m2, and 7.62 mJ/m2 for G, γISF,
and γESF [insets of Figs. 6(b), 6(d), and 6(f)], which reduces to
3.99 GPa, 7.03 mJ/m2, and 6.44 mJ/m2 [Figs. 6(b), 6(d), and
6(f)], respectively. The test R2 values of G, γISF, andγESF also
improve from 0.928, 0.963, and 0.973 (with all 20 features) to
0.983, 0.987, and 0.989 (with selected features), respectively.
The improvement can be attributed to keeping only essential
features, thus reducing the problem of overfitting.

Figure 7 illustrates all the selected features that are utilized
in predicting the formula [Eqs. (9)–(11)] in descending order
in terms of their importance. Two features are dominant for
shear modulus G: linear and quadratic terms of the number
of d electrons (zd ), followed by r2

0 . Stacking fault energies
γISF and γESF depend on multiple features, the linear and
quadratic term of d-band width (Wd ) being the most impor-
tant among them. The list also contains some cross terms
such as Wdεd ,Wd zs, εd zs with non-negligible weight, high-
lighting the highly nonlinear nature of the problem, which
requires a combined approach involving state-of-the-art ab
initio calculations and machine learning methods for complete
understanding.

D. GSFE curve prediction

So far, we have focused on training ML models for
predicting γISF, γESF, and G. Finally, we take up the most chal-
lenging task of predicting the entire GSFE. Conventionally,
one should calculate the GSFE curves for several alloys using
DFT and use them to train ML models. However, calculating
the GSFE curves for alloys is computationally very expensive.
Instead, we use the predicted G, γISF, and γESF values from the
previous section and construct the GSFE curves using Eq. (2).
For a binary alloy, we use the rule of mixture to get the value
of c [listed after Eq. (2)], which is the weighted average of the
pure element’s values. The following discussion shows that
our method makes GSFE prediction 80x faster for alloys.

Figure 8 compares the predicted GSFE curves with actual
DFT values, illustrated for binary Pd-Pt, Ir-Pt, and Pd-Au
alloys. We use the same technique as described earlier (Fig. 2),
but with a nine-times-larger supercell, having cell vectors
3
2 [110], 3

2 [101], [111]. Such a supercell contains 81 atoms,
nine each in nine different layers [Fig. 8(a)]. We generate SQS
to describe the random arrangement of constituent atoms in a
binary alloy and use a k-point mesh of 9 × 9 × 3. Because
of the randomness, each layer has a different composition
[Fig. 8(a)], and the GSFE curve depends on the specific choice
of layers during the deformation. For example, we start by
fixing layer 1 and displacing layers 2 to 9, followed by fixing
layers 1 and 2, and displacing layers 3 to 9, etc., as shown
in Fig. 8(a). Thus, we have to repeat the calculation eight
times, and the average value yields one single DFT data
point on a GSFE curve [Fig. 8(b)]. The error bars show the
lowest and highest among the eight calculated DFT values.
Since there are 10 data points on a GSFE curve, we need to
perform 80 calculations to directly get the entire GSFE curve
from DFT.

Considering the large number of atoms in the supercell,
predicting GSFE directly from DFT is computationally expen-
sive for alloys. As an alternative, the proposed ML approach
requires only one DFT calculation to get the DOS and com-
pute relevant parameters such as εd ,Wd , zd , zs, and r0. Using
these parameters, one can predict γISF, γESF, and G using the
ML model and finally predict the GSFE curve using Eq. (2).
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Figure 8(b) illustrates that the ML-predicted GSFE curves
are in good agreement with the actual DFT points (based
on 80 DFT calculations). As shown in Fig. 8(c), γUTF/γUSF

scales linearly with γISF/γUSF . The predicted values agree
reasonably well with the DFT results.

IV. CONCLUSIONS

In conclusion, we have proposed a combined ab initio
and ML-based model that can accelerate the computational
prediction of GSFE curves for alloys by a factor of 80. The
training dataset is generated using DFT calculations to find
the SFE values of 106 metals and alloys using the ANNNI
model. The features used for training the ML algorithms come
from the physics-based Friedel model. The features are ob-
tained from the electronic DOS, calculated using DFT. Other
than accelerating the process of GSFE calculation, the present
work also highlights a deep connection between the physics of
d electrons and the deformation behavior of transition metals
and alloys. Our study reveals a highly nonlinear dependence

of shear modulus and stacking fault energies on the electronic
features, which requires a combined approach involving state-
of-the-art ab initio calculations and machine learning methods
for complete understanding. In terms of practical applications,
the present model can accelerate alloy design with targeted
mechanical behavior by providing a fast method of screening
materials in terms of stacking fault energies. We plan to fur-
ther extend the model for medium and high entropy alloys in
the future.
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