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Topological edge/corner states and polaritons in dimerized/trimerized
superconducting qubits in a cavity
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We investigate a two-level topological system with an alternating XX coupling in a photon cavity. It is mapped
to a free boson model equally coupled to a photon, whose interaction is highly nonlocal. We analyze the Su-
Schrieffer-Heeger model and the breathing kagome model. Intriguing phenomena occur in the topological phase
due to hybridization between the photon field and the topological edge or corner state. As the photon coupling
increases, the symmetric edge or corner state is smoothly transformed into a polariton state coupled with the
edge or corner state. Simultaneously, the photon state is smoothly transformed into the symmetric edge state or
the C3-symmetric corner state. Furthermore, a state is detached from the bulk band and smoothly transformed
into a polariton due to hybridization with the photon field.
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I. INTRODUCTION

Topological insulator is a fascinating concept found in
condensed-matter physics [1,2]. A simplest example is the
Su-Schrieffer-Heeger (SSH) model, where topological edge
states emerge in the topological phase. Higher-order topo-
logical insulator is an extension, where topological corner
states emerge in the topological phase [3–9]. The breathing
kagome model is one of the simplest models of higher-order
topological insulators [9].

Cavity quantum-electrodynamics (QED) is a field of study-
ing the coupling effect between atoms with discrete levels and
a photon [10–14]. For example, by placing two mirrors in
parallel, the energy of photon is quantized and cavity QED
is realized. Cavity QED is also realized in superconducting
qubits based on Josephson junctions [15,16]. The coupling
constant between the discrete levels and a photon can be
largely enhanced experimentally [17–22]. Then, a polariton
emerges, which is a quasiparticle where the photon field is
strongly coupled with another degree of freedom. Polaritons
and related bound states in a cavity QED have been studied in
variety of contexts [23–27].

Recently, cavity quantum materials attracted much atten-
tion [28], where a material instead of an atom is deposited
in the mirrors. Superconductivity [29], ferroelectricity [30],
photon-magnon coupling [31], and quantum Hall effects
[32–34] are studied in the context of cavity quantum ma-
terials. A fermionic SSH model coupled with a photon is
studied [35–38]. Topological properties of interacting atoms
in the cavity are also discussed [39–43], where superconduct-
ing qubits enable us to realize strong interatomic couplings
[40,41].

In this paper, we investigate the topological zero-energy
edge and corner states in cavity-coupled arrays of an inter-
acting two-level system. It is mapped to a hopping model
with an additional site representing a photon, which couples
to all of the other sites equally. We analyze a dimerized
one-dimensional chain and a breathing kagome model with
alternating XX interactions. They are shown to be mapped

to the SSH model and the breathing kagome second-order
topological insulator model coupled with an additional photon
site, respectively. When the coupling with the cavity increases,
intriguing phenomena occur due to hybridization between the
photon field and the topological edge or corner state. The
symmetric edge or corner state is smoothly transformed into a
polariton. Simultaneously, the photon state is smoothly trans-
formed into the symmetric edge state or corner state. On the
other hand, the other topological edge state or corner states
remain as they are because they do not couple with the photon.
Furthermore, another polariton emerges due to hybridization
between the photon field and a state detached from the bulk
bound. Thus, we have two types of polaritons, each of which
is found to have the photon number 1/2 when the coupling
with the cavity is sufficiently large.

This paper is composed as follows. We introduce a Hamil-
tonian describing cavity-coupled two-level systems in Sec. II.
Photon loss effects are introduced in Sec. III. We study a
cavity-coupled SSH model in Sec. IV and a cavity-coupled
breathing kagome model in Sec. V. Section VI is devoted to
discussions.

II. CAVITY PSEUDOSPIN SYSTEM

We consider a system made of N qubits equally coupled
with one photon. With the use of the rotating wave approxi-
mation, cavity QED with the XX interaction is described by

Htotal = h̄ω0â†â + Hspin + h̄g
N∑

α=1

(â†σ−
α + âσ+

α ), (1)

where h̄ω0 is the photon energy, and h̄g is the coupling con-
stant between the photon and the two level system, together
with the pseudospin Hamiltonian

Hspin = h̄ωs

(
N∑

α=1

σ+
α σ−

α − 1

)
−

∑
〈α,β〉

Jαβ (σ−
α σ+

β + σ+
α σ−

β ),

(2)
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where α and β are the indices of atoms, 〈α, β〉 stands for the
nearest-neighbor sites, σ+

α (σ−
α ) is a pseudospin raising (low-

ering) operator describing the two levels of the atom α, and
Jαβ is the exchange coupling constant. We have subtracted the
energy of the single pseudospin h̄ωs in (2). The Hamiltonian
(1) is called the Jaynes-Cummings model [44] without the ex-
change interaction terms (Jαβ = 0). The exchange interaction
terms are realized based on superconducting qubits [40,41],
about which we review in the Appendix.

The total number Ntotal defined by

Ntotal = â†â +
N∑

α=1

σ+
α σ−

α (3)

is a conserved quantity, [Htotal, Ntotal] = 0. We consider the
case Ntotal = 1. A single photon can be experimentally pre-
pared [45–48]. In this case, the system (1) together with (2) is
equivalently described by the bosonic Hamiltonian

Hboson = −
∑
〈α,β〉

Jαβ (b̂†
α b̂β + b̂†

β b̂α ) + h̄ωs

N∑
α=1

b̂†
α b̂α

+ h̄g
N∑

α=1

(â†b̂α + b̂†
α â) + h̄ω0â†â − h̄ωs, (4)

where the use is made of the relations [49,50],

σ−
α σ+

β = b̂†
β b̂α, σ+

α σ−
β = b̂†

α b̂β,

â†σ−
α = â†b̂α, âσ+

α = b̂†
α â. (5)

The photon couples equally with each atom with the coupling
strength h̄g in (4), which implies that the additional coupling
due to the photon is highly nonlocal. Hence, it is a nontrivial
problem whether topological properties keep to hold in the
presence of the coupling with a photon.

We argue that the eigenenergy depends on the photon en-
ergy h̄ω0 through the combination

h̄�ω ≡ h̄ω0 − h̄ωs, (6)

because it appears only in the diagonal term of the Hamilto-
nian (4) as

h̄ωs

N∑
α=1

b̂†
α b̂α + h̄ω0â†â − h̄ω s. (7)

Its eigenvalue is h̄�ω when â†â = 1 and
∑N

α=1 b̂†
α b̂α = 0,

while it is zero when â†â = 0 and
∑N

α=1 b̂†
α b̂α = 1. Hence,

the energy depends only on h̄�ω although there are two
independent energies h̄ω0 and h̄ωs in the Hamiltonian.

III. PHOTON LOSS

Because the cavity is an open quantum system it is nec-
essary to include the effect of the photon loss. The Lindblad
equation for the density matrix ρ reads

dρ

dt
= − i

h̄
[Htotal, ρ] + γ

(
LρL† − 1

2
{L†L, ρ}

)
, (8)

A photon state

Material states

JA

JA

JA

JB

JB

JA JB

JB

(b)(a)

FIG. 1. (a) Illustration of the SSH model with each site equally
coupled with a single photon. (b) That of the breathing kagome
lattice.

where L is the Lindblad operator describing the dissipation γ .
This equation is rewritten in the form of

dρ

dt
= − i

h̄
(Heffρ − ρH†

eff ) + γ LρL†, (9)

where Heff is a non-Hermitian effective Hamiltonian
defined by

Heff ≡ Htotal − ih̄γ

2
L†L. (10)

The photon loss is described by the Lindblad operator as L =
â. The non-Hermitian effective Hamiltonian together with the
photon loss term reads

Heff ≡ Htotal − ih̄

2
γ â†â. (11)

The imaginary part of the energy spectrum is proportional to
the photon number 〈â†â〉, where the dissipation occurs only in
the photon state in the present model.

IV. CAVITY-COUPLED SSH MODEL

A. Model

By setting Jαβ = JA or JB alternatively in a one-
dimensional chain as illustrated in Fig. 1(a), we obtain the
dimerized XX model [51–53],

Hspin-SSH = −
∑

α

[JA(σ−
2α−1σ

+
2α + σ+

2α−1σ
−
2α )

+ JB(σ−
2ασ+

2α+1 + σ+
2ασ−

2α+1)]

+ h̄ωs

(
N∑

α=1

σ+
α σ−

α

2
− 1

)
, (12)

from the interaction part of the Hamiltonian (2). The cor-
responding bosonic Hamiltonian together with the photon
coupling and the photon loss reads

Hcavity-SSH = h̄ω0â†â −
∑

α

[JA(b̂†
2α−1b̂2α + b̂†

2α b̂2α−1)

+ JB(b̂†
2α b̂2α+1 + b̂†

2α+1b̂2α ) + h̄g(â†b̂α + b̂†
α â)]

+
N∑

α=1

h̄ωsb̂
†
α b̂α − h̄ωs − ih̄

2
γ â†â. (13)

This is the basic Hamiltonian that we analyze. We set

JA = J (1 + λ), JB = J (1 − λ) (14)
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with λ the dimerization. We take h̄γ /J = 0.2 in numerical
simulations throughout the paper.

In the absence of the photon coupling (g = 0), the Hamilto-
nian matrix is identical to the SSH model. The system is trivial
for |JA| > |JB| (λ > 0) and topological for |JA| < |JB| (λ < 0).
This is correct even in the presence of the photon coupling (
g �= 0), about which we prove in the next subsection.

B. Topological number

We show how to calculate the topological number in the
SSH system coupled with a photon. The Hamiltonian in the
momentum space reads

Ĥ (k)

= ψ̂†

⎛
⎝ 0 −(JA + JBe−iak ) h̄gδ(k)

−(
JA + JBe−iak

)
0 h̄gδ(k)

h̄gδ(k) h̄gδ(k) h̄�ω

⎞
⎠ψ̂

(15)

with

ψ̂ =
⎛
⎝b̂A

b̂B

â

⎞
⎠. (16)

The winding number for the boson b̂α is given by

W ≡ 1

2πai

∫ 2π

0
〈ψb| d

dk
|ψb〉dk, (17)

where |ψb〉 is the right eigenfunction and 〈ψb| is the left
eigenfunction of the boson b̂α . We separate it as

W ≡ W1 + W2 + W3, (18)

W1 ≡ 1

2πai
lim
ε→0

∫ 2π−ε

ε

〈ψb| d

dk
|ψb〉dk, (19)

W2 ≡ 1

2πai
lim
ε→0

∫ ε

0
〈ψb| d

dk
|ψb〉dk, (20)

W3 ≡ 1

2πai
lim
ε→0

∫ 2π

2π−ε

〈ψb| d

dk
|ψb〉dk, (21)

and calculate each term.
First, W1 is calculated by using the eigenfunction of the

two-band Hamiltonian

H (k) = −
(

0 JA + JBe−iak

JA + JBe−iak 0

)
, (22)

which is identical to the original SSH model. Eigenenergies
are

E (k) = ±
√

J2
A + J2

B + 2JAJB cos ak, (23)

and the eigenfunctions are

ψ (k) = 1√
2

(
1,∓JA + JBeiak

|E (k)|
)

. (24)

Hence, we have W1 = 1 for the topological phase (|JA| < |JB|)
and W1 = 0 for the trivial phase (|JA| > |JB|).

Next, W2 is calculated by rewriting (20) as

W2 ≡ 1

2πai
lim
ε→0

ε〈ψb|ψb〉dk, (25)

where |ψb〉 is the eigenfunction of (22) and 〈ψb| is the eigen-
function of

H (0) =
⎛
⎝ 0 −(JA + JB) h̄g

−(JA + JB) 0 h̄g
h̄g h̄g h̄�ω

⎞
⎠, (26)

where the eigenenergies are

E±(0) = −(JA + JB) + h̄�ω ±
√

(JA+ JB + h̄�ω)2 +8h̄2g2

2
,

E0(0) = JA + JB, (27)

and the corresponding eigenfunctions are

ψ±(0) = 1√
1 + 2| f±|2

( f±, f±, 1), (28)

ψ0(0) = 1√
2

(−1, 1, 0), (29)

with

f± ≡ JA + JB − h̄�ω ±
√

(JA + JB − h̄�ω)2 + 8h̄2g2

4h̄g
.

(30)

We take the part of boson b̂, which is given by

ψ (0) = 1√
2

(1, 1). (31)

We have the finite inner product

lim
ε→+0

〈ψb(ε)|ψb(0)〉 = 1, (32)

and hence, we obtain W2 = 0. In the similar way, we have
W3 = 0.

As a result, we conclude W = 1 for the topological phase
(|JA| < |JB|) and W = 0 for the trivial phase (|JA| > |JB|).
Hence, there is no topological phase transition induced by the
photon coupling.

C. Band structure

We show the energy spectrum for g = 0 as a function of
λ in Fig. 2(a), where we have chosen �ω < 0 as a typical
case, with �ω defined by Eq. (6). In the trivial phase (λ > 0),
there is no zero-energy edge state. In the topological phase
(λ < 0), there are two zero-energy edge states localized at
the left and right edges. They form the symmetric state and
the antisymmetric state under reflection. The photon state is
present as indicated by a red line parallel to the λ axis.

The energy spectrum is given for g �= 0 as a function of λ

in Figs. 2(b) and 2(c). For λ < 0, the symmetric topological
edge state slightly acquires a nonzero energy due to the pho-
ton coupling, while the antisymmetric topological edge state
remains precisely at zero energy because the antisymmetric
state does not couple with the photon. Furthermore, for all λ,
one flat state is detached from the bulk band, which we call
the detached state. It is essentially the same one that is known
in the Jaynes-Cummings model [54,55].

The photon couples with the symmetric bulk state in the
Hamiltonian (13), and its energy changes as indicated by a
red line tilted slightly against the λ axis.
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FIG. 2. Energy spectrum as a function of λ, describing bulk
bands in cyan, the topological edges in cyan and the photon in red.
(a) h̄g/J = 0, (b) h̄g/J = 0.1, and (c) h̄g/J = 0.2. The vertical axis is
the energy in units of J . The color of each curve represents the photon
number according to the color pallet given in Fig. 3(d). We have set
the site number N = 80. Note that we have used the abbreviation
g instead of h̄g/J in figures for brevity. This is the case for other
figures.

We show the energy spectrum as a function of g in Fig. 3,
by taking λ = ±0.5 and h̄�ω in the gap between the two bulk
bands as in Figs. 3(a1) and 3(b1) as a concrete example. We
show the energy spectra for other choices of h̄�ω in Fig. 6
below for the sake of completeness.

D. Trivial phase

We examine the trivial phase, where the spectrum consists
of four parts, one photon state, two bulk bands and one de-
tached state. See Figs. 3(a1) and 3(a2). The energy of the
photon state increases monotonously, while the energy of the
detached state decreases monotonously as in Fig. 3(a). We
make an analytical study of the spectra of the detached state
and the photon state later in Sec. III F, whose result is shown
in Fig. 3(c).

E. Polariton and topological edge state

We are interested in the evolution of the symmetric edge
state and the photon state as g increases in the topological
phase. We show their energy spectra as a function of g in
Figs. 3(b1)–(b3) and their wavefunctions for typical values
of g in Fig. 4, where we have set λ = −0.5. Note that the
wavefunction can be chosen real.

An anticrossing of these two states occurs at the critical
coupling gc, which is identified by the crossing point in the
imaginary energy spectrum [Fig. 3(b2)]. An enlarged pic-
ture of the anticrossing structure in the real energy spectrum
is shown in Fig. 3(b3), where we observe three branches,
the positive-energy branch, the zero-energy branch, and the
negative-energy branch. For each state we calculate the pho-
ton number 〈â†â〉, which we show in Figs. 3(b4) and 3(f),
where red and cyan indicate 〈â†â〉 = 1 and 〈â†â〉 = 0, respec-
tively, as in the color pallet in Fig. 3(d). In Figs. 3(b4) and
3(f), we find two polaritons transformed smoothly from the
edge state and the detached state.

First, we focus on the positive-energy branch, which starts
from the symmetric zero-energy edge state at g = 0. As g
increases, its energy remains almost zero below the anti-
crossing point (g < gc), but becomes positive and larger for
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FIG. 3. Energy spectrum as a function of the coupling strength g
in the trivial phase with λ = 0.5 for (a1) and (a2) and in the topologi-
cal phase with λ = −0.5 for (b1)–(b3). The photon energy is taken so
that h̄�ω ≡ h̄(ω0 − ωs ) = −0.5J . (b3) A detailed band structure at
the anticrossing point in the topological phase, where there are three
branches, the positive-energy branch, the zero-energy branch, and
the negative-energy branch. The vertical axis is the energy in units
of J . (b4) (f) The photon number 〈â†â〉 as a function of the coupling
strength g in each state, where h̄g/J � 0.7 in (b4) and h̄g/J � 3 in
(f). The photon number turns out to be 1/2 both for the edge polariton
and the detached polariton. (c) Analytical result of Eq. (33). (d) Color
pallet showing the photon number. This color pallet is used for all
figures. We have set the site number N = 80.

g > gc, as in Figs. 3(b1) and 3(b3). Naturally, the edge state
at g = 0 contains no photon. However, as g approaches gc and
also for g > gc, significant hybridization occurs between the
edge state and the photon field, and the hybridized edge state
contains a considerable amount of the photon number as in
Fig. 3(b4). We show the photon number of the hybridized edge
state in a wide range of g, 0 � h̄g/J � 3 in Fig. 3(f), where
it is found to approach to 1/2 as g increases. Such a state is a
polariton.

205421-4



TOPOLOGICAL EDGE/CORNER STATES AND POLARITONS … PHYSICAL REVIEW B 109, 205421 (2024)

FIG. 4. (a1)–(a7) The wavefunction in the positive-energy branch starting from the edge state toward a polariton state for various g.
(b1)–(b7) The wavefunction in the negative-energy branch starting from the photon state toward the edge state for various g. (c1)–(c7) The
wavefunction of the detached state starting from a bulk state toward a polariton state for various g. The horizontal axis is the site index from
1 to 80, with the site number N = 80. We have considered the topological phase (λ = −0.5). The anticrossing point is h̄gc/J = 0.158. The
color pallet is is given in Fig. 3(d), which indicates the photon number in each state.

We examine the wavefunction in the positive-energy
branch in Figs. 4(a1)–4(a7), where the sign at the bulk site
(α = L/2) is positive. The polariton state extents over the
sample coupled with edge states especially around h̄g/J =
0.2. These properties are reminiscent of the photon and the
topological edges. Consequently, as g increases, the symmet-
ric topological edge state is transformed smoothly into the
polariton state coupled with the edge state.

Second, the zero-energy blanch contains only the antisym-
metric topological edge state, which is independent of the
coupling constant g.

Third, we focus on the negative-energy branch, which
starts from a pure photon state at g = 0. As g increases, its
energy increases toward zero around the anticrossing point
gc, and becomes almost zero for g > gc, as in Figs. 3(b1)
and 3(b3). Naturally, the photon number is 1 at g = 0. As g
increases, the photon number decreases and eventually be-
comes zero as in Fig. 3(b4). We examine the wavefunction
in the negative-energy branch in Figs. 4(b1)–4(b7), where
the sign at the bulk site (α = L/2) is negative. The photon
state becomes a polariton state coupled with edges around
the critical point h̄gc/J = 0.158, and turns into the edge state
around h̄g/J = 0.3. Namely, as g increases, the photon state
is transformed smoothly into the symmetric edge state via a
polariton state.

The negative-energy branch contains the detached state as
well. It couples with the photon. We show the photon number
of the hybridized detached state in a wide range of g, 0 �

FIG. 5. (a) The critical coupling constant h̄gc as a function of the
photon energy −h̄�ω. The red curve indicates the numerical result,
while blue curve indicates the analytical result. (b) Energy spectrum
as a function of the coupling strength g. The photon energy h̄�ω =
−0.1J . The anticrossing point is h̄gc/J = 0.07.

h̄g/J � 3 in Fig. 3(f), where it is found to approach to 1/2 as
g increases. Such a state is also a polariton.

The wavefunction of the detached state is shown in
Figs. 4(c1)–4(c7). For small g, it is a bulk state. As the increase
of g, it becomes a polariton.

On the other hand, the structures of the two bulk bands is
independent of the coupling constant g. In particular, the bulk
gap does not close, and hence, the topological properties are
robust.

F. Analytic study

It is intriguing that one bulk state is detached from the bulk
band due to the interaction with a photon both in the trivial
and topological phases as in Figs. 3(a1) and 3(b1). In order to
understanding this phenomenon analytically, we make a study
of a simple model, where the bulk states collapse to N-fold
states at the energy −2J and couple with one photon equally.
The energy spectrum is analytically obtained as

E/h̄ = −2J + �ω − iγ /2 ±
√

(�ω − iγ /2)2 + 4Ng2

2
,

(33)

together with N − 1 zero-energy level. It is plotted as a
function of g in Fig. 3(c). These curves well explain the
numerically obtained the energy spectrum in Figs. 3(a1) and
3(b1).

By solving E = 0 in Eq. (33), the critical coupling is ana-
lytically obtained as

gc =
√

2J�ω

N
. (34)

It well agrees with the numerical result as shown in Fig. 5(a).
The rotating wave approximation requires the conditions

h̄g 	 h̄ω0 and h̄g 	 h̄ωs. In the present model calculation,
the critical coupling h̄gc/J = 0.158 may be too strong phys-
ically, where the validity of the rotating wave approximation
may not be justified. The critical coupling gc can be tuned by
controlling the photon energy h̄ω0 as in Fig. 5(a). It is possible
to choose an arbitrary small gc because gc = 0 for ω0 = ωs.
For instance, when we choose h̄�ω = −0.1J , the anticrossing
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FIG. 6. Energy spectrum as a function of the coupling strength g for various photon energy h̄�. The photon energy is (a) h̄�ω = −3J ,
(b) h̄�ω = −1.5J , (c) h̄�ω = 0, (d) h̄�ω = 0.5J , (e) h̄�ω = 1.5J , and (f) h̄�ω = 3J .

point is h̄gc/J = 0.07; see Fig. 5(b). However, we have made
a choice of the parameters to make clear the phenomena in
this paper.

G. Strong-coupling limit

In the strong-coupling limit (g → ∞), the hopping param-
eter can be neglected and the effective Hamiltonian is simply
given by

Hg = h̄g
N∑

α=1

(â†b̂α + b̂†
α â). (35)

The Hamiltonian is (N + 1) × (N + 1) matrix. The eigenen-
ergies are Eg = ±√

Nh̄g and (N − 1)-fold degenerate zero
energy, as agrees with Eq. (33) in the limit g → ∞. The
eigenfunction corresponding to Eg = ±√

Nh̄g is

ψ = {1/
√

N, 1/
√

N, · · · , 1/
√

N,±1}/
√

2, (36)

where the first N components are qubit eigenstates and the
last component is photon eigenstate. The eigenstate with
Eg = √

Nh̄g describes the polariton hybridized with the edge
state, while the one with Eg = −√

Nh̄g describes the polariton
hybridized with the detached state. Each of them has the pho-
ton number 1/2. These results are confirmed numerically in
Fig. 3(f). Correspondingly, the imaginary parts of the polari-
ton and the edge state approach –0.05 as shown in Fig. 3(e),
which is one half of the loss.

H. Photon energy dependence

We show energy spectra as a function of the coupling
strength g for various photon energy h̄�ω in Fig. 6. The
critical coupling constant gc = 0 for h̄�ω = 0 as in Fig. 6(a3).
There are no anticrossing between the photon band and the
edge states for h̄�ω > 0 as shown in Figs. 6(a4)–6(a6).

V. CAVITY-COUPLED KAGOME SECOND-ORDER
TOPOLOGICAL INSULATOR

We next analyze the breathing kagome XX model as illus-
trated in Fig. 1(b), which is a generalization of the dimerized
XX model to the breathing kagome lattice. The breathing
kagome lattice is composed of the sublattices A and B. The
XX interaction exists between the nearest-neighboring sites
in the breathing kagome lattice, where the trimerized hopping

JA and JB are defined in Fig. 1(b). The Hamiltonian is given
by

Hspin-Kagome = −
∑

〈α∈A,β∈B〉
[JA(σ−

α σ+
β + σ+

α σ−
β )

+ JB(σ−
β σ+

α + σ+
β σ−

α )]

+ h̄ωs

(
N∑

α=1

σ+
α σ−

α

2
− 1

)
, (37)

where 〈α ∈ A, β ∈ B〉 stands for the nearest-neighboring hop-
pings in the breathing kagome lattice shown in Fig. 1(b). We
introduce the trimerization parameter λ as in Eq. (14).

The corresponding Hamiltonian is a second-order topo-
logical insulator model [9] with the photon coupling and the
photon loss,

Hcavity-Kagome

= h̄ω0â†â + h̄ωs

∑
α

b̂†
α b̂α − h̄ωs

−
∑

{α∈A,β∈B}
[JA(b̂†

α b̂β + b̂†
β b̂α ) + JB(b̂†

β b̂α + b̂†
α b̂β )]

+ h̄g
∑

α

(â†b̂α + b̂†
α â) − ih̄

2
γ â†â. (38)

This is the basic Hamiltonian.
The unit cell contains three atoms, which is depicted by

red triangles in Fig. 1(b). In the momentum space, the Hamil-
tonian is given by

H = −

⎛
⎜⎜⎝

0 h12 h13 h̄gδ(k)
h∗

12 0 h23 h̄gδ(k)
h∗

13 h∗
23 0 h̄gδ(k)

h̄gδ(k) h̄gδ(k) h̄gδ(k) h̄�ω

⎞
⎟⎟⎠, (39)

with

h12 = JAei(kx/2+√
3ky/2) + JBe−i(kx/2+√

3ky/2), (40)

h23 = JAei(kx/2−√
3ky/2) + JBei(−kx/2+√

3ky/2), (41)

h13 = JAeikx + JBe−ikx . (42)
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FIG. 7. Energy spectrum as a function of λ in the breathing
kagome model, describing three bulk bands in cyan, the topological
corners in cyan and the photon in red. (a) h̄g/J = 0, (b) h̄g/J = 0.1,
and (c) h̄g/J = 0.2. The vertical axis is the energy in units of J . A
detached state from the bulk band is present in (b) and (c). We have
set the site number N = 108.

The Hamiltonian

HKagome =
⎛
⎝ 0 h12 h13

h∗
12 0 h23

h∗
13 h∗

23 0

⎞
⎠ (43)

is identical to that of the second-order topological insulator
model [9].

The analysis is similarly done as in the cavity-coupled SSH
model. The system is trivial for JA > JB (λ > 0) and topo-
logical for JA < JB (λ < 0). We show the energy spectrum
for g = 0 as a function of λ in Fig. 7(a). In the trivial phase
(λ > 0), there is no zero-energy edge state. In the topological
phase (λ < 0), there are three zero-energy topological corner
states localized at the three corners. One of them forms the
C3 symmetric state. In addition, the photon state is present as
indicated by a red line parallel to the λ axis.

The energy spectrum is given for g �= 0 as a function of λ in
Figs. 7(b) and 7(c). For λ < 0, the C3 symmetric topological
corner state slightly acquires a nonzero energy due to the
photon coupling, while the other two topological corner states
remain at zero energy. Furthermore, for all λ, one flat state is
detached from the bulk band.

We show the energy spectrum as a function of the coupling
constant g in Fig. 8. For definiteness, we take the photon
energy h̄(ω0 − ωs) in the gap between the two bulk bands near
the zero-energy level as in Figs. 8(a1) and 8(b1). In the trivial
phase the spectrum consists four parts, one photon state, two
bulk bands and one detached state; see Figs. 8(a1) and 8(a2).
The energy of the photon state increases monotonously while
the energy of the detached state decreases monotonously.

On the other hand, in the topological phase the photon state
anticrosses the C3 symmetric corner state as in Fig. 8(b1). The
anticrossing point gc in the real energy spectrum is identified
from the crossing point in the imaginary energy spectrum as
in Fig. 8(b2). A detailed structure of the anticrossing is very
similar to the one in the SSH model shown in Fig. 3(b3). We
observe three branches, the positive-energy branch, the zero-
energy branch, and the negative-energy branch. The main
difference is that there are two zero-energy corner states in
the zero-energy branch. In the positive-energy branch, the C3

symmetric edge state is transformed into a polariton coupled
with the corner state as g increases. In the negative-energy
branch, the photon state is transformed eventually into the C3

symmetric topological zero-energy edge state as g increases.
The detached state is transformed into a polariton as well.

FIG. 8. Energy spectrum of the breathing kagome model as a
function of the coupling strength g in the trivial phase with λ = 0.5
for (a1) and (a2) and in the topological phase with λ = −0.5 for
(b1) and (b2). The photon energy is taken so that h̄(ω0 − ωs ) =
−0.5J . The color pallet is the same as in Fig. 3, which indicates
the photon number in each state. A detailed band structure around
the anticrossing point in the topological phase is almost identical
to Fig. 3(b3). The main difference is that the zero-energy blanch
contains two topological corner states except for the C3 symmetric
one. The vertical axis is the energy in units of J . We have set the site
number N = 108.

VI. DISCUSSIONS

We have found in the cavity-coupled SSH/kagome model
that, as the coupling constant g is increased, the topological
edge/corner state is smoothly transformed into a polariton
coupled with edge/corner state, while the photon is smoothly
transformed into the topological edge/corner state. Because
the coupling constant g is continuously controllable [56–58],
the experimental observation of these phenomena will be fea-
sible.

The boson numbers 〈b̂†
α b̂α〉 of superconducting qubits are

experimentally accessible by quantum nondemolition mea-
surements [59]. On the other hand, the photon number 〈â†â〉
is experimentally observable in superconducting circuits [60].

Another way is the use of magnets, where strong photon-
magnon coupling is also realized [31,61,62]. There is a
possibility that the present system is realized in magnets.
Magnetic moments are represented by spin operators, which
correspond to the pseudospin operators in qubits. In the
presence of the strong photon-magnon coupling in a cav-
ity, the system Hamiltonian is identical to that of the qubit
system. Hence, the topological edge states emerge as in
the case of the qubit system. The local spin can be ob-
served by a spin-polarized scanning tunneling microscopy
(STM) [63].

We may think of possible applications. Recently, quantum
simulation based on qubits is an emerging field of condensed
matter physics [64,65]. If we excite a left edge, the wave is
propagated along the bulk in the trivial phase because the bulk
mode is excited [66,67]. On the other hand, it is not the case
in the topological phase because only the localized topological
edge mode is excited. Namely, quantum information is trans-
ferred in the trivial phase but not in the topological phase. Our
results may be useful for topological transfer of information.
This will be useful and interesting in future applications of
quantum communications and computations.
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CA CACB CB

antenna

Josephson unit
Josephson junction

mirror mirror

C C C C

FIG. 9. Illustration of a Josephson circuit. A Josephson unit is
composed of a Josephson junction (box with cross) and a shunted
capacitance C. A Josephson circuit is a chain of Josephson junctions
and alternating capacitances CA and CB. An antenna is attached to
each Josephson unit. The circuit is set in a cavity composed of two
mirrors.
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APPENDIX: DERIVATION OF THE EXCHANGE
COUPLING IN THE JOSEPHSON CIRCUIT

The exchange interaction terms in the cavity QED Hamil-
tonian (1) are realized based on superconducting qubits
[40,41]. We review the derivation of the exchange coupling
in the Josephson circuit [68] illustrated in Fig. 9. We assume
that the size of the Josephson circuit is much smaller than that
of the cavity, where the coupling is assumed to be a constant
g. The Lagrangian of the coupled circuit is

L(�1,�2, �̇1, �̇2) = C1

2
�̇2

1 + C2

2
�̇2

2 + Cg

2
(�̇1 − �̇2)2

+ Ic�0

2π
cos 2π

�1

�0
+ Ic�0

2π
cos 2π

�2

�0
.

(A1)

The canonical conjugate momentums are defined by

Q1 ≡ ∂L
∂�̇1

= (C1 + Cg)�̇1 − Cg�̇2,

Q2 ≡ ∂L
∂�̇2

= (C2 + Cg)�̇2 − Cg�̇1. (A2)

The corresponding Hamiltonian is calculated as

H(Q1, Q2,�1,�2)

≡ Q1�̇1 + Q2�̇2 − L
= ((C1 + Cg)�̇1 − Cg�̇2)�̇1

+ ((C2 + Cg)�̇2 − Cg�̇1)�̇2

−
[

C1

2
�̇2

1 + C2

2
�̇2

2 + Cg

2
(�̇1 − �̇2)2

+ Ic�0

2π
cos 2π

�1

�0
+ Ic�0

2π
cos 2π

�2

�0

]

= C1

2
�̇2

1 + C2

2
�̇2

2 + Cg

2
(�̇1 − �̇2)2

− Ic�0

2π
cos 2π

�1

�0
− Ic�0

2π
cos 2π

�2

�0
. (A3)

The inverse solutions of Eq. (A2) are

�̇1 = (C2 + Cg)Q1 + CgQ2

C1C2 + C1Cg + C2Cg
,

�̇2 = CgQ2 − (C1 + Cg)Q2

C1C2 + C1Cg + C2Cg
. (A4)

By inserting them, the Hamiltonian reads

H(Q1, Q2,�1,�2) = Q2
1

2C̃1
+ Q2

2

2C̃2
− Ic�0

2π
cos 2π

�1

�0

− Ic�0

2π
cos 2π

�2

�0
+ Q1Q2

2C̃int
, (A5)

with

C̃1 ≡ C1C2 + C2Cg + C2Cg

C2 + Cg
,

C̃2 ≡ C1C2 + C1Cg + C2Cg

C1 + Cg
,

C̃int ≡ C1C2 + C2Cg + C2Cg

2Cg
. (A6)

The quantized Hamiltonian is

H = 4EN (n − Ng)2â†â − EJ

2
(â† + â)

+ 4EN (n − Ng)2b̂†b̂ − EJ

2
(b̂† + b̂)

+ Jint(â
† − â)(b̂† − b̂). (A7)

We project it to the two-level model

H =
(

1

2
− Ng

)
σ (1)

z + EJ

2
σ (1)

x +
(

N2
g − Ng + 1

2

)
I2

+
(

1

2
− Ng

)
σ (2)

z + EJ

2
σ (2)

x +
(

N2
g − Ng + 1

2

)
I2

+ Jint(σ
(1)
+ − σ

(1)
− )(σ (2)

+ − σ
(2)
− ). (A8)

The interaction term

Hint = Jint(σ
(1)
+ − σ

(1)
− )(σ (2)

+ − σ
(2)
− ) (A9)

becomes

Hint = −Jint(σ
(1)
+ σ

(2)
− + σ

(1)
− σ

(2)
+ )

= −Jint
(
σ (1)

x σ (2)
x + σ (1)

y σ (2)
y

)
, (A10)

by using the rotating-wave approximation. It is the exchange
coupling in Eq. ( 12).

The coupling between the Josephson circuit and the photon
is made by attaching antenna as shown in Fig. 9. The Joseph-
son circuit system is set in the two mirrors forming a cavity.
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