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Controllable fusion of electromagnetic bosons in two-dimensional semiconductors
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We propose a physical principle for implementation of controllable interactions of excitons in two-dimensional
semiconductors. The key ingredients are tightly bound biexcitons and in-plane anisotropy of the host structure
due to, e.g., a uniaxial strain. We show that anisotropy-induced splitting of the radiative exciton doublet couples
the biexciton state to continua of exciton scattering states. As a result, two-body elastic scattering of excitons
may be resonantly amplified when energetically tuned close to the biexciton by applying a transverse magnetic
field or tuning the coupling with the microcavity photon mode. At the resonance excitonic fields may undergo
quantum reaction of fusion. The fusion and a reverse reaction of biexciton disintegration may be used for efficient
generation of squeezed light. For “bright” excitons in the absence of a microcavity, we predict giant molecules
(Feshbach dimers) which can be obtained from a biexciton via rapid adiabatic sweeping of the magnetic field
across the resonance. The molecules possess nontrivial entanglement properties. Our proposal holds promise for
the strongly correlated photonics and quantum chemistry of light.
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I. INTRODUCTION

A. Foreword

Semiconductor optics holds great promise for the prac-
tical implementation of the emergent quantum technologies
[1]. The central issues are entanglement and squeezing [2],
and these have put bound exciton pairs into the focus of
applied research over the past decades [3–10]. The state
of the art embodies entangled photon pairs from biexcitons
in nanocrystals [11] and quantum dots (QD’s) [12–14] and
the low-threshold biexciton lasing in two-dimensional (2D)
heterostructures [15–17].

In contrast to “zero-dimensional” states in QD’s, 2D ex-
citons represent propagating (guided) electromagnetic waves
[18], which possess massive dispersion and may undergo two-
body quantum scattering due to Coulomb forces between the
constituent electrons and holes [19]. The exciton dispersion
may be efficiently tailored by photonic engineering of the en-
vironment [20], with the ultimate case being the microcavity
exciton-polariton with drastically reduced effective mass [21].
At low densities 2D excitons behave as interacting bosons
and may accumulate in a single quantum state featuring the
phenomena of Bose-Einstein condensation (BEC) and super-
fluidity. Quantum collective effects associated with BEC and
pairing of 2D excitons have been the subject of the experi-
mental [22–28] and theoretical studies [9,19,29–33]. Natural
connection of these low-temperature equilibrium phenomena
to lasing has been a central problem in polaritonics [34].

For the quantum optical applications, 2D heterostruc-
tures have several noteworthy benefits as compared to QD’s.
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Delocalized 2D ensembles are less prone to the Auger recom-
bination known to be deleterious for lasers [16]. Many-body
states of interacting excitons featuring macroscopic entan-
glement and squeezing may also outperform the isolated
localized pairs in such applications as quantum optical lithog-
raphy [35], sensing [36], and all-optical quantum computing
[37].

Aiming primarily at discussion of the underlying two-body
physics, we shall use the collective term “excitons” referring
either to “bright” excitons or microcavity polaritons from a
single perspective. An exciton is essentially a photon dressed
by electronic excitations in a 2D semiconductor medium with
direct band gap [38]. We shall not be concerned with the
“gray” and “dark” excitons [39]. As such, our excitons are
statistically identical quasiparticles.

A steppingstone for fundamental research on mixtures of
excitons and their molecules, as well as for their practical use,
would be implementation and control of the interconversion
process,

ασ + ασ ′ ↔ X↑X↓, (1)

where ασ is either a “bright” exciton (α = X ) or a microcavity
polariton (α = L) with spin σ (“↑” or “↓”) and X↑X↓ is a biex-
citon. For atomic Bose (as well as Fermi) gases, such control
has taken the name of Feshbach resonance [40]. Controllable
synthesis of atomic molecules has spurred development of
ultracold quantum chemistry [41] and “superchemistry” ex-
ploiting bosonic stimulation of reactions in the presence of
BEC [42–44].

The Feshbach resonance concurrently offers a mechanism
to adjust the strength of two-body interactions between par-
ticles at will, from increasingly strong repulsion to attraction
through unitarity [40]. This is achieved by tuning the energy
of the scattering channel of interest (called “open” channel)
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with respect to the energy of the molecule. The scattering
channel admitting the molecular state is designed as energet-
ically “closed” by sustaining the corresponding dissociation
threshold above the energy of colliding particles in the “open”
channel. The Feshbach resonance occurs when the “open”
channel crosses the molecular level. Provided the molecule
is tightly bound, the energy mismatch between the channels is
large, making the coherent coupling to the continuum of the
“closed” channel inefficient. On the other hand, the very same
coupling to the resonant molecular state affects dramatically
the particle scattering in the “open” channel. The nature of
the coherent coupling depends on the particular setting and
will be discussed in more detail below.

Such an additional possibility of tuneable interactions
would be of paramount interest in the context of excitons,
as it would enable strong photonic nonlinearities at ultralow
densities. On general grounds, one would also expect strong
interactions and pairing to be accompanied by entanglement
and squeezing of light [2]. The latter features have not yet
been fully appreciated in the context of ultracold atoms. In
contrast, entanglement and squeezing emerge naturally in
nonlinear optics of 2D semiconductors, where interactions
between excitons provide nonlinear susceptibilities [45–47].

B. Coherent link

The crucial ingredient of a Feshbach resonance is a co-
herent link between the “open” scattering channel of interest
and the “closed” molecular channel. In prototypical atomic
Feshbach resonances such a link has been enabled either by
the hyperfine interaction [48] or by the photon exchange with
an external radiation field [49]. In semiconductors, signa-
tures of a Feshbach resonance have recently been reported
for a twisted bilayer 2D heterostructure [50] and attributed
to hybridization of exciton-electron scattering states with the
intralayer (closed channel) trion state [51]. In this case the
coherent link is presumably due to interlayer electron (or hole)
tunneling.

For a pair of identical excitons, two possible mechanisms
of coherent coupling to a biexciton have been proposed.
The first one relies on the so-called giant oscillator strength
model [19,52] of a biexciton put into a microcavity: The
biexciton may coherently dissociate into an exciton and a
microcavity photon [53]. Several theoretical [54–56] and ex-
perimental [57–59] studies have been carried out along this
direction. The second proposal exploits the dipolar repulsion
between the excitons electrically polarized in the transverse
direction: The biexciton is thus transformed into a shape res-
onance [9,10]. Two recent independent experiments [60,61]
have reported divergence of the dipolar polariton blueshift
consistent with a broad shape resonance [10]. Remarkably, the
theory [10] predicts efficient squeezing of the light emitted
by polaritons interacting via such a broad resonance. While
viability of these proposals may be subjected to debates and
further experimental tests, technological relevance of the di-
rection calls for the quest of their possible alternatives.

C. Outline of the paper

In this paper we suggest yet another microscopic mech-
anism allowing implementation of the coherent coupling to

a biexciton. Our coherent link is due to the natural splitting
of the radiative exciton doublet by the electron-hole exchange
interaction. This genuinely excitonic mechanism is ubiquitous
for a broad variety of 2D semiconductors including traditional
quantum wells (QW’s), atomically thin layers of transition
metal dichalcogenides (TMD’s) and emerging perovskite-
based heterostructures. The coupling can be controlled in situ
by in-plane structural anisotropy due to, e.g., uniaxial strain.

Tuning the energy of spin-polarized excitons close to a
biexciton by a transverse magnetic field results in charac-
teristic resonant behavior of the exciton s-wave scattering
amplitude. For a broad resonance, this provides fully control-
lable and increasingly large third-order nonlinear susceptibil-
ity [χ (3)] at ultralow photon densities. In microcavities, the
fine splitting of the polariton modes and the relative position
of the scattering channels can additionally be controlled by a
concomitant optical anisotropy of the cavity and the exciton-
photon detuning, respectively.

Our estimates of the resonance width indicate that one
may expect efficient squeezing of the emitted photons in
moderately strained TMD samples. Strong squeezing has pre-
viously been predicted for dipolar polaritons [10], although
the control over the width and position of the resonance
has been limited in that case. The squeezing is immanent
to the process (1). One may argue that the coherent inter-
conversion (1) acts similarly to the second-order nonlinear
susceptibility [χ (2)] for electromagnetic waves [45,62]. In the
left column of Fig. 1 we show ensuing parametric processes
of exciton “fusion” and biexciton “disintegration.” These are
to be compared with the second-harmonic and difference-
frequency generation, respectively, shown in the right column.
Fusion (or disintegration) assumes macroscopic population of
bosonic modes and occurs on the characteristic timescale Tα

[Eq. (24)]. Unlike χ (2), the reaction (1) does not require any
specific symmetry of the medium with respect to the inversion
because the molecule X↑X↓ corresponds to a scalar field: a
bound pair of polarization waves.

For “bright” excitons in the absence of a microcavity, we
additionally predict giant Feshbach molecules: quantum ha-
los. The halos may be obtained from a biexciton via rapid
adiabatic passage across the resonance. Alternatively, one
may think of controllable synthesis of spin-singlet biexcitons
from the polarized excitons. Biexciton synthesis (dissociation)
is achieved through the interconversion process (1) for two
particles, where one has σ = σ ′ =↑, and is accompanied by
a buildup (dissolution) of entanglement in the polarization
of the emitted photons. This should be contrasted with the
process X↑ + X↓ ↔ X↑X↓ (potentially offered by the shape
resonance [9], although with limited control), where the de-
gree of entanglement remains constant.

Our consideration opens a new direction in the application-
oriented quest of strongly correlated photons and the quantum
chemistry of light.

II. THEORETCIAL MODEL

A. Single-boson Hamiltonians

We adopt the generic picture of an exciton as an evanes-
cent electromagnetic wave propagating in the structure plane
[18,19,38]. For a free-standing monolayer (or a QW) there is
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FIG. 1. The parametric processes of exciton “fusion” and biexciton “disintegration” (left column) due to the resonant reaction (1). These
are to be compared with the conventional second-harmonic and difference-frequency generation due to the second-order susceptibility χ (2)

(right column) [45]. Energy and in-plane momentum conservation are assumed for the fields (enumerated arrows). Unlike an ordinary second-
harmonic polarization field (white arrows), the biexciton (gray arrows) is a scalar field and does not emit light at the second-harmonic frequency.
Nevertheless, provided a biexciton field “3” with k3 = 0 is already present in the 2D medium, the electromagnetic field “1” with the in-plane
momentum k1 = k would stimulate coherent disintegration of the biexcitons into a pair of polarization fields (free excitons) with k1 = k and
k2 = −k (“signal” and “idler,” respectively). Both “signal” and “idler” fields would be squeezed.

rapid radiative decay of excitons with low momenta k inside
the light cone [63]. The radiative exciton lifetime τX may
be enhanced by placing the semiconductor onto a substrate
[20] or into a microcavity [64]. The dual view of an exciton
as a bound electron-hole excitation and an electromagnetic
wave then extends to the whole range of in-plane momenta.
The cavity polariton in this picture would represent the ul-
timate case where strong light-matter coupling within the
light cone is achieved by placing the 2D semiconductor at an
antinode of the microcavity photon mode [21].

In the course of an optical transition the photon spin ŝ is
transferred to the band electron (hole) in-plane orbital motion
in the conduction (valence) band [65]. The same orbital mo-
mentum is responsible for the Zeeman-like interaction of an
exciton with a static magnetic field B. The three components
of an expectation value < ŝ > are the Stokes parameters en-
coding the photon polarization [66]. In an unperturbed crystal
the bright exciton states with sz = +1 and sz = −1 (here-
inafter denoted as |↑〉 and |↓〉, respectively) form a degenerate
doublet at k = 0. Under the time reversal one has ŝz → −ŝz,
whereas ŝx,y → ŝx,y. Since, on the other hand, B → −B, it fol-
lows that the exciton spin ŝ may couple only to the transverse
component of B. In the electron-hole picture this constraint
corresponds to the mere fact that the 2D band orbital momen-
tum does not possess an in-plane component [67–69].

Experimental [70–72] and theoretical [73–76] studies of
the optical orientation and alignment of excitons have shown
that an effective in-plane magnetic field �α may be induced
by uniaxial deformation of the host lattice. Microscopically,
the strain would act on the exciton spin via the electron-hole
exchange interaction [77]. In the basis of the circularly polar-
ized states |↑〉 and |↓〉 the Hamiltonian of an exciton under
the combined action of the transverse magnetic field and the

in-plane strain reads

Ĥα = h̄2 p̂2

2mα

+ δα (B)

2
− h̄ωα · ŝ, (2)

where p̂ is the momentum operator, mα is the boson effective
mass,

ωα = �α,xnx + �α,yny + μBgα

h̄
Bnz, (3)

and the boson spin operator may be expressed as

ŝ = σ̂xnx + σ̂yny + σ̂znz, (4)

with σ̂x, σ̂y, and σ̂z being the Pauli matrices. We assume that
the semiconductor band structure is such that the radiative
doublet is isolated from various satellite states (e.g., “dark”
excitons) [78]. Virtual transitions of the excitons to such states
then may be accounted for by background renormalization of
the relevant quantities [81].

The label α distinguishes between the “bright” exciton
(α = X ) and the lower-polariton (α = L) models. For the
“bright” excitons, the term δX (B) describes the diamagnetic
shift [82,83] and gX is the exciton g factor which governs
the Zeeman splitting in the transverse magnetic field B. In
TMD monolayers one has gX ∼ 4 [69,83]. For polaritons,
we shall assume large vacuum Rabi splitting h̄�R(B) as
compared to the detuning δ± = δ0 − δX (B)/2 ± μBgX B be-
tween the microcavity and the exciton modes, i.e., h̄�R(B) 	
|δ±|. All polariton parameters vary along the dispersion
curve and approach their bare excitonic values at high mo-
menta. At the bottom of the dispersion one has δL(B) =
δX (B)/2 + δ0 − h̄�R(B) and gL = X 2

0 gX with X 2
0 = 1/2[1 +

(1 + h̄2�2
R/δ2

±)−1/2] ≈ 1/2 being the Hoppfield coefficient
X 2

p evaluated at p = 0 [82].
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FIG. 2. Schematic view of a synthetic excitonic molecule
[Eq. (28)] obtained in a strained 2D semiconductor by sweeping the
transverse magnetic field B across the biexciton resonance. Uniaxial
strain applied along the y direction induces an effective magnetic
field �X oriented along the x axis. In contrast to B, the field �X is
even under time reversal and couples spin-polarized free-pair states
|k, ↑〉 |−k, ↑〉 to the spin-entangled biexciton state 1√

2
(|↑↓〉 + |↓↑〉)

with the spatial part ϕ(r) (blue area) having microscopic size a.
Such coupling (depicted by dashed red arrows) acts as a coherent
Feshbach link which “dresses” the biexciton by the spin-polarized
continuum, the latter forming a quantum halo ϒ(r) which extends
over the macroscopic area (pink).

A relationship between the effective magnetic field �α and
the strain tensor ui j may be established by using a symmetry
argument. The scalar product in the Hamiltonian (2) should be
invariant under the point symmetries of a 2D crystal. Hence,
�α belongs to the same (irreducible) representation as the in-
plane coordinates x and y. It follows, that �α,x = Bα (uxx −
uyy) and �α,y = 2Bαuxy.

Assuming uniaxial deformation along the direction which
constitutes an angle θ with the x axis, the effective magnetic
field may be expressed as

�α = −Bαu[cos(2θ )nx − sin(2θ )ny], (5)

where u � 1 is the relative extension of the layer along the
chosen direction, and we have assumed that the extension is
accompanied by compression along the orthogonal direction
by the same (relative) amount. An example of such deforma-
tion is sketched in Fig. 2. In general, for uxx = −uyy (the area
is changed), one would also have an overall shift of the exciton
energy proportional to uxx + uyy [76].

The proportionality coefficient Bα depends on the par-
ticular setting under consideration and is governed by the
electron-hole exchange. One has Bα = B(sr)

α + B(lr)
α , where the

first and the second term are due to the short- and long-range
parts of the exchange interaction, respectively. For excitons in
TMD’s, one has h̄B(sr)

X in the range 10 to 100 meV [76]. By
placing the TMD layer onto a substrate with the amplitude
reflection coefficient rb, one may also activate the long-range
part and increase the above estimate by the amount [76],

B(lr)
X = τ−1

X

2ηIm(rb)

1 + Re(rb)
, (6)

with η ∼ 1–10. For polaritons, the coefficient BL may ad-
ditionally include purely photonic contribution due to an
in-plane anisotropy of the microcavity [84,85].

It is worth to point out that the long-range exchange
(and the longitudinal-transverse splitting of the cavity mode)
also provides the linear (quadratic) in k contributions to the
“bright” exciton (cavity polariton) effective magnetic field
�X (L) and kinetic energy. Possible effects due to those con-
tributions have been discussed in our previous work [86] and
do not affect the conclusions that will be drawn here.

Finally, we notice that none of the above mechanisms re-
quires specific symmetry of the medium with respect to the
spatial inversion [76]. In the absence of an inversion center,
one may have additional contribution to the effective field �α

due to the piezoelectric effect [87].

B. Two-body interactions in the absence of strain

The Coulomb forces between the electrons and holes
enable two-body interactions between the excitons. Thus, ex-
change of the identical fermions results in binding of excitons
into biexcitonic molecules [88,89]. By virtue of the optical
selection rule discussed above, opposite orientations of the
fermionic spins in a biexciton imply the singlet configuration
for the associated photons. The orbital wave function of a
molecule in the absence of strain (�X ≡ 0) may be con-
veniently regarded as an ε < 0 solution of the Schrödinger
equation, [

h̄2k̂
2

mX
+ V (X )

↑↓ (r)

]
ϕ(r) = εϕ(r), (7)

where k̂ = ( p̂1 − p̂2)/2 is the relative momentum and V (X )
↑↓ (r)

is a static axially symmetric potential describing interaction
of two composite bosons [19,81,90]. The potential V (X )

↑↓ (r)
accounts both for the direct and exchange scatterings of the
identical fermions, and in the heavy-hole limit approaches the
familiar Heitler-London shape with the characteristic dip at
short distances. For our analytical estimates we shall use the
Gaussian ansatz,

ϕ(r) = (a
√

π )−1e−r2/2a2
(8)

with a ≡ h̄/
√

mX |ε|. We assume a ∼ R↑↓ with R↑↓ being the
microscopic range of the potential, i.e., our biexciton is a
tightly bound (deep) state. Thus, for TMD monolayers one
has a and |ε| on the order of few nanometers and tens of
meV, respectively [5–7]. Studies of an analogous dipositro-
nium problem suggest that excited states of a biexciton do not
exist due to a very diffuse structure of a four-particle complex
consisting of electrons and holes with equal masses [91].

The excitons with parallel spins interact via the short-
range repulsive potentials V (X )

σσ (r) [92]. The corresponding
low-energy s-wave scattering amplitudes may be written as
[93]

f̄ (X )
σσ ′ (k) = π

ln
[
ka(X )

σσ ′
] − iπ/2

(9)

with a(X )
σσ ′’s being the 2D scattering lengths. For the repulsive

potentials V (X )
σσ (r) one has a(X )

σσ ∼ Rσσ , where Rσσ ’s are the
characteristic microscopic ranges. Such an estimate holds also
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for the attractive potential V (X )
↑↓ (r) under our assumption of

tight binding.
Whether one deals with a bound state or a scattering

event in the case of attraction depends on the statement of
the problem: Relaxation toward a bound state is beyond the
elastic scattering considered here. In practice, the reaction
X↑ + X↓ � X↑X↓ + h̄ν due to the potential V (X )

↑↓ (r) is an un-
controllable (stochastic) process, and the reverse process is of
activation (Arrhenius) type [22]. The situation may change for
dipolar excitons, where the long-range dipolar repulsion intro-
duces a potential barrier into V (X )

↑↓ (r), which may transform
the bound state into a shape resonance [9]. This may unlock a
resonant interconversion process X↑ + X↓ ↔ X↑X↓, although
the degree of control remains limited. We leave the long-range
dipolar forces beyond the scope of the present paper as well.

The effective interaction constants are related to the scat-
tering amplitudes by ḡ(X )

σσ ′ = −2h̄2/mX f̄ (X )
σσ ′ (kc), with kc being

the characteristic momentum scale [94]. For a MoS2 mono-
layer one may deduce from Eq. (9) (omitting the imaginary
part) typical values of ḡ(X )

σσ ′’s on the order of few tenths of
µeV × µm2. In the relevant limit√

mX /h̄τX � kc � 1/Rσσ ′ (10)

the three quantities ḡ(X )
σσ ′ together with the binding energy |ε|

provide complete description of the bare two-body interac-
tions in a dilute exciton gas. Virtual transmutations of the
“bright” excitons into remote (in the energy or momentum)
satellite states may be regarded as background renormaliza-
tion of these quantities [81].

For polaritons, we assume the Rabi splitting h̄�R be-
ing comparable to the biexciton binding energy |ε|. The
polariton-polariton interactions at �L ≡ 0 have been a sub-
ject of the on-going theoretical [95–97] and experimental
[98–101] studies. In most cases the projected potentials
V (L)

σσ ′ (k′ − k) ≡ X 2
k′X 2

k V (X )
σσ ′ (k′ − k) may be approximated by

some phenomenological constants g(L)
σσ ′ on the order of the

corresponding effective interaction constants for excitons.
The only exception is the situation where the polariton

“↑↓” scattering continuum overlaps the biexciton level, i.e.,

δL(B) − δX (B) < ε. (11)

By using a toy model with a separable force in lieu of the
microscopic potential V (X )

↑↓ (r) we obtain that in this limit the

polariton scattering amplitude f̄ (L)
↑↓ (k) is given by Eq. (9) with

X → L and

a(L)
↑↓ =

√
mX

mL
e

mX
mL

ν
a, (12)

where ν ∝ [ε + δX (B) − δL(B)]/|ε|. The corresponding ef-
fective interaction reads g(L)

↑↓ = −2h̄2/mL f̄ (L)
↑↓ (k). Since

typically mL � mX and, by assumption (11), one has ν > 0,
we deal with the scattering off a weakly bound state. In 3D
such scattering would produce increasingly strong repulsion.
Here, in contrast, the scattering amplitude f̄ (L)

↑↓ (k) vanishes.
The weakly bound state occurs under condition (11) as

a pole of the scattering amplitude f̄ (L)
↑↓ (k) at k = i/a(L)

↑↓ and
represents a hypothetical polariton molecule L↑L↓ [102]. A
more involved study [19] has shown, however, that instead
of the Arrhenius-type reactions L↑ + L↓ � L↑L↓ + h̄ν, one
would rather have an irreversible process X↑X↓ → L↑ + L↓,
which may be interpreted as autodissociation of a biexciton
X↑X↓ [103]. Such nonstationary biexciton in a microcavity has
been referred to as “bipolariton” [19].

The effective interactions g(α)
σσ ′ provide the third-order non-

linear susceptibilities [χ (3)] for electromagnetic waves [47].
As an example, two-body polariton scattering has been shown
to produce degenerate parametric amplification of a signal on
coherent pump at specific angle fulfilling momentum conser-
vation (i.e., the phase-matching condition) on the polariton
dispersion [104].

III. RESULTS AND DISCUSSION

Consider a system of two identical excitons (either “bright”
excitons or cavity polaritons). There are four basis states |↑↑〉,
|↑↓〉, |↓↑〉, |↓↓〉 whose linear combinations realize the states
Sz = +2, 0,−2 of the total spin Sz = sz,1 + sz,2. We notice
that since �α (the label α standing for X or L, respectively)
lies in the structure plane, the sum �α · ŝ1 + �α · ŝ2 does
not commute with S2

z . Hence, the uniaxial deformation may
change the spin state of a pair by flipping the spin of either of
the two quasiparticles.

This observation implies that, in general, the wave function
of the relative motion � (α)(r) would be a superposition of the
corresponding three spin states, i.e.,

� (α)(r) = |↑↑〉 ψ
(α)
↑↑ (r) + |↓↓〉 ψ

(α)
↓↓ (r)

+ 1√
2

(|↑↓〉 + |↓↑〉)φ(α)
↑↓ (r). (13)

The corresponding system of coupled Schrödinger equa-
tions may be recast in the form(

− h̄2

mα

∇2
r + V̂α

)
� (α)(r) = E� (α)(r), (14)

where

V̂α ≡

⎡
⎢⎣V (α)

↑↑ (r) + δα (B) − 2μBgαB 0 −√
2h̄�α · 〈↑|ŝ|↓〉

0 V (α)
↓↓ (r) + δα (B) + 2μBgαB −√

2h̄�α · 〈↓|ŝ|↑〉
−√

2h̄�α · 〈↓|ŝ|↑〉 −√
2h̄�α · 〈↑|ŝ|↓〉 V (α)

↑↓ (r) + δα (B)

⎤
⎥⎦. (15)

We are interested in a stationary scattering solution of this
system near the lowest energy scattering threshold, i.e., E →

E (α)
k with

E (α)
k ≡ h̄2k2/mα + δα (B) − 2μBgαB, (16)
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FIG. 3. Energy level diagram for a pair of colliding bosons at
k = 0. Dashed red arrows indicate spin-flip transitions due to the
effective in-plane magnetic field �α . For sufficiently large binding
energy |ε|, a resonant configuration may be realized, where splitting
of the Zeeman sublevels in a transverse magnetic field B greatly
exceeds the detuning �̄α between the lowest spin-polarized level
and the biexciton. Spin-flip couplings to energetically remote spin
sublevels then may be neglected.

and k → 0. The scattering channels with Sz = 0,−2 are thus
energetically closed (see Fig. 3). At �α ≡ 0 the solution is just
a plane wave weakly distorted by the background potential:

ψ
(α)
↑↑,k(r) = 1

2π

[
eikr + f̄ (α)

↑↑ (k)√−2π ikr
eikr

]
, (17)

where we have retained only the leading s-wave contribu-
tion into the (even) scattering amplitude of identical bosons.
For “bright” excitons f (X )

↑↑ (k) is given by Eq. (9) and sim-
ilar expressions may be written for cavity polaritons (see
Appendix A).

Provided the two conditions (i) |�̄α| � 2μBgαB and (ii)
|h̄�α · 〈↓|ŝ|↑〉 | � μBgαB are fulfilled, the coherent coupling
of the open (Sz = +2) channel to the biexciton (Sz = 0) due to
the finite �α results in resonant modification of the scattering
amplitude. Here

�̄α ≡ ε + δX (B) + 2μBgαB − δα (B) (18)

is the bare detuning between the open channel and the
biexciton. Condition (i) suppresses the contribution due to
the continuum of the Sz = 0 channel. For “bright” excitons
this condition reduces to |2μBgX B + ε| � μBgLB, whereas

for polaritons it reads |2μBgLB + ε − δL(B) + δX (B)| �
2μBgLB. The latter inequality requires δL(B) − δX (B) > ε

and, therefore, also excludes uncontrollable broadening of the
biexciton level due to autodissociation into the “↑↓” polariton
continuum (see Sec. II B) [19]. Condition (ii) suppresses the
contribution of the Sz = −2 channel.

Under the assumptions (i) and (ii) the stationary scattering
solution for the open channel retains the form of Eq. (17),
where one should substitute the bare s-wave scattering
amplitude f̄ (α)

↑↑ (k) by f (α)
↑↑ (k) = f̄ (α)

↑↑ (k) + f (α)
↑↑,res(k) with

f (α)
↑↑,res(k) = π℘α

(−h̄2k2/mα + �α )/2βα + ln(kaα ) − iπ/2
.

(19)
Here

βα ≡ 2mαa2�2
α/h̄2 (20)

is the resonance width and a is the biexciton radius as de-
fined by the Gaussian ansatz (8). The factor ℘α accounts for
the distortion of the continuum in the open channel by the
background potential V (α)

↑↑ (r). Relation of the parameter �α

to the bare detuning �̄α depends on the particular choice of α

and will be provided in the corresponding subsections below.
The resonance is defined by

�α = �(res)
α ≡ −2βα ln(kaα ),

and it is shifted toward lower energies with respect to the
bare biexciton level ε. Such shift is a usual second-order cou-
pling effect and may qualitatively be interpreted as polaronic
“weighting” of the closed-channel biexciton. In the formal
limit k → 0 the scattering amplitude (19) at the resonance
takes the value f (α)

↑↑,res(k → 0) = 2℘αi/[1 − 2Arg(aα )] which
depends only on the background interaction.

In an ensemble of excitons, the resonant scattering ampli-
tude (19) provides an additional contribution to the effective
interaction g(α)

↑↑ , and it differs dramatically from the corre-
sponding background part discussed in Sec. II B. At finite
boson density n one should distinguish between a narrow and
a broad resonance, defined by the relations βα � h̄2k2

c /mα

and βα 	 h̄2k2
c /mα , respectively. Here kc is the character-

istic value of the boson momentum in the ensemble: In a
mean-field regime it is on the order of kc ∼ √

n. For a nar-
row resonance the scattering amplitude at �(res)

α saturates
at f (α)

↑↑,res(kc) ∼ −mα℘αβα/h̄2n � 1, which yields the effec-

tive interaction g(α)
↑↑,res ∼ ℘αβα/n and a (positive) mean-field

shift of the emitted photon energy ∼℘αβα , which is much
less than the corresponding contribution from the background
scattering. For a broad resonance, one obtains the unitary
value f (α)

↑↑,res(kc) = 2℘αi/[1 − 2Arg(aα )], so that the relation

g(α)
↑↑,res = −2h̄2/mα f (α)

↑↑,res(kc) does not apply. A proper way to
derive the resonant part of effective interaction between the
bosons in this case will be outlined below.

In order to extend the scope of our discussion be-
yond the two-body picture presented above, we introduce a
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second-quantized many-body Hamiltonian [86,105]

Ĥα =
∑

k

[
h̄2k2

2mα

+ δα (B)

2
− μBgαB

]
α̂

†
↑,kα̂↑,k +

∑
K

[
h̄2K2

4mX
+ ε + δX (B)

]
Ĉ†

↑↓,KĈ↑↓,K

+ ḡ(α)
↑↑

2S

∑
p,p′,q

α̂
†
↑,p′+qα̂

†
↑,p−qα̂↑,pα̂↑,p′

− h̄�α ·
∑

k

[〈↑|ŝ|↓〉 φ(k)Ĉ↑↓,K α̂
†
↑,−k+K/2α̂

†
↑,k+K/2 + 〈↓|ŝ|↑〉φ∗(k)Ĉ†

↑↓,K α̂↑,−k+K/2α̂↑,k+K/2], (21)

that would yield Eq. (14) and the result (19) in the particular
limit of two bosons in vacuum. The operator

Ĉ↑↓,K =
∑

k

φ(k)α̂↑,−k+K/2α̂↓,k+K/2 (22)

describes a biexciton with the center-of-mass wave vector
K, α̂σ,p’s stand for single bosons and φ(k) is the Fourier
transform of Eq. (8). The coherent interconversion term in
the last line of Eq. (21) has the form of χ (2) nonlinearity
in quantum optics [2,62]. It implements the desired process
(1) with σ = σ ′ =↑. Remarkably, this term does not require
the absence of spatial inversion symmetry: The biexciton rep-
resents a bound pair of polarization waves and the matrix
element h̄�α · 〈↑ |ŝ| ↓〉 is perfectly allowed in centrosymmet-
ric crystals (see Sec. II A).

The process (1) is expected to be particularly efficient in
the broad resonance limit βα 	 h̄2k2

c /mα . In this limit, the
biexciton operator Ĉ↑↓,K may be shown to play the role of
an auxiliary field which describes onset of pair correlations
between the bosons α↑ [10]. One may then adiabatically elim-
inate Ĉ↑↓,K from the Hamiltonian (21) to obtain [10]

g(α)
↑↑ = ḡ(α)

↑↑ − h̄2

mα

2πβα

�α

. (23)

The effective interaction g(α)
↑↑ provides increasingly large and

tuneable χ (3) [106].
Let us discuss further the similarity between the last line in

Eq. (21) and the nonlinear susceptibility of the second order.
A manifestation of χ (2) in nonlinear optics is the second-
harmonic generation and the corresponding reverse process
known as parametric down conversion [45]. Both of these
processes exhibit coherent intensity transfers between elec-
tromagnetic waves. In the quantum chemistry parlance, this
can be seen as the Bose stimulation of the reaction (1) in a
macroscopic ensemble [42–44]. In our case, we may naturally
think of such processes as of controllable fusion of excitons
and disintegration of biexcitons, respectively (Fig. 1).

Consider first the fusion, schematically shown on the top of
the left column in Fig. 1. A pair of lasers generates polariza-
tion waves (i.e., free excitons) with in-plane momenta k1 = k
and k2 = −k. By adjusting the external magnetic field B such
as to satisfy the energy conservation E (α)

k = ε + δX (B) with
E (α)

k given by Eq. (16), one unlocks the resonant reaction (1)
which coherently transfers the intensities of the incident fields
into a biexciton field with k3 = K (gray arrow). The momen-
tum conservation k3 = k1 + k2 (phase-matching condition)

implies that thus generated biexcitons form a condensate at
K = 0. The biexciton condensate does not produce an output
radiation at the second-harmonic energy E (α)

k : Instead, it accu-
mulates inside the 2D crystal and decays spontaneously due to
leakage of the constituting excitons into the photonic region of
their dispersion (“light cone”) [19].

Now, let us switch off one of the incident laser fields (say,
the field “2”). One then passes to the disintegration scheme
shown in the bottom. The biexcitons with K = 0 being already
present in the crystal, the electromagnetic field “1” with the
in-plane momentum k1 = k would stimulate their coherent
disintegration into a pair of free excitons with k1 = k and
k2 = −k. The k1 = k exciton would contribute to amplifica-
tion of the incident laser field (detected as a “signal” at the
output) and the k2 = −k exciton would generate an “idler”
photon. If one ignores the origin of the “pump” field (“3”),
the disintegration process would be fully analogous to the
difference-frequency generation depicted in the bottom on the
right. Both “signal” and “idler” fields would be squeezed.

We emphasize that the biexciton field behaves as an inde-
pendent scalar field: As one may see from Eq. (22), it is a
weighted superposition of boson pairs characterized by a sin-
gle momentum K and not just a free pair α̂↑,−k+K/2α̂↓,k+K/2,
which would be characterized by a pair of momenta. As
such, the fusion and disintegration cannot be reduced to the
conventional four-wave mixing.

Following the lines of our earlier work on dipolar polari-
tons [10], one may deduce from Eq. (21) that fusion of bosons
α↑ occurs on the characteristic timescale Tα = √

mα/2πβαn,
which on substitution of βα from Eq. (20) may be recast as

Tα = (4πna2)−1/2�−1
α . (24)

For a broad resonance, squeezing of electromagnetic waves is
observed on this timescale [10]. The squeezing is indicative
of strong correlations near resonance. The result (19), on the
other hand, offers a way to explore such strong correlations in
the ultimate limit of two bosons in vacuum. We delve deeper
into this intriguing scenario in the subsequent section.

Naively, one would expect that a broad resonance would
be beneficial for fusion and squeezing at low densities. In
practice, however, one should compare the timescale Tα with
the boson radiative lifetime τα . Faster radiative decay may
provide stronger coupling �α (see Sec. II A), but a photon
may escape the crystal before the reaction (1) takes place.
Also compatibility of a broad resonance with condition (ii)
should be discussed with care.
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Although the above equations in their generic forms apply
both for “bright” excitons (α = X ) and lower polaritons (α =
L), the actual results as defined by the respective parameters
are very different. Below we discuss these two distinct cases
separately and in greater detail.

A. ”Bright” excitons in the absence of a microcavity (α = X )

We obtain �X = �̄X = ε + 2μBgX B and

aX = aeγ /2,

so that the exciton scattering amplitude (19) takes the gen-
uine s-wave resonant form. This implies the resonant pairing
phenomenology, echoing the physics of a shape resonance
suggested previously for dipolar excitons [9] and polaritons
[10]. Treating the colliding excitons as impenetrable disks of
radius R↑↑ and assuming R↑↑ � a yields the estimate (see
Appendix C)

℘X ∼
[

ln R↑↑/a

ln kR↑↑

]2

. (25)

Despite the apparent crudeness of such approximation for
V (X )

↑↑ (r), the result (25) correctly captures the 2D kinematics:
The excitons tend to avoid each other at k → 0, which results
in suppression of the coherent coupling to the biexciton.

Condition (ii) implies |ε| 	 βX . This inequality may also
be recast in a more transparent form as (h̄�X /ε)2 � 1. It is
instructive to consider compatibility of this condition with
the narrow (βX � h̄2k2

c /mX ) vs broad (βX 	 h̄2k2
c /mX ) res-

onance regimes. By using the definition (20) and assuming
kc ∼ √

n, these regimes may be recast as (h̄�X /ε)2 � na2

and (h̄�X /ε)2 	 na2, respectively. Since, generically, na2 �
1, one can see, that a narrow resonance is always compati-
ble with (ii), whereas a broad resonance would additionally
require na2 � 1.

Being considered as a complex function of the energy
E = h̄2k2/mX the resonant part of the exciton scattering am-
plitude (19) has poles defined by the equation E = �̄X −
βX ln(|ε|e−γ /E ) − iπ . At negative detuning �̄X < 0 there is
a single pole that asymptotically approaches the straight line
E = �̄X as �̄X → −∞. By writing �̄X (B) = 2μBgX (B −
B0) and considering the energy E as a function of B, we may
let E (0) ≈ ε. As the magnetic field B exceeds the threshold
value

Bth = B0 + βX (2μBgX )−1[1 + ln(|ε|e−γ /βX )], (26)

a second pole emerges at positive energies (see Fig. 4). This
pole is a resonance characterized by the decay rate ∝ βX .
Interestingly, the resonance coexists with the weakly bound
state

E (B) = −|ε|e−γ e−2μBgX B/βX (27)

at B 	 Bth. This should be contrasted to the s-wave Feshbach
scattering in 3D [107] and scattering in higher partial-wave
channels in 2D [86,105], where the bound state becomes
substituted by the resonance.

The wave function of the bound state can be written in the
form

�(r) = ϒ(r) |↑↑〉 + wϕ(r)
1√
2

(|↑↓〉 + |↓↑〉), (28)

FIG. 4. The poles E of the exciton s-wave scattering amplitude
f (X )
↑↑,res(k) as functions of the magnetic field B. The full equation for

the pair polarization bubble has been used (see Appendix B). At
B > Bth the weakly bound state coexists with a resonance at E > 0
(only the real part is shown). The dashed line indicates the asymp-
tote E (B) = 2μBgX (B − B0). At B 	 Bth the wave function of the
weakly bound state takes the universal form of the quantum halo.

where ϕ(r) is the tightly bound core given by Eq. (8) and
ϒ(r) is the so-called quantum halo which extends well beyond
the microscopic range of the potential V (X )

↑↓ (r) (Fig. 2). By
using Eq. (27) and the relation [86] w2 = (2μBg)−1∂E/∂B,
the relative weight of the core w2 may be expressed as

w2 = |ε|
βX

e−γ e−2μBgX B/βX . (29)

One can see that w rapidly approaches zero as B is tuned
beyond the threshold Bth, so that the contribution of the halo
to the state (28) becomes dominant. In the same limit, the halo
takes the form

ϒ(r) = 1√
πa2

ϒ

K0(r/aϒ ) (30)

with aϒ ≡ h̄/
√

mX E (B) → ∞ as E (B) → 0. Equation (30)
is universal in the sense that it does not depend on the details
of the microscopic interaction potential. In the opposite limit
B → 0, the relative weight w2 approaches unity: The bound
state becomes the bare biexciton.

Let us discuss manifestation of the predicted phenomenol-
ogy in optical experiments. The most basic quantity is the
exciton oscillator strength fX which defines the radiative de-
cay rate �X . The oscillator strength scales with the coherence
area covered by the exciton center-of-mass translational mo-
tion [52,108], which for the weakly bound state (30) may be
expressed as fϒ = fX |ϒ0|2, where ϒ0 is the p = 0 value of the

Fourier transform ϒp =
√

4πa2
ϒ/S/(1 + p2a2

ϒ ) of Eq. (30).
The upper bound on aϒ is defined by the condition (10) and,
ultimately by the quantization area S (the area of the 2D
structure). The oscillator strength of an exciton constituting
the halo approaches that of a free exciton (plane wave) as
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aϒ → √
S/4π . On the other hand, the oscillator strength of

the halo is enhanced with respect to the bare biexciton by
the factor (aϒ/a)2 [109]. Hence, the emergence of the halo
should manifest itself in exponential growth and subsequent
saturation of �ϒ , as B is swept across Bth. The sweeping of the
magnetic field in this case should be performed adiabatically
starting from B = 0, which would require sufficiently long
lifetime τX of the bare exciton, i.e., τX 	 h̄/βX with βX being
the resonance width given by Eq. (20).

Alternatively, one may think of controllable assembly (syn-
thesis) of a biexciton from a polarized continuum, akin to
the Feshbach ramp in ultracold atoms [40]. Interestingly, the
three-body recombination, which is known to be a major side
effect for synthesis of atomic molecules [40], is absent for
excitons. There are three factors that preclude such an inelastic
process. First, as we have pointed out above, the exciton halo
is formed when the “open” channel is still energetically be-
low the resonance. Second, the probability for three excitons
to approach each other is suppressed by the Pauli principle
for the constituent electrons and holes. Deep bound states
of three excitons do not exist (although one cannot exclude
trimers of macroscopically large radius [110]). Finally, the
level ε is likely to be a unique bound state of the potential
V (X )

↑↓ (r) (see Sec. II B), and the polarized exciton continuum
couples directly to this level. These factors hold promise for
experimental implementation of synthetic molecules and their
practical use, as we discuss below.

The polarization part of the wave function (28) evolves
from a product state |↑↑〉 to a maximally entangled state

1√
2
(|↑↓〉 + |↓↑〉) as the magnetic field is tuned from B 	 Bth

to 0. To quantify the entanglement of the polarization, we
evaluate the concurrence [111,112]

c[ρ̂] ≡ inf
{pi,�i}

∑
i

pic̄[�i], (31)

where the infimum is searched over all possible convex de-
compositions {pi,�i} of the mixed state,

ρ̂ ≡
∫

�(r)�†(r)dr =
∑

i

pi |�i〉 〈�i| (32)

obtained by tracing out the spatial part of the wave function
(30). Here

c̄[�i] ≡ | 〈�∗
i | σ̂y ⊗ σ̂y |�i〉 | (33)

are concurrencies of the pure bipartite polarization states |�i〉.
Although the density matrix ρ̂ depends parametrically on

the spatial overlap of the core ϕ(r) and the halo ϒ(r), we find
that the concurrence c[ρ̂] does not depend on this parameter
and, in fact, is identical to that of a pure polarization state

|�〉 ≡
√

1 − w2 |↑↑〉 + w
1√
2

(|↑↓〉 + |↓↑〉), (34)

which formally may be obtained by dropping the spatial com-
ponents in Eq. (28). Namely, we find

c[ρ̂] = c̄[�] = w2, (35)

where c̄[�] is calculated by using Eq. (33) and the relative
weight w2 depends on the applied magnetic field according to
Eq. (29). We provide detailed derivation of the relation (35)

in Appendix D. The auxiliary state |�〉 then allows one to
develop a better feel for the entanglement measure (31) by
resorting to the alternative version of Eq. (33) for pure states
[111]

c̄[�] =
∣∣∣∣∣

4∑
i=1

〈ei|�〉2

∣∣∣∣∣ (36)

with |e1〉 = 1/
√

2(|↑↑〉 + |↓↓〉), |e2〉 = i/
√

2(|↑↑〉 − |↓↓〉),
|e3〉 = i/

√
2(|↑↓〉 + |↓↑〉), and |e4〉 = 1/

√
2(|↑↓〉 − |↓↑〉)

being the Bell states. One can see that c̄[�] reaches its
maximum value when the vector |�〉 converges (up to an
unimportant phase factor) to the Bell state |e3〉.

According to Eq. (35), the concurrence c[ρ̂] varies
monotonously from 1 to 0 as the magnetic field is swept
in the range B ∈ [0,+∞). Hence, similarly to the radiative
decay rate �X discussed above, the entanglement may follow
adiabatically sufficiently rapid variation of B. The ability to
prepare an arbitrarily entangled state via a rapid adiabatic
passage renders the composite state (28) appealing for the
quantum information processing. For instance, controllable
generation of the Bell state is known to be a crucial stage in
the quantum teleportation algorithm [113]. Detailed proposals
of such kind are beyond the scope of the present work and will
be given elsewhere.

A qualitatively different scenario may be realized in a
scattering experiment whereby pairs of spin-↑ excitons un-
dergo elastic collisions governed by the scattering amplitude
(19). For example, a spin-polarized gas of excitons may be
resonantly pumped at B close to Bth and then probed in
reflectance (or transmittance) by a weak pulse of the same
circular polarization. The formula (23) then predicts increas-
ingly large blueshift or redshift of the probe signal depending
on whether the energy of colliding bosons is above or below
the resonance, respectively. Alternatively, one may examine
the spectral shifts of the exciton PL signal and spatial dis-
tribution of the PL intensity. Consistent description of such
experiments can be carried out starting from the Hamiltonian
(21) and proceeding along the lines of the many-body theory
previously designed for dipolar excitons [9,10] interacting
via a shape resonance in the microscopic potential V↑↓(r).
A crucial advantage of the present setting is a possibility to
control independently the detuning �̄X and the width βX of
the resonance.

Let us consider the explicit example of excitons in a mono-
layer of MoS2. For a free-standing monolayer the matrix
element |h̄�X · 〈↑|ŝ|↓〉 | would be defined through Eq. (5)
by the short-range part of the exchange interaction. Tak-
ing the upper estimate for the corresponding parameter [76]
h̄B(sr)

X ∼ 100 meV, the relative extension u ∼ 0.01 and the
biexciton binding energy [6] |ε| ∼ 20 meV, we obtain the ratio
(h̄�X /ε)2 ∼ 10−3, so that the resonance is expected to be nar-
row at densities down to na2 ∼ 10−2. An intermediate regime
between a narrow and a broad resonance at such low densities
could potentially be promising for observation of the halos.
However, the resonance width βX ∼ (h̄�X )2/|ε| ∼ 0.05 meV
is much less than the exciton radiative decay rate �X (few
meV), which may hinder rapid adiabatic preparation of such
states as discussed above. Likewise, the lower bound on the
characteristic time TX (achieved at na2 ∼ 1) is comparable

205423-9



S. V. ANDREEV PHYSICAL REVIEW B 109, 205423 (2024)

to the exciton radiative lifetime τX ∼ 0.1 ps. This precludes
fusion and squeezing.

The situation changes qualitatively in the presence of a
substrate. The substrate characterized by the amplitude re-
flection coefficient rb = −e−iδφ with δφ � 1 may increase
the radiative lifetime τX by the huge factor δφ−2. Thus, in
the experiment [20] the factor δφ ∼ 0.1 has been achieved.
The radiative decay rate �X then becomes smaller than the
resonance width (as defined by the short-range exchange), and
in magnetic fields on the order of few tens of Tesla [83] one
should be able to realize controllable synthesis of biexcitons.

The upper bound on the molecular radius as defined by
condition (10) would be aϒ � 20a, which would require
na2 � 10−3. In the interval of temperatures 10−2 K � T �
0.1 K one would have a boltzmannian gas of molecules with
their internal states being well approximated by the pure
states (30). The polarization density matrix ρ̂ [Eq. (32)] in
this case might be accessed experimentally by cross correla-
tion polarization measurements in a photon coincidence setup
analogous to that employed previously for QD’s [12] (see also
Appendix E).

Furthermore, by using Eq. (6) and Eq. (24), the ratio of the
fusion time to the exciton radiative lifetime may be estimated
as

TX

τX
≈ (4πna2)−1/2 δφ

u
(ζ/δφ + 2η)−1,

with ζ ∼ 1–10 being the dimensionless product of B(sr)
X and

the radiative lifetime in the absence of substrate, and the
parameter η coming from the long-range contribution to the
exchange. This estimate shows that the ratio TX /τX ∼ 0.1 may
be achieved at densities na2 ∼ 0.1. The squeezing may be
verified by examining the statistics of emitted photons with
balanced homodyne detection [114].

A different strategy might be applied to achieve tuneable
χ (3). One may take advantage of the long-range exchange in
the presence of a substrate by choosing rb ≈ eiπ/2 and then
trying to reach the regime βX ∼ �X by increasing the relative
deformation u. Although TX would substantially exceed τX in
this case, thus precluding efficient χ (2) processes, one never-
theless should be able to get the tuneable effective interaction
(23) in a scattering experiment described above.

B. Lower polaritons in a planar microcavity (α = L)

The configuration of two-particle energy levels fulfilling
condition (i) in this case is tentatively sketched in Fig. 5.
The scattering amplitude f (L)

↑↑ (k) given by Eq. (19) refers
to the scattering of two spin-↑ polaritons at the bottom of
the corresponding dispersion (k → 0). In contrast to excitons
without a microcavity, for polaritons we find �L = �̄L +
(mX /mL )βLeEi(−1) and

aL = i

√
mX

mL
a,

the latter quantity now being purely imaginary. The imaginary
unit cancels with iπ/2 in the denominator of Eq. (19) and
thus eliminates the resonant pole structure. One can also show
that for polaritons the effect of the background potential is
negligible, so that ℘L = 1.

FIG. 5. Configuration of the lower polariton (α = L) pair energy
levels fulfilling the resonant approximation (i) used to derive the
scattering amplitude Eq. (19). The wave vector k stands for the
pair relative motion and we have put K = 0 (the center-of-mass
reference frame). Dashed parabola and horizontal line are the bare
two-photon and two-exciton energies, respectively. Short horizontal
bar indicates the biexciton energy level. The parameters typical for
the GaAs/AlGaAs-based planar microcavities [82] have been used:
mX = 0.05me (me being the free electron mass), h̄�R = 4 meV, |ε| =
2 meV, gX = 1.35, δX (B) = 0.67 × B meV, and we take B = 14 T.
The two-body scattering process of interest is supposed to take place
at the bottom of the lowest energy dispersion line denoted as E (L)

k,↑↑.

The absence of the pole structure in the scattering ampli-
tude implies the absence of the polariton bound states and
resonances. On the other hand, the scattering amplitude still
possesses a resonant denominator, which should manifest it-
self in elastic collisions. To estimate the ratio of the resonance
width βL to the characteristic kinetic energy of polaritons, we
first notice that in a mean-field regime the latter is on the order
of the corresponding energy for excitons, i.e., one has

h̄2k2
c /mL ∼ g(L)

σσ ′n ∼ h̄2n/mX

(see Sec. II B and Appendix A). We believe that such a mean-
field estimate is pertinent to the vast majority of experimental
cases, where coherent population of polaritons is generated at
the bottom of their dispersion [115]. We may then estimate
the relevant ratio as

βL

h̄2k2
c /mL

∼ mL

mX

(
�L

ε

)2

(na2)−1,

and conclude that, since, typically, �L ∼ �X , the polariton
resonance formally remains narrow down to ultralow densi-
ties. However, the energy shift of a probe light pulse in a
hypothetical experiment of the type described in Sec. III A
would be governed by the interaction constant

g(L)
↑↑,res ≡ −2h̄2

mL
f (L)
↑↑,res = h̄2

mL

2πβL

h̄2k2
c /mL − �L

, (37)

where we have omitted the logarithm in Eq. (19) assum-
ing that �L ∼ h̄2k2

c /mL 	 βL. The result (37) is formally
analogous to the effective interaction in the case of a broad
resonance given by Eq. (23), with the peculiar difference that
now the position of the singularity would also depend on the
density n through kc. The rescaled “resonance width” in the
numerator would be comparable with βX , and may be made
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larger than the kinetic energy and the polariton radiative decay
rate. Likewise, the polariton fusion time TL [Eq. (24)] should
be comparable with TX .

Magneto-optics of microcavities with TMD’s being cur-
rently at its early stage of development, we consider polaritons
in an epitaxial GaAs QW inside a planar GaAs/AlAs-based
microcavity [82]. An exemplary configuration of the lower
polariton pair energy levels fulfilling the resonant approxi-
mation (i) is presented in Fig. 5. One may expect to achieve
linear polarization splittings h̄�L on the order of 1 meV in
such systems under moderate anisotropy [84]. We then ob-
tain (h̄�L )2/|ε| ∼ 1 meV for the rescaled “resonance width.”
This indeed exceeds the polariton radiative decay rate �L ∼
0.1 meV by an order of magnitude. The ratio TL/τL may also
be small at moderate densities na2 ∼ 0.1. However, condition
(ii) is clearly violated, which means that a proper description
of scattering would require going beyond the two-channel
model adopted here. We expect that the phenomenology of
resonant scattering would still persist at h̄�L ∼ μBgLB, albeit
in a strongly modified form. We postpone the corresponding
analysis for future work. We also expect, that in near future
either TMD- or perovskite-based settings would provide fa-
vorable conditions.

IV. CONCLUSIONS

In summary, we have explored a possibility of controllable
interactions of identical excitons (“bright” excitons or micro-
cavity polaritons) in strained 2D semiconductors. The strain
induces an effective in-plane magnetic field which couples
the spin-polarized two-body scattering continua to a singlet
biexciton state, thus acting as a coherent link transforming
the biexciton into a scattering resonance. Application of an
ordinary transverse magnetic field yields the phenomenology
of the Feshbach resonance, wherein the lower-energy “open”
scattering channel is tuned across the resonant biexciton level
(“closed” channel). For a broad resonance, the two-body inter-
action of excitons changes from increasingly strong repulsion
to attraction, as one crosses the resonance, in full analogy with
the control of interactions achieved in ultracold atoms [40]. In
contrast to the earlier proposals [9,10,51,53,54] here one has
direct access to the width of the resonance through the strain
engineering of the host heterostructure. The resonance width
defines, in particular, the timescale Tα [Eq. (24) with α = X or
α = L for “bright” excitons or lower polaritons, respectively]
characterizing efficiency of squeezing of the output radiation
[10]. We expect the effect to be significant in the currently
available samples of TMD’s.

From the nonlinear optics perspective, the scattering res-
onance enables tuneable third-order susceptibility [χ (3)],
as well as the parametric processes sharing analogies
with the second-harmonic generation and parametric down-
conversion. The parametric processes occur for macroscop-
ically populated bosonic modes and may be conveniently
regarded as Bose-stimulated reactions of fusion and disinte-
gration. The reactions have the characteristic timescale Tα and
are accompanied by squeezing. Interestingly, neither fusion
nor disintegration requires broken inversion symmetry of the
medium.

For “bright” excitons in the absence of a microcavity,
we find that the scattering amplitude [Eq. (19)] possesses a
double-pole structure: in sufficiently strong transverse mag-
netic field a resonance coexists with a synthetic bound state.
The synthetic molecule consists of a singlet biexciton core
and a spin-polarized quantum halo which extends far beyond
the range of the microscopic interaction potential between the
excitons. The halo has giant oscillator strength [52] which
is expected to grow exponentially with the applied magnetic
field. The spin state of the molecule can be adiabatically tuned
from a separable state (halo) to a maximally entangled Bell
state (biexciton) by sweeping the magnetic field across the
resonance. Our study thus hints explicitly at a connection
between the entanglement and squeezing of resonantly paired
photons, also anticipated from a general standpoint [2,62], and
which yet remains to be explored.
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APPENDIX A: BACKGROUND
POLARITON INTERACTIONS

In the ultracold limit, where the de Broglie wavelength
of the exciton relative motion 2π/k greatly exceeds the mi-
croscopic range Rσσ ′ of the interaction potential V (X )

σσ ′ (r), the
scattering becomes fully characterized by the 2D scattering
length a(X )

σσ ′ . Simple approximations for V (X )
σσ ′ (r) may be used

to establish the qualitative dependence of a(X )
σσ ′ on Rσσ ′ and on

the average magnitude of V (X )
σσ ′ (r). We shall assume that the

Fourier transform V (X )
σσ ′ (k′ − k) = (2π )−2

∫
V (X )

σσ ′ (r)ei(k′−k)rdr
exists and replace it by the separable force

V (X )
σσ ′ (k′, k) = h̄2

mX
λσσ ′e−(k′Rσσ ′ )2/2e−(kRσσ ′ )2/2. (A1)

By using the Lippmann-Schwinger equation for the two-body
T matrix

T (α)
σσ ′

(
E (α)

k + i0
) = V (α)

σσ ′ + V (α)
σσ ′ G

(α)
0

[
E (α)

k + i0
]
T (α)

σσ ′ (A2)

with Gα
0 [E (α)

k + i0] being the Green function for the free rela-
tive motion at the energy E (α)

k ≡ h̄2k2/mα and putting α = X
(excitons), one immediately gets Eq. (9) with

a(X )
σσ ′ = Rσσ ′e[γ /2−1/(2πλσσ ′ )]. (A3)

The magnitudes λ↑↑ and λ↓↓ of the repulsive potentials are not
fixed. In the limit λσσ → +∞ one recovers the well-known
result for the scattering off an impenetrable disk of radius
2Rσσ e−γ /2. In the opposite limit λσσ → 0 one gets the Born
approximation f (X )

σσ (k) = 2π2λσσ . The strength of the attrac-
tive force λ↑↓ < 0 and its range R↑↓ should be chosen such
as to get the bound state with energy ε and radius ∼h̄/

√
mX ε.

By putting R↑↓ ≡ h̄/
√

mX ε and substituting Eq. (A1) into the
Schrodinger Eq. (7) written in the k space, we obtain

φ(q)(ε − εq) = λ↑↓e−εq/2|ε| (2π )2

S

∑
k

φ(k)e−εk/2|ε|,
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where φ(k) is the Fourier transform of Eq. (8). This further
yields

1 = (2π )2λ↑↓
S

∑
k

e−εk/|ε|

ε − εk
,

so that one obtains

λ↑↓ = [πeEi(−1)]−1 (A4)

with Ei(x) being the exponential integral function.
The polariton interaction potential reads V (L)

σσ ′ (k′, k) =
X 2

k′X 2
k V (X )

σσ ′ (k′, k). Consistently, we look for the polariton T

matrix in the form

T (L)
σσ ′

(
k′, k, E (L)

k + i0
)

= h̄2

mX
t (L)
σσ ′ (k)X 2

k′X 2
k e−(k′Rσσ ′ )2/2e−(kRσσ ′ )2/2. (A5)

By substituting this ansatz into Eq. (A2) with α = L (lower
polaritons), we obtain

t (L)
σσ ′ (k) = {

λ−1
σσ ′ − �

(L)
σσ ′

[
E (L)

k + i0
]}−1

, (A6)

where the polarization bubble

�
(L)
σσ ′

[
E (L)

k + i0
] = π

∫ E0

0

X 4
0 e−E/εσσ ′

E (L)
k − mX /mLE + i0

dE + π

∫ +∞

E0

X 4
+∞e−E/εσσ ′

E (L)
k − (h̄�R + E ) + i0

dE (A7)

has been split into two parts corresponding to the photonlike and exciton-like regions of the polariton dispersion. Here we have
defined E0 ≡ h̄�RmL/mX and εσσ ′ ≡ h̄2/mR2

σσ ′ . By evaluating the integrals we find

�
(L)
σσ ′

(
E (L)

k + i0
) = πX 4

0
mL

mX

{
ln

[
E (L)

k

h̄�R − E (L)
k

]
− iπ

}
+ πX 4

+∞e(h̄�R−E (L)
k )/εσσ ′ Ei

[
E (L)

k − h̄�R

εσσ ′

]
(A8)

for E (L)
k < h̄�R and

�
(L)
σσ ′

(
E (L)

k + i0
) = πX 4

0
mL

mX
ln

[
E (L)

k

h̄�R − E (L)
k

]
+ πX 4

+∞e(h̄�R−E (L)
k )/εσσ ′

{
Ei

[
E (L)

k − h̄�R

εσσ ′

]
− iπ

}
(A9)

for E (L)
k > h̄�R. The low-energy polariton scattering corre-

sponds to E (L)
k � h̄�R. For repulsive potentials with λσσ > 0

one obtains by letting E (L)
k → 0 in Eq. (A5) and assuming

εσσ ′ 	 h̄�R

T (L)
σσ = − h̄2

mX

(2π )−1X 4
0

ln
[
kRa(L)

σσ

] , (A10)

where kR = √
mL�R/h̄ and a(L)

σσ = √
mX /mLa(X )

σσ with a(X )
σσ

given by Eq. (A3). This result is in agreement with that ob-
tained in the earlier work [96]. For the attractive potential
λ↑↓ < 0 the situation is more subtle. Here ε↑↓ ≡ |ε| ∼ h̄�R

and one cannot take advantage of the logarithmic expansion
of Ei(x) at x → 0 in the second term of Eq. (A8) to obtain
the formula similar to Eq. (A10). Instead, as h̄�R → |ε| and
E (L)

k → 0, this term cancels with the λ−1
↑↓ term in Eq. (A6) and

we are left with

T (L)
↑↓ (k) = − h̄2

mL

(2π )−1

ln[ka(L)
↑↓ ] − iπ/2

, (A11)

where

a(L)
↑↓ =

√
mX /mL exp

[
mX

mL

h̄�R − |ε|
2β↑↓

]
a, (A12)

β↑↓ = X 4
0 |ε|/(1 + λ↑↓) ∼ |ε| and a ≡ h̄/

√
mX |ε|. The polari-

ton scattering amplitude reads

f̄ (L)
↑↓ (k) = π

ln[ka(L)
↑↓ ] − iπ/2

. (A13)

Since typically mL � mX , for h̄�R > |ε|, i.e., when the
discrete level is embedded into the continuum of the polari-
ton scattering states, we obtain the scattering off a weakly
bound state. In 3D such scattering would produce increas-
ingly strong repulsive interaction. In 2D, in contrast, the real
part of the scattering amplitude vanishes as k−1 approaches
a(L)

↑↓ . For h̄�R � |ε| the expression for T (L)
↑↓ takes the from

of Eq. (A10). In the intermediate region 0 < |ε| − h̄�R �
|ε| the effective interaction g(L)

↑↓ ≡ (2π )2T (L)
↑↓ is positive and

somewhat larger than the corresponding interaction constants
in the nominally repulsive channels g(L)

σσ ≡ (2π )2T (L)
σσ . Within

our simple model we do not find the phenomenology of the
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resonant scattering in the bare interaction of polaritons with
opposite spins.

APPENDIX B: RESONANT SCATTERING AMPLITUDE

The resonant part of the boson scattering amplitude reads

f (α)
↑↑,res(k) = −2mα|�(α)

↑↓ |2
h̄2

π2
∣∣ 〈

ϕ
∣∣ψ̄ (α)

↑↑,k

〉 ∣∣2

h̄2k2/mα − �̄α − �α

[
E (α)

k + i0
] ,

(B1)

where �̄α is the bare detuning governed by the external mag-
netic field, and we have introduced the notation �

(α)
↑↓ ≡ h̄�α ·

〈↑ |ŝ| ↓〉. The key elements of Eq. (B1) are the polarization

bubble

�α

(
E (α)

k + i0
) =

∫ 2|�(α)
↑↓ |2| 〈q|ϕ〉 |2

E (α)
k − E (α)

q + i0
dq (B2)

and the overlap of the background stationary scattering state
ψ̄

(α)
↑↑,k(r) with the bare molecule ϕ(r).
Let us evaluate Eq. (B1) for the lower polaritons

(α = L). As in the case of background polariton
interactions (see above), the integration in the bubble
�L(E (L)

k + i0) may be split into two parts corresponding
to the photonlike and exciton-like regions of the polariton
dispersion:

�L(y + i0) = 2|�(L)
↑↓ |2

E (L)
a

⎡
⎣∫ h̄�R

E (L)
a

0

e−x

y − x + i0
dx +

∫ ∞

h̄�R

E (L)
a

e−x

y − mL
mX

x − h̄�R

E (L)
a

dx

⎤
⎦, (B3)

where E (L)
a ≡ h̄2/mLa2 and y ≡ E (L)

k /E (L)
a . By our assumption, h̄�R ∼ |ε| ∼ h̄2/mX a2, and we can write h̄�R/E (L)

a ≈ mL/mX ≡
σ � 1. We then notice that y � σ and obtain

�L(y + i0) = 2|�(L)
↑↓ |2

E (L)
a

{
e−y[Ei(y) − Ei(−σ + y) − iπ ] + e1−y/σ

σ
Ei(−1 − σ + y/σ )

}

= 2|�(L)
↑↓ |2

E (X )
a

eEi(−1) + 2|�(L)
↑↓ |2

E (L)
a

ln

(
E (L)

k

E (X )
a

)
.

(B4)

By substituting this result into Eq. (B1) we find

f (L)
↑↑,res(k) = π℘L

(−h̄2k2/mL + �L )/2βL + ln(kaL ) − iπ/2
,

(B5)

where βL ≡ 2mLa2|�(L)
↑↓ |2/h̄2, �L ≡ �̄L + σ−1βLeEi(−1),

aL ≡ ia/
√

σ and ℘L ≡ π/a2| 〈ϕ|ψ̄ (L)
↑↑,k〉 |2. According to

Eq. (A5), the background polariton scattering amplitude
f̄ (L)
↑↑ (k) ≡ −(2π )2mL/2h̄2T (L)

↑↑ (k) is proportional to σ =
mL/mX � 1. Hence, we may let ψ̄

(L)
↑↑,k(r) = eik·r/2π and

obtain ℘L = 1.

APPENDIX C: DISTORSION OF THE EXCITON
CONTINUUM DUE TO THE BACKGROUND SCATTERING

Let us now evaluate the parameter

℘X ≡ π/a2
∣∣ 〈

ϕ
∣∣ψ̄ (X )

↑↑,k

〉 ∣∣2
, (C1)

which accounts for the distortion of the exciton continuum
due to the background potential V (X )

↑↑ (r). To this end, we

decompose the stationary scattering state ψ̄
(X )
↑↑,k(r) into the

partial waves,

ψ̄
(X )
↑↑,k(r) = 1

2π

+∞∑
m=−∞

imψ̄
(X )
↑↑,m,k (r)eimϕ,

and take the impenetrable disk ansatz for the s wave (m = 0):

ψ̄
(X )
↑↑,0,k (r) ≡ 0, r � R↑↑

ψ̄
(X )
↑↑,0,k (r) = 1

2 [H−
0 (kr)+(1 + i f̄ (X )

↑↑ (k))H+
0 (kr)], r > R↑↑,

where H±
0 (kr) are the Hankel functions and the background

scattering amplitude f̄ (X )
↑↑ (k) is given by Eq. (9) with a(X )

↑↑ ≡
R↑↑. By using the Gaussian biexciton wave function [Eq. (8)]
and assuming R↑↑ � a, we obtain in the limit k → 0:

〈
ϕ

∣∣ψ̄ (X )
↑↑,k

〉 ≈ a√
π

ln
[ R↑↑eγ /2

2a

]
ln

[ kR↑↑eγ

2

] ,

which on sending R↑↑/a → 0 yields Eq. (25) for ℘X .

APPENDIX D: ENTANGLEMENT DEGREE
OF THE MOLECULAR POLARIZATION

By tracing out the spatial parts of the wave function (30),
we obtain the polarization density matrix

ρ̂ =

⎛
⎜⎜⎜⎝

〈ϒ |ϒ〉 w√
2
〈ϕ|ϒ〉 w√

2
〈ϕ|ϒ〉 0

w√
2
〈ϒ |ϕ〉 w2

2 〈ϕ|ϕ〉 w2

2 〈ϕ|ϕ〉 0
w√

2
〈ϒ |ϕ〉 w2

2 〈ϕ|ϕ〉 w2

2 〈ϕ|ϕ〉 0
0 0 0 0

⎞
⎟⎟⎟⎠, (D1)

written in the “computational” basis |↑↑〉, |↑↓〉, |↓↑〉,
and |↓↓〉. We have used the notations ϒ(r) = 〈r|ϒ〉 and
ϕ(r) = 〈r|ϕ〉. One has

〈ϒ |ϒ〉 = 1 − w2 (D2)
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and 〈ϕ|ϕ〉 = 1, so that the mixed state (D1) is fully character-
ized by two parameters: the relative weight of the core w2 and
the overlap integral 〈ϕ|ϒ〉. Surprisingly, as we show below,
the latter drops from the final result for the entanglement
measure.

Let us evaluate Eq. (31) by following the analytical pre-
scription [111,112] based on the methods of linear algebra. To
this end, we diagonalize ρ̂ and build an auxiliary symmetric
matrix τ̂ with the elements

τ+− ≡
√

λ+λ− 〈−|σ̂y ⊗ σ̂y|+〉 , (D3)

where

λ± = 1
2 [1 ±

√
(1 − 2w2)2 + 4w2 〈ϕ|ϒ〉] (D4)

are the nonzero eigenvalues of ρ̂ and

|±〉 = 1√
2 + ν2±

⎛
⎜⎜⎝

ν±
1
1
0

⎞
⎟⎟⎠ (D5)

are the corresponding (normalized) eigenvectors, with

ν± ≡ 1 − 2w2 ±
√

(1 − 2w2)2 + 4w2 〈ϕ|ϒ〉√
2w 〈ϕ|ϒ〉 . (D6)

We then compute the singular values of τ̂ as square roots
of the eigenvalues of the positive hermitian matrix τ̂ τ̂ †. The
unique nonzero singular value reads

L = 2

(
λ+

2 + ν2+
+ λ−

2 + ν2−

)
, (D7)

which, on substitution of Eq. (D4) and Eq. (D6), yields the
formula

c[ρ̂] ≡ L = w2 (D8)

for the concurrence of the mixed state ρ̂. The absence of the
overlap integral 〈ϕ|ϒ〉 in this final result is surprising and calls
for further investigation.

APPENDIX E: BOLTZMANNIAN GAS OF MOLECULES

At low molecular densities (na2
γ � 1) the polarization den-

sity matrix ρ̂ defined by Eq. (32) may be reconstructed by
performing cross correlation polarization measurements in a
photon coincidence setup analogous to that employed pre-
viously for QD’s [12]. Indeed, assuming the center-of-mass
motion of the molecules being uncorrelated with their internal
state [represented by the pure state �(r)], the total density
matrix for a grand-canonical ensemble may be written in a

factorized form

ρ̂GC = eμN̂/kBT

ZGC
(e−K̂

2
λ2

T )⊗N ⊗ ρ̂⊗N (E1)

with

ZGC =
∑

N

eμN̂/kBT

N!
(Tr[e−K̂

2
λ2

T ])N (E2)

being the grand-canonical partition function and the thermal
de Broglie wavelength of a molecule λT ≡

√
h̄2/4mkBT sat-

isfying the condition

aγ � λT � n−1/2. (E3)

A two-photon coincidence count randomly picks out a pair
from the total flux and projects its polarization state onto a
specific measurement state |ψν〉 set by the corresponding op-
tical elements (polarizers and quarter- and half-wave plates).
The average number of such coincidences nν should include
projection of the grand-canonical ensemble (E1) onto a single
pair polarization state ρ̂ and consecutive averaging over the
total number of molecules N , as well as over their center-
of-mass positions Ri. Formally, such a procedure may be
written as

nν = N 〈ψν |
∑

N

〈R1, . . . , RN |P̂†ρ̂GCP̂|R1, . . . , RN 〉 |ψν〉 ,

(E4)
where

P̂ ≡ 1

N

N∑
i=1

∑
σ,σ ′

|σσ ′〉i 〈σ ′σ | (E5)

is the required projector, N is a constant which depends on
the photoluminescence yield and detector efficiency, and ν =
1, . . . , 16 labels a particular measurement state within (what
would be) a tomographically complete set of measurements
[116]. By substituting Eq. (E1) into Eq. (E4), one obtains

nν = N 〈ψν | ρ̂ |ψν〉 . (E6)

Hence, the single-molecule density matrix ρ̂ does indeed con-
stitute a legitimate observable under the conditions formulated
above.

Whereas the polarization state of a bare biexciton |e3〉 is
prescribed by the quantum statistics, thermal fluctuations of
the relative phase in the orbital part of Eq. (30) may re-
duce the degree of entanglement. The relative phase would
enter the overlap 〈ϕ|ϒ〉 in Eq. (D1), but it does not appear
in the final result (35) for the concurrence. By virtue of the
convexity property [111], the latter thus should be regarded as
an upper bound for the result one would obtain on the basis
of the experimental measurements. This bound is reached
progressively, as one increases the ratio h̄�X /kBT .

For a quantum degenerate gas, the description in terms of a
pure state (30) is no longer adequate and one should proceed
from a many-body solution of the Hamiltonian (21).
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[89] F. čulik, Exciton-exciton “collisions” in crystals, Czech. J.
Phys. 16, 194 (1966).

[90] E. Hanamura, Theory of many Wannier excitons. I, J. Phys.
Soc. Jpn. 37, 1545 (1974).

[91] A. J. C. Varandas, J. da Providência, M. Brajczewska, and
J. P. da Providência, On dipositronium and molecular hy-
drogen: similarities and differences, Eur. Phys. J. D 69, 114
(2015).

[92] Repulsive vs attractive characters of the potentials V (X )
↑↑ (r),

V (X )
↓↓ (r), and V (X )

↑↓ (r), respectively, have been confirmed by
numerous experiments on dense ensembles, where the short-
range correlations produce observable shifts of the exciton PL
lines [79].

[93] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Perga-
mon Press, Oxford, 1969).

[94] Here one should put kc = √
2mX kBT /h̄ for a classical gas of

excitons at T > TBKT and kc = √
2mX μ/h̄ ∼ √

n for a quasi-
condensate characterized by a positive chemical potential μ at
T < TBKT, where TBKT is the Berezinskii-Kosterlitz-Thouless
transition temperature [117]. Note also the difference between
a genuine binary mixture and our spin-1 system of electro-
magnetic bosons, where the odd-wave inter-species scattering
is forbidden [86].

[95] T. Byrnes, G. V. Kolmakov, R. Y. Kezerashvili, and Y.
Yamamoto, Effective interaction and condensation of dipo-
laritons in coupled quantum wells, Phys. Rev. B 90, 125314
(2014).

[96] O. Bleu, G. Li, J. Levinsen, and M. M. Parish, Polariton inter-
actions in microcavities with atomically thin semiconductor
layers, Phys. Rev. Res. 2, 043185 (2020).

[97] H. Hu, H. Deng, and Xia-Ji Liu, Two-dimensional exciton-
polariton interactions beyond the Born approximation, Phys.
Rev. A 106, 063303 (2022).

[98] A. Delteil, T. Fink, A. Schade, S. Höfling, C. Schneider, and A.
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