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Understanding the numerous crucial properties of Dirac crystals, such as their thermal conductivity, neces-
sitates the use of models that consider the interaction between Dirac electrons and persistent acoustic phonons
in which the oscillation frequency ω depends on the phonon wave vector q and is therefore dispersive. It is
commonly assumed that the exceptionally high thermal conductivity of two-dimensional (2D) Dirac crystals is
due to the near ideality of their phonon quantum gasses with undesired limitations originating from phenomena
such as electron-phonon (e-ph) interactions. Electrons transferred to Dirac crystals from metal nanoparticles
through doping have been shown to affect and limit the thermal conductivity of Dirac crystals due to e-ph
interactions at distances up to several microns from the nanoparticle. Notably, the e-ph thermal conductivity
is directly linked to the phonon scattering rate, demonstrating a proportional relationship. Customarily, when
calculating the phonon scattering rate, it is common to overlook phonons with short-dispersive wavelengths
since in metals q is significantly smaller than the Fermi surface dimensions. However, this approach proves
insufficient for analyzing 2D Dirac crystals. Furthermore, the in-plane phonon scattering rate is calculated up
to the first order of magnitude consisting of two electrons and one phonon, i.e., three-particle interaction. In
these calculations, only processes involving the decay of an electron and phonon, leading to the creation of a
new electron (EP-E*), are considered. However, processes that involve the decay of an electron and the creation
of a new electron and phonon (E-E*P*) are not taken into consideration. In this paper, we present an accurate
expression for the phonon scattering rate and the e-ph thermal conductivity in 2D Dirac crystals for in-plane
phonons considering phonons with short-dispersive wavelengths. We further demonstrate that even at room
temperature, when calculating the phonon scattering rate and e-ph thermal conductivity, in the case of first-order
e-ph interactions, the E-E*P* process assumes significance. In the end, we show the importance of incorporating
second-order e-ph interactions, particularly the (EP-E*P*) interaction involving the decay of an electron and
phonon and the creation of a new pair for in-plane phonons, when determining the phonon scattering rate and
e-ph thermal conductivity at high temperatures and low Fermi energies. This four-particle interaction process
proves significant in accurately characterizing these properties.
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I. INTRODUCTION

Dirac crystals are a class of zero-band-gap solids distin-
guished by their unique electronic structure: a linear band
configuration within the crystal momentum. This stands
in stark contrast to the prevalent quadratic band structure
typically encountered near the Fermi level in metals and semi-
conductors [1–4]. As a result of this, dispersionless electrons
exhibit a behavior similar to photons on the Dirac light cone
in relativity [5]. The high charge mobility of Dirac crystals
can exhibit exotic quantum phenomena such as the quantum
Hall effect, enriching their unique properties and scientific
appeal [6–8]. Furthermore, undoped Dirac crystals have their
valence and conduction bands meet at the K-point of the
Brillouin-zone boundary as well as the Fermi energy EF, and
as a result, the Fermi surface of the crystal degenerates into
a single point of the electronic band structure [1,2]. In the
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case of two-dimensional (2D) systems, this degeneracy allows
for the tuning of the electronic state density at EF, as well as
the system’s thermal conductivity, through the use of external
electric fields or tunable doping [9]. As a result, even slight
fluctuations of EF can cause a significant increase in the carrier
density by several orders of magnitude [10,11]. Such Fermi-
level shifts are also anticipated to have a substantial impact
on the interaction strength between charge carriers and lattice
phonons. This tunable aspect of Dirac crystals has profound
implications, particularly in the realm of the electron-phonon
(e-ph) interaction [12,13]. It extends to the field of thermal
conductivity [14,15], where the ability to manipulate EF can
potentially result in tailored thermal properties, offering excit-
ing opportunities for both fundamental research and practical
applications [16–18].

For nearly a century, the understanding of the thermal
and electronic properties of condensed-matter systems re-
lied on the separation of contributions from electrons and
phonons [19], with e-ph interaction treated only as a small
perturbation [20,21]. Likewise, this approach, based on the
adiabatic Born-Oppenheimer approximation [19], has been
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a cornerstone for understanding the thermal conductivity of
solids. Within this approach, there are two pathways for
nonzero thermal transport throughout the solid. One is by
phonons that are ion-core vibrations in a crystal lattice mostly
present in insulators, and the second is by electrons mostly
present in metals and other electrical conducting materials.
Nevertheless, this approach overlooks the intertwined con-
tributions of electrons and phonons in heat transport. The
crucial role of the Born-Oppenheimer approximation is ev-
ident in various methodologies, including the application of
ab initio solvers for the electron and phonon Boltzmann
transport equations [22,23]. Notably, the breakdown of the
Born-Oppenheimer approximation has been recently affirmed
in a novel class of 2D quantum solids [24], with graphene,
a Dirac crystal, serving as a progenitor for these medium-
correlated quantum systems [25,26]. Consequently, a more
profound comprehension of e-ph interactions in Dirac crystals
becomes imperative. While the big picture of e-ph interaction
in solids is clear enough, the details in 2D Dirac crystals
are more complicated and difficult to grasp. This includes an
accurate calculation of the screening potential and considering
phonon creation processes as well as going to higher-order
e-ph interactions. The first-order e-ph interaction for in-plane
phonons is a three-particle process consisting of two electrons
and one phonon, while the second-order e-ph interaction is
a four-particle process consisting of two electrons and two
phonons.

The significance of e-ph interaction in lattice conduction
dates back to the 1930s and underwent further examination
in 1956 by Ziman et al. [27]. Subsequent to this seminal
work, both experimental and theoretical studies continued to
contribute to our understanding of this critical phenomenon
[28–32]. By calculating the phonon scattering rate, Ziman
derived an expression for the e-ph thermal conductivity and
showed that the thermal conductivity of a solid decreases due
to a three-particle e-ph interaction process where an electron
and phonon decay and a new electron gets created (EP-E*).
In this approach, the computation carried out to derive the
phonon scattering rate commonly assumes acoustic phonons
with long wavelengths [28,29]. This particular assumption is
tailored for metals possessing extensive Fermi surfaces near
EF, resulting in q values significantly smaller than the Fermi
surface dimensions which imply a short screening length [33].
On the contrary, in undoped 2D Dirac crystals, the Fermi
surface area collapses to zero, resulting in the screening length
tending to infinity. Therefore, in order to have an accurate
expression for the e-ph thermal conductivity of 2D Dirac crys-
tals, the phonon scattering rate should be written for phonons
with short-dispersive energy wavelengths. Furthermore, this
approach neglects the three-particle e-ph interaction process
where an electron decays and a new electron and phonon
get created (E-E*P*). This approximation is correct in metals
where we have a large free-electron density in the proximity
of the Fermi energy EF in which EF � kBT , leading to the
transition rate of the EP-E* process being much larger than the
E-E*P* process. However, this is not true in 2D Dirac crystals,
which have a limited concentration of free electrons, and we
cannot generally assume EF to be much larger than kBT .
Under these circumstances, it is crucial to take into account
the E-E*P* process, as it influences the thermal conductivity

of the 2D Dirac crystal. This is due to the fact that the phonons
created in the E-E*P* process partially or completely offset
the phonons eliminated in the EP-E* process, resulting in an
alteration of the thermal conductivity. This further necessitates
the study of the four-particle e-ph interaction, in which an
electron and a phonon decay and a new electron and phonon
pair gets created (EP-E*P*).

This paper introduces a theoretical framework aimed at
computing the electron-related lattice thermal conductivity of
2D Dirac crystals, with a particular emphasis on in-plane e-ph
interactions and the implications of the umklapp process on
these interactions. The analysis focuses on in-plane phonons
and incorporates the intricacies of the three-particle and four-
particle electron–acoustic-phonon interaction processes. To
this end, we derive an accurate expression of the phonon
scattering rate for phonons with short-dispersive energy wave-
lengths. We then proceed to write the phonon scattering rate
and e-ph thermal conductivity for the three-particle and four-
particle e-ph interaction processes and compare them with
each other. We delve into the open problem of examining
the influence of umklapp scattering [34] on the e-ph thermal
conductivity of 2D Dirac crystals at elevated temperatures and
the intricate connection between e-ph thermal conduction and
phonon lifetimes across diverse 2D Dirac materials, shedding
light on an uncharted facet of their thermal properties. Our
findings reveal a notable shift in dominance within the e-ph
interaction processes. Specifically, at elevated Fermi ener-
gies and lower temperatures, the three-particle process takes
precedence. Conversely, with an increase in temperature (T >

300 K) and a reduction in Fermi energy, the significance of
the four-particle e-ph interaction becomes more pronounced.
This transition bears considerable significance in the accurate
computation of phonon scattering rates and electron-phonon
thermal conductivity in 2D Dirac crystals.

II. METHODOLOGY

To compute the phonon scattering rate, we must first write
the interaction Hamiltonian of the e-ph coupling process. The
interaction Hamiltonian of a 2D Dirac crystal for the three-
particle e-ph coupling process for in-plane phonons is equal
to [35,36]

H3
e-ph =

∑
q

∑
k,k′′

√
h̄2

2mh̄ωq
· q φs(q) (b†

q + bq) c†
k′′ck

× ei(k′′−k±q)·r e− i
h̄ (Ek′′ −Ek±h̄ωq )·t , (1)

where the ± sign indicates the three-particle phonon creation
and annihilation processes, respectively, shown in Fig. 1(a).
The variable m is the mass of the atom, φs(q) is the screening
potential, and k and k′′ are the wave vectors of the created and
annihilated electrons, respectively. Furthermore, the fermionic
and bosonic creation and annihilation operators are written
as c, c†, and b, b†, respectively. Further on, the variable ωq
is the phonon frequency derived using the Komatsu rela-
tion [37,38], and Ek′′ , Ek are the energy of the created and
annihilated electrons, respectively. The energy of acoustic
phonons and electrons in 2D Dirac crystals can be written as
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FIG. 1. The three-particle e-ph interaction. (a) Unlike metals
where only the EP-E* process is considered in 2D Dirac crystals, it is
important to also consider the E-E*P* process to derive the crystals’
thermal properties. (b) The reciprocal lattice of a honeycomb struc-
tured lattice, in which the e-ph interaction occurs. This provides a
critical insight into the wave vectors associated with lattice vibrations
and their influence on thermal properties.

follows:

h̄ωq = cq, Ek = vFk, (2)

where c is the phonon velocity, and vF is the Fermi velocity
written in energy units. By knowing the Hamiltonian of the e-
ph interaction process, we can derive the transition rate of the
interaction [35,36]. The transition rate for the EP-E* process
is

γ EP-E∗
i→ f = 2π

h̄

(
h̄2

2mc

) ∑
q

q φ2
s (q)〈 fk (1 − fk+q )〉

× 〈nq〉 δ(Ek+q − Ek − cq), (3)

where nq is the Bose-Einstein statistics of the phonons, and
fk±q is the Fermi-Dirac statistics of the electrons. We further
write the transition rate for the E-E*P* process as follows:

γ E-E∗P∗
i→ f = 2π

h̄

(
h̄2

2mc

) ∑
q

q φ2
s (q)〈 fk+q(1 − fk )〉

× 〈1 + nq〉 δ(Ek+q − Ek − cq). (4)

The bounds over the phonon wave number, q, in the
summation can be calculated using the rules governing the
conservation of energy and momentum. By writing the con-
servation of energy and momentum, we find the value of q to
be

k + q = k′

vFk + cq = vFk′ ⇒ q = 2vFk(c − vF cos θ )(
v2

F − c2
) , (5)

where θ is the collision angle between the electron and the
phonon. The extreme carrier mobility in 2D Dirac crystals
results in the Fermi velocity of the electrons being much larger
than the velocity of the acoustic phonons, vF � c. This has
been further confirmed experimentally for various 2D Dirac
crystals such as graphene [39], Weyl semimetals [40], silicene
[41], and borophene [42], where c < 0.01vF. Therefore, for q
to be positive, q > 0, the range of the angle θ should be

cos θ � 0.01 ⇒ π � θ � π/2 − ε, (6)

where ε → 0. Furthermore, to find the maximum value of
the phonon wave number, qmax, we set θ = π and get the

following equation:

qmax = 2vFk

(vF − c)
≈ 2kF + ε. (7)

From Eq. (7) we find the range of q in the 2D Dirac crystal
to be 0 � q � 2kF + ε. This is shown in Fig. 1(b).

We further proceed to calculate the e-ph screening poten-
tial. Considering the range of q for the three-particle e-ph
interaction process, we note that the conventional method
for computing the e-ph screening potential in metals is not
applicable to 2D Dirac crystals. This conventional approach
typically considers phonons with long wavelengths or short
wave numbers, q > 2kF, and employs the Thomas-Fermi
approximation [34] to determine the dielectric response func-
tion. However, due to the unique nature of 2D Dirac crystals,
this conventional methodology cannot be extended to accu-
rately analyze their e-ph screening potential. The absence
of a band gap in 2D Dirac crystals dramatically amplifies
the effects of any phonon disturbance in the Fermi surface
nesting region, q ≈ 2kF [43,44], and while the Thomas-Fermi
approximation assumes that the dielectric response function
has a constant value in the region of 0 � q � 2kF, this is not
the case in 2D Dirac crystals [45,46]. To ensure precision in
expressing the e-ph screening potential, we incorporate the
dynamic dielectric response function. This function is tailored
to electrons strongly correlated with acoustic phonons in 2D
Dirac crystals, offering a nuanced depiction dependent on the
phonon wave number. In particular, it accommodates phonons
with short-dispersive energy wavelengths in the range 0 <

q � 2kF. This entails utilizing the dielectric response function
derived from the Lindhard model beyond the random phase
approximation for e-ph interactions, specifically addressing
phonons with short-dispersive energy wavelengths [47]. This
meticulous approach ensures a comprehensive representation
of the e-ph screening potential in the context of 2D Dirac crys-
tals. Using the appropriate model to calculate the dielectric
response function, the screening potential can be written as
follows:

φs(ψ ) = 1




(
2πQ2

q − 2πχ (q)

)
, (8)

where 
 is the unit-cell area of the 2D Dirac crystal, Q is
the ion charge, and χ (q) is the dynamic dielectric response
function written as a function of the phonon wave number,
q. Knowing the screening potential, we can write the phonon
scattering rate, τ , for the EP-E* and E-E*P* process as
follows:

1

τEP-E∗ = ∂γ EP-E∗
i→ f

∂〈nq〉 = 4π2α2

h̄

2kF+ε∑
q=0

q

(
1

q − 2πχ (q)

)2

× 〈 fk (1 − fk+q)〉 δ(Ek+q − Ek − cq), (9)

1

τE-E∗P∗ = ∂γ E-E∗P∗
i→ f

∂〈nq+1〉 = 4π2α2

h̄

2kF+ε∑
q=0

q

(
1

q − 2πχ (q)

)2

× 〈 fk+q(1 − fk )〉 δ(Ek+q − Ek + cq), (10)

where the variable α is defined as α = 1



( h̄2

2mc )
1/2

Q2, and is
dependent on the unit-cell area, mass, and the ion charge of the
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FIG. 2. (a) The four-particle e-ph interaction. It consists of the
annihilation of a pair of electrons and phonons and the creation of a
new pair, EP-E*P*, with a fermion propagator in the middle. (b) Due
to the low π -π∗ electron energy spacing in the zone-boundary region
of 2D Dirac crystal, akin to the energy of acoustic phonons, we
assume the four-particle process occurs at the zone boundary of the
2D Dirac crystal. The wave vector of the outgoing phonon scattered
to the first, fourth, fifth, and eighth neighboring lattice sites will
remain approximately the same, while the wave vector of the phonon
scattered to the second, third, sixth, and seventh neighboring lattice
sites will be much smaller than the annihilated phonon since its wave
vector will be hugely affected by the umklapp process rendering the
process inelastic.

2D Dirac crystal. The variable α is the variable that we will
use to differentiate between the different 2D Dirac crystals
under study. For a 2D Dirac crystal such as graphene with
a unit-cell area of 
 ≈ 3.2 × 10−16, we have α ≈ 10−7. By
subtracting the phonon scattering rate of the E-E*P* process
from the EP-E* process, we get the total phonon scattering
rate of the three-particle process and write it as follows:

τ (3) = τEP-E∗ − τE-E∗P∗
. (11)

In metals with huge Fermi energies, EF, where EF � kBT ,
the Fermi-Dirac distribution of the EP-E* process Eq. (9)
is much larger than the E-E*P* process Eq. (10), 〈 fk−q(1 −
fk+q )〉 � 〈 fk+q(1 − fk−q )〉. This leads to the total phonon
scattering rate of the three-particle process being approxi-
mately equal to the phonon scattering rate of the phonon
annihilation process, τ (3) ≈ τEP-E∗. However, this is not the
case in 2D Dirac crystals in which we have a limited con-
centration of free electrons, and the Fermi energy, EF, cannot
generally be assumed to be much larger than the Boltzmann
energy, kBT . Hence, considering the cancellation of the EP-E*
process by the E-E*P* process for low Fermi energies where
EF � kBT , it becomes imperative to delve into higher-order e-
ph interactions. By exploring these higher-order interactions,
we can gain a comprehensive understanding of the intricate
mechanisms that influence the electronic and thermal proper-
ties of 2D Dirac systems.

The second-order e-ph interaction is a four-particle pro-
cess. As shown in Fig. 2(a), the four-particle process consists
of the annihilation of a pair of electrons and phonons and the
creation of a new pair, EP-E*P*, with a fermion propagator
in the middle. The four-particle process can also consist of
an electron annihilation and phonon creation on the left-hand
side of the interaction and an electron creation and phonon
annihilation on the right-hand side of the interaction, EP*-
E*P, yielding the same result. We will therefore only consider
the EP-E*P* process and multiply the final result by 2. As

shown in Fig. 2(b), we assume the e-ph interaction of the
four-particle process occurs at the zone-boundary region, K ,
of the 2D Dirac crystal. This is because the π -π∗ electron
energy spacing in the zone-boundary region of 2D Dirac
crystals is considerably lower, akin to the energy of acous-
tic phonons, in contrast to the zone-center region [48,49],
making the e-ph interaction far more likely to occur at the
zone-boundary region. Also, unlike the three-particle process,
in the four-particle process the interaction of phonons with
zone-boundary electrons does not violate the conservation of
momentum. The interaction Hamiltonian of the four-particle
e-ph process shown in Fig. 2(a) is written as

H4
e-ph =

∑
q,q′′

∑
k,k′,k′′

√
h̄2

2mh̄ωq
· q φs(q) bqc†

k′ck

× ei(k′−k−q)·r e− i
h̄ (E ′

k−Ek−h̄ωq )·t PF (Ek′ , k′)

×
√

h̄2

2mh̄ωq′′
· q′′ φs(q

′′) b†
q′′c

†
k′′ck′

× e−i(k′′−k′−q′′ )·r e
i
h̄ (Ek′′ −Ek−h̄ωq′′ )·t , (12)

where PF (Ek′ , k′) is the fermion propagator [35,36,50], and
Ek′ and k′ are its energy and momentum. To study the
EP-E*P* process, we consider the reciprocal lattice of a hon-
eycomb Dirac crystal. As shown in Fig. 2(b), we assume that
the left-hand side of the four-particle process, e-ph annihi-
lation, occurs in the first Brillouin zone while the outgoing
electron and phonon can scatter to either the same Brillouin
zone or any of its seven neighboring sites. Due to the conser-
vation of momentum, when the outgoing phonon is scattered
to any of its neighboring sites, we have to deduct the in-
verse lattice vector �K from the wave vector of the outgoing
phonons. This is the so-called umklapp process. If the out-
going phonon is scattered to the same lattice site (first), or
any of the fourth, fifth, and eighth neighboring lattice sites,
its wave vector will remain approximately the same. This is
because the created phonon scattered to the fourth, fifth, and
eighth neighboring sites will not be affected by the umklapp
process, and the e-ph interaction will be approximately elastic.
If, on the other hand, the outgoing phonon is scattered to the
second, third, sixth, and seventh neighboring lattice sites, its
wave vector will be much smaller than the annihilated phonon
since its wave vector will be hugely affected by the umklapp
process and the process will be nearly inelastic. From the
interaction Hamiltonian of the four-particle process, we write
the transition rate as follows:

γ EP-E∗P∗
i→ f =

(
2π

h̄

)2( h̄2

2mc

)2

×
∑
q,q′′

∑
k,k′,k′′

q (q′′ − �K ) φ2
s (q) φ2

s (q′′ − �K )

(k′ − k − (c/vF)q)2

× 〈 fk (1 − fk′′ )〉〈nq(1 + nq′′ )〉 δ(Ek′ − Ek − cq)

× δ(Ek′′ + c(q′′ − �K ) − Ek′ ), (13)

The wave vectors of the phonons scattered to the first,
fourth, fifth, and eighth lattice sites will be elastic, q′′ −
�K → q′′, while the phonons scattered to the second, third,
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sixth, and seventh neighboring sites will be inelastic, q′′ −
�K → 0, resulting in γ EP-E∗P∗

i→ f → 0. Therefore, half of the
processes will destroy the phonon wave vector reducing the

phonon scattering rate of the EP-E*P* process to approxi-
mately half its total value. We write the phonon scattering rate
of the EP-E*P* process as follows:

1

τEP-E∗P∗ = 1

2

∂γ EP-E∗P∗
i→ f

∂〈nq+1〉 = 1

2

(
16π4α4

h̄

) qmax∑
qmin

q′′
max∑

q′′
min

kF∑
k,k′′=0

〈 fk (1 − fk′′ )〉〈nq〉 δ(Ek + cq − Ek′′ − cq′′)

×
(

1

q − 2πχ (q)

)2 q q′′

[(k2 + q2 − 2kq cos θ )1/2 − k − (c/vF)q]2

(
1

q′′ − 2πχ (q′′)

)2

, (14)

where θ is the angle of collision between the annihilated
phonon and electron, and the maximum and minimum of the
annihilated and created phonon wave vector can be derived
using Fig. 2(b). For the minimum phonon wave vector, we
have

qmin = q′′
min = �K − kF, (15)

and for the maximum phonon wave vector, we have

qmax = q′′
max =

√
(�K )2 + k2

F − 2kF(�K ) cos π/3. (16)

We have computed the scattering rate of in-plane phonons,
considering both the three-particle process [refer to Eq. (11)]
and the four-particle process (14). With the obtained phonon
scattering rates, our next step involves deriving the thermal
conductivity due to e-ph interactions for in-plane phonons in a
2D Dirac crystal. This e-ph thermal conductivity is expressed
through the following equation:

kth,(e-ph) = 1

2
v2

gr

∑
q

Cqτ, (17)

where vgr is the group velocity of acoustic phonons in the
2D Dirac crystal, and Cq is the specific-heat capacity per
unit area. A detailed derivation of Cq has been provided in
Appendix A. The total thermal conductivity of the 2D Dirac
crystal affected by the e-ph interaction can be achieved by
employing Matthiessen’s rule [51], a widely used approach
in solid-state physics. The expression for the total thermal
conductivity can be written as follows:

1

kth
= 1

kth,(0)
+ 1

kth,(e-ph)
, (18)

where kth,(0) is the initial thermal conductivity of the undoped
Dirac crystal without any e-ph interactions. To obtain accurate
results, we employ a MATLAB routine to numerically solve
the phonon scattering rate and calculate the e-ph thermal con-
ductivity considering both the three-particle and four-particle
processes. The analytical approach employed in this sec-
tion enhances our comprehension of first- and second-order
e-ph interactions within 2D Dirac crystals. While compu-
tational techniques such as density functional perturbation
theory [52], many-body perturbation theory [21,53], and
quantum Monte Carlo methods [54] often treat e-ph interac-
tions as minor perturbations and may not fully account for
strongly correlated interactions, they can also pose challenges
when applied to emerging or less explored materials like

recently discovered Dirac crystals. In contrast, the approach
detailed in this section is well-suited to address strongly cor-
related e-ph interactions, adaptable to various 2D Dirac crystal
systems, and provides insights into the intricate interplay be-
tween different types of 2D Dirac crystals. In the next section,
we will present a comprehensive analysis and discussion of
the obtained results. By examining the trends and behaviors
observed in the calculated e-ph thermal conductivity, we aim
to deepen our understanding of the heat conduction mecha-
nisms in the studied 2D Dirac crystal. Through this analysis,
we can gain valuable insights into the underlying physics and
make informed conclusions regarding the thermal properties
of the material.

III. RESULT AND DISCUSSION

To comprehend the significance of the E-E*P* process in
the context of the phonon scattering rate and the e-ph thermal
conductivity of 2D Dirac crystals, we initiate our investigation
by examining the three-particle e-ph interactions. In Figs. 3(a)
and 3(b), we have plotted the inverse phonon scattering rate
of a 2D Dirac crystal such as graphene with α ≈ 10−7 as a
function of the temperature at two different Fermi energies.

We observe that at low temperatures where EF � kBT ,
τ (3) ≈ τEP-E∗. However, as we increase the temperature, the
rate at which the E-E*P* process increases is faster than the
EP-E* process, affecting the total transition rate significantly.
Furthermore, in Figs. 3(c) and 3(d) we plot the e-ph thermal
conductivity of a 2D Dirac crystal for a three-particle pro-
cess with α ≈ 10−7 as a function of the temperature at two
different Fermi energies. We observe that although at low
temperatures where EF � kBT we have k(3)

th,(e-ph) ≈ kEP-E∗
th,(e-ph),

as we increase the temperature the E-E*P* process becomes
more important, affecting the e-ph thermal conductivity sig-
nificantly. Upon closer examination of Fig. 3, our analysis
reveals that an intriguing interplay occurs between the E-E*P*
process and the EP-E* process in the inverse phonon scat-
tering rate as the temperature rises. Specifically, the former
process begins to counteract the latter, ultimately causing the
inverse phonon scattering rate to approach zero at elevated
temperatures, EF 
 kBT . This phenomenon significantly im-
pacts the e-ph thermal conductivity. Consequently, it becomes
imperative to investigate higher-order e-ph interactions to gain
a comprehensive understanding of the thermal properties of
2D Dirac crystals. In Figs. 4(a) and 4(b), we plot the inverse
phonon scattering rate as a function of the Fermi energy, EF,
for in-plane phonons of a 2D Dirac crystal such as graphene
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FIG. 3. (a), (b) The inverse phonon scattering rate for in-plane phonons of a 2D Dirac crystal such as graphene with α ≈ 10−7, as a function
of the temperature. Although at low temperatures where EF � kBT , τ (3) ≈ τEP-E∗, as we increase the temperature the difference between τ (3)

and τEP-E∗ increases. This is because the rate at which the E-E*P* process increases is faster than the EP-E* process, affecting the total
transition rate of the 2D Dirac crystal significantly, which results in a decrease of the total inverse phonon scattering at high temperatures. (c),
(d) The e-ph thermal conductivity of a 2D Dirac crystal as a function of the temperature. Similar to the inverse phonon scattering rate, the
EP-E* is dominant at low temperatures and we have k(3)

th,(e-ph) ≈ kEP-E∗
th,(e-ph), however as we increase the temperature, the E-E*P* process becomes

important, affecting the e-ph thermal conductivity significantly.

with α = 10−7 at temperatures T = 300 and 1200 K. We
observe that while the three-particle process exhibits a higher
inverse phonon scattering rate than the four-particle process
at high Fermi energies, a notable shift occurs as we decrease
the value of EF. At lower Fermi energies, the inverse phonon
scattering rate of the four-particle process becomes larger and
assumes greater significance, warranting careful considera-
tion. The reason for this phenomenon lies in the cancelation
of the EP-E* process by the E-E*P* process at low EF to
kBT ratios. As a result, the three-particle process experiences a
rapid decrease, outpacing the decline of the four-particle pro-
cess. We further plot the e-ph thermal conductivity, Figs. 4(c)
and 4(d), as a function of the Fermi energy. Our observa-
tions indicate that incorporating the four-particle process in
the analysis of e-ph thermal conductivity results in a no-
tably slower increase in slope at small Fermi wave numbers
compared to considering only the three-particle process. This
finding emphasizes the significance of higher-order e-ph in-
teractions in studying 2D Dirac crystals, particularly when
examining low Fermi energies. The e-ph thermal conductivity
and phonon scattering rate can also be expressed as a function
of the carrier concentration instead of the Fermi energy. In 2D
Dirac crystals, the relationship between the Fermi energy, EF,
and the carrier concentration, n, can be described using the

following formula:

EF = vF
√

πn. (19)

The Fermi energy of 2D Dirac crystals can also be written in
terms of energy density. This relationship has been derived in
Appendix C.

Our research is meticulously focused on examining e-
ph interactions specifically with in-plane phonons, excluding
flexural phonons. Investigating in-plane phonons holds crit-
ical importance due to their pronounced role in the e-ph
interactions within 2D semiconductors. Compared to flexural
phonons, in-plane phonons demonstrate a significantly higher
relevance in the e-ph interactions of these materials, high-
lighting the unique dynamics of their thermal and electrical
conductivity [55]. Moreover, research indicates that in 2D
Dirac crystals, such as graphene, when we have σh symme-
try, a distinct lack of coupling exists between electrons and
acoustical phonons in the flexural mode [56]. This further
underscores the paramount importance of in-plane phonons in
understanding the fundamental properties and behaviors of 2D
Dirac crystals. Also, the distribution of thermal conductivity
across distinct phonon polarization branches in diverse Dirac
crystals is contingent upon factors such as sample size and
temperature. In the case of graphene nanoribbons, a notable
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FIG. 4. (a), (b) The relationship between the Fermi energy and the inverse phonon scattering rate for in-plane phonons of a 2D Dirac
crystal with α = 10−7 is observed. When EF is high, the inverse phonon scattering rate for the three-particle process is greater than that of the
four-particle process. Conversely, as the Fermi energy decreases, the inverse phonon scattering rate for the four-particle process becomes more
significant. This occurs because, at low EF, the EP-E* process is partially or fully countered by the E-E*P* process, causing the three-particle
process to decrease rapidly compared to the four-particle process. (c), (d) The e-ph thermal conductivity with respect to the Fermi energy of
a 2D Dirac crystal with α = 10−7. We observe an interesting behavior in the e-ph thermal conductivity of the 2D Dirac crystal. When we
incorporate the four-particle process in the calculation of the e-ph thermal conductivity, the rate of increase in slope is significantly reduced at
lower Fermi energies compared to when only the three-particle process is considered. This finding emphasizes the significance of higher-order
e-ph interactions in the investigation of 2D Dirac crystals, particularly at low Fermi energies.

reduction in the significance of flexural phonon modes is
observed with rising temperatures—declining from approxi-
mately 80% at T ≈ 10 K to 20% at 80 K. Beyond T > 100 K,
the predominant heat carriers undergo a transition to in-plane
phonons, constituting 90% of the total heat transfer [57,58].
This choice aligns with Klemens’ theory [59,60], emphasizing
the limited heat-carrying capacity of flexural phonons due
to their small group velocities and substantial Gruneisen pa-
rameter. Importantly, our consideration of higher-order e-ph
interactions is confined to elevated temperatures (T > 300 K),
where in-plane phonons overwhelmingly dominate. Compre-
hensive insights into this aspect are thoroughly discussed in
Appendix B, ensuring a nuanced and comprehensive under-
standing.

Numerous studies have delved into the distinctive thermal
characteristics exhibited by 2D Dirac crystals, with graphene
as a prominent example [61,62]. Subsequent investigations
have aimed to shed light on the effects of phonon disorder
resulting from lattice imperfections, irregularities, as well as
variations in crystal size and temperature, on the thermal con-
ductivity of different types of 2D Dirac crystals [57,63,64].
In this context, our research delves deeper into unraveling
the intricate interplay between e-ph thermal conduction and

the phonon scattering rate across different 2D Dirac crystals.
Here we study the phonon scattering rate and e-ph thermal
conductivity for another group of 2D Dirac crystals other than
graphene with α = 10−5. In Figs. 5(a) and 5(b) we plot the
inverse phonon scattering rate, and in Figs. 5(c) and 5(d) we
plot the e-ph thermal conductivity for in-plane phonons as
a function of the Fermi energy. We observe that similar to
2D Dirac crystals with α = 10−7, in 2D Dirac crystals with
α = 10−5, the inverse phonon scattering rate and kth,(e-ph) are
dominated by three-particle processes at high Fermi energies,
while at low Fermi energies the four-particle processes be-
come more important. By further comparing Figs. 4 and 5,
it is evident that raising the value of α leads to the preva-
lence of the four-particle process at higher Fermi energies.
This phenomenon occurs due to the diminishing disparity be-
tween first- and second-order e-ph interactions as α increases,
thereby increasing the likelihood of four-particle processes at
higher Fermi energies.

IV. CONCLUSION

In this paper, we present a theoretical framework for
computing the phonon scattering rate and the e-ph thermal
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FIG. 5. (a), (b) The inverse phonon scattering rate, as a function of the Fermi energy. At high Fermi energies, the dominant factor
influencing the inverse phonon scattering rate is the three-particle process. However, as we shift to lower Fermi energies, the significance
of the four-particle processes increases, indicating their growing importance in determining the inverse phonon scattering rate. (c), (d) The
e-ph thermal conductivity, as a function of the Fermi energy. The inclusion of the four-particle process results in a significant reduction in
the rate of increase in slope compared to when only the three-particle process is taken into account. We notice that increasing the parameter
α causes the dominance of the four-particle process to become more prominent at higher Fermi energies. This phenomenon arises because
as α increases, the difference between the strengths of first- and second-order e-ph interactions diminishes. Consequently, the probability of
four-particle processes occurring at higher Fermi energies increases as a result of this diminished disparity.

conductivity in 2D Dirac crystals for in-plane phonons. To
this end, we derive an accurate expression of the e-ph inter-
actions for acoustical phonons with short-dispersive energy
wavelengths necessary for studying the thermal properties
of 2D Dirac crystals. We then derive the phonon scattering
rate and the e-ph thermal conductivity for the three-particle
process. Additionally, our research explores the impact of
umklapp scattering on the e-ph thermal conductivity of 2D
Dirac crystals at elevated temperatures and the complex inter-
play between e-ph thermal conduction and phonon lifetimes
across different 2D Dirac crystals. Our findings demonstrate
a distinction between metals and 2D Dirac crystals in terms
of the considered processes. While metals focus solely on
the e-ph decay and the creation of a new electron, EP-E*,
in the three-particle process, 2D Dirac crystals necessitate
the inclusion of processes involving electron decay and the
creation of a new electron and phonon, E-E*P*. Our study re-
veals that at elevated temperatures and low Fermi energies, the
E-E*P* process has the potential to partially or entirely nullify
the EP-E* process. Consequently, it becomes imperative to
investigate higher-order e-ph interactions in order to compre-
hend the overall dynamics accurately. Ultimately, our findings
demonstrate the impact of the four-particle process, EP-E*P*,
on both phonon scattering rate and e-ph thermal conductivity.

Specifically, we observe its heightened prominence compared
to the three-particle process at low Fermi energies and high
temperatures. Future research in the field could explore two
intriguing aspects. First, we could explore the potential en-
gineering of thermal rectifiers in 2D Dirac crystals through
tailored e-ph interactions, enabling preferential heat flow in
one direction. Second, investigating how the electronic band
structure of 2D Dirac crystals, characterized by elements such
as Dirac cones and electronic dispersion, impacts e-ph inter-
actions and thermal transport represents another promising
avenue for exploration.
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APPENDIX A: SPECIFIC-HEAT CAPACITY

The specific heat of the crystal lattice can be written as [34]

Cq = ∂

∂T

∫
dq
4π2

h̄ωq

eh̄ωq/kBT − 1
. (A1)

The Debye model replaces all branches of the vibrational
spectrum with linear dispersion relations as follows:

h̄ωq = cq. (A2)

Additionally, the integration in Eq. (A1) across the first
Brillouin zone is substituted with an integration over a sphere
with a radius of qD. This radius is selected to encompass
precisely N permissible wave vectors, where N corresponds
to the number of ions present in the crystal. qD is the measure
of the inverse interparticle spacing, and its relation with the
unit surface area can be written in the following manner:

n = N



= q2

D

4π
, (A3)

where n is the total number of ions per unit surface area of the
crystal. We write qD as follows:

qD = 2

√
πN



. (A4)

We can therefore write the specific-heat capacity as follows:

Cq = ∂

∂T

∫ 2
√

πN



0

2πdq

4π2

cq

ecq/kBT − 1
. (A5)

The integral in Eq. (A5) can be further solved numerically and
by applying different approximations for low, intermediate,
and high temperatures [34].

APPENDIX B: THERMAL CONDUCTIVITY ALONG
DIFFERENT PHONON BRANCHES OF GRAPHENE

NANORIBBON AS A FUNCTION OF TEMPERATURE

Graphite crystal is conceptualized as a system comprising
thin elastic plates, each separated by a constant distance. The
carbon atoms within adjacent atomic layers are spaced at a
distance of 3.40 Å. In a hexagonal crystal, there exist five in-
dependent elastic constants, namely c11, c12, c13, c33, and c44.
When addressing vibrations of layers with atomic displace-
ments confined to their plane, only two independent constants,
c11 and c12, need consideration. Consequently, a hexagonal
layer can be viewed as a continuous isotropic medium. The
velocities of longitudinal and transverse waves within this
medium are as follows:

vl =
√

E

2ρ(1 + σ )
, (B1)

vt =
√

E

ρ(1 − σ 2)
, (B2)

where ρ, E , and σ are the volume density, Young’s modulus,
and Poisson’s ratio, respectively. Utilizing the semicontinuum

model outlined in [37], Nishira and Ivata [65] obtained analyt-
ical expressions for the different phonon frequency branches:

ω2
LA = v2

l

(
q2

x + q2
y

) + 4ζ

c2
sin2

(
cqz

2

)
, (B3)

ω2
TA = v2

t

(
q2

x + q2
y

) + 4ζ

c2
sin2

(
cqz

2

)
, (B4)

ω2
ZA = b2

(
q2

x + q2
y

)2 + 4µ2 sin2

(
cqz

2

)
+ ζ

(
q2

x + q2
y

)
, (B5)

where c is the interlayer spacing, b is the bending elastic pa-
rameter, ζ = c44/ρ, and μ =

√
c33/(ρc2). Understanding the

distinct phonon frequency branches and the phonon scattering
rate [58] allows us to compute the thermal conductivity for
each branch. While analytical integration for thermal con-
ductivity in graphene is not feasible, it can be effectively
accomplished through the Monte Carlo sampling method [66],
expressed as

kλ =
⎧⎨
⎩

kBωλ

2πδ
1
N

∑N
i=1

(h̄ω/kBT )2eh̄ω/kBT

(eh̄ω/kBT −1)2 ωλ cos2 θτλ, λ = LA, TA,

kBωλ

πδ
1
N

∑N
i=1

(h̄ω/kBT )2eh̄ω/kBT

(eh̄ω/kBT −1)2 ωλ cos2 θτλ, λ = ZA.

(B6)

Here, N represents the sampling number, and it is cru-
cial for its value to be sufficiently large, such as 106, to
enhance accuracy and minimize variance. The variable τλ is
the phonon scattering rate. Matthiessen’s rule, premised on
the independence of various scattering mechanisms, guides
the consolidation of diverse phonon interactions. This con-
solidation encompasses the three-particle phonon-phonon
interaction. The three-particle phonon-phonon scattering rate,
τ3-ph, as per time-dependent perturbation theory [67], is ex-
pressed as follows:

τ3-ph = Mv2
λωD,λ

γ 2
λ kBT ω2

e�λ/3T , (B7)

where M is the mass of a graphene unit cell, γλ is
the Gruneisen parameter, which controls the strength of
the phonon-phonon scattering process for each branch, ωD,λ is
the Debye frequency, and � is the Debye temperature for each
branch. We graph the thermal conductivity of a graphene rib-
bon with specific dimensions across various phonon branches
as a function of the temperature (see Fig. 6). A notable trend
emerges, revealing a substantial decrease in the significance
of flexural phonon modes as temperatures rise—from 80% at
T ≈ 10 K to 20% at 80 K. Beyond T > 100 K, the primary
heat carriers shift to in-plane phonons, constituting 90% of the
total heat transfer. This finding aligns with outcomes reported
in other studies [57,58]. Consequently, in the realm of elevated
temperatures (T > 300 K), characterized by higher-order e-
ph interactions, in-plane phonons overwhelmingly dominate
the heat transfer process.

APPENDIX C: ENERGY DENSITY
OF 2D DIRAC CRYSTALS

The energy density of 2D Dirac crystals depends on vari-
ous factors, including the crystals’ electronic band structure,
Fermi energy, and temperature. In a 2D Dirac material, such
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FIG. 6. The temperature-dependent thermal conductivity profiles
of distinct phonon branches in a graphene ribbon. Noticeably, with
an elevation in temperature beyond T > 100 K, the thermal conduc-
tivity becomes increasingly reliant on the in-plane branches of the
graphene ribbon.

as graphene, the electronic band structure near the Fermi level
can be described by Dirac cones, where the dispersion relation
follows the form

Ek = vFk. (C1)

To calculate the energy density, g(E ), of such a crystal, one
would integrate the density of states over the energy range
of interest. The energy density near the Fermi energy can be
written as

g(E ) = 2πk

(
dE

dk

)−1

= 2πEF

vF
2

. (C2)

It is essential to note that some calculations may necessitate
more intricate considerations, including the impact of impuri-
ties, temperature fluctuations, and interactions with external
fields. Moreover, the energy density is subject to variations
contingent upon the nuanced properties inherent to the partic-
ular Dirac crystal under examination.
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