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Magnetic flux induced topological superconductivity in magnetic atomic rings
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There have been numerous studies on topological superconductivity in magnetic atomic chains deposited
on s-wave superconductors. Most of these investigations have focused on spin-orbit interactions or helical
spin orders. In this paper, we propose a model for achieving one-dimensional topological superconductivity
in a magnetic atomic ring. This model utilizes a magnetic field and an antiferromagnetic/ferromagnetic order,
under the condition that the magnetic field is perpendicular to the moments of the magnetic order. On a
quasi-one-dimensional substrate surface, where the half-filled ring favors an antiferromagnetic configuration, we
demonstrate that either the magnetic field itself or a Rashba spin-orbit coupling guarantees the perpendicularity.
On a two-dimensional surface, where the ring favors ferromagnetic orders, the perpendicularity is achieved by
introducing a minor Rashba spin-orbit coupling.

DOI: 10.1103/PhysRevB.109.205420

I. INTRODUCTION

The exploration of topological superconductors, which are
theoretically predicted to host Majorana zero modes [1–15],
has emerged as a burgeoning field of research over the past
decade, wherein magnetism plays crucial roles. Typically, an
s-wave superconductor exhibits antagonistic relationships be-
tween magnetism and superconductivity. However, carefully
engineered artificial structures enable the coexistence of mag-
netism and superconductivity at the magnet-superconductor
interfaces through the proximity effect [16]. Recent years have
witnessed extensive research on realizing topological super-
conductivity by employing the proximity effect. Numerous
studies have focused on one-dimensional magnetic atomic
chains accompanied by helical [17–26], antiferromagnetic
(AFM) [27–33], and ferromagnetic (FM) orders [34,35]. No-
tably, compared to other magnetic orders, an AFM order does
not lift Kramer’s degeneracy between opposite spins, render-
ing it more compatible with spin-singlet superconductivity
[36–40], and thus more suitable for engineering topological
superconducting states.

For a long time, considerable research endeavors have been
devoted to AFM materials, which possess interesting features
such as robustness against magnetic perturbations, absence of
stray fields, and exhibition of ultrafast dynamics [40–47]. Nu-
merous methods have been explored and developed to achieve
AFM ordering in materials. In low-dimensional systems, a
prevalent method is to utilize the proximity effect, wherein the
AFM order is induced in magnetic atoms when they are de-
posited on the surface of strong AFM materials such as Mn2C,
NiPS3, FeB, or MnB [48–50]. Scanning tunneling microscopy
(STM) offers an alternative option to obtain AFM orders as
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it can manipulate atoms one by one. Various magnetic orders
have been achieved on superconductor substrates through arti-
ficial construction of magnetic atoms via STM [17,34,51–53].
In the last decade, an intriguing method has been proposed
for quasi-one-dimensional systems, where a magnetic atomic
chain can self-organize into a helical order with the pitch angle
equal to 2kF a by employing the Ruderman-Kittel-Kasuya-
Yosida (RKKY) mechanism [18–20]. As a consequence, the
magnetic chain exhibits AFM ordering when the system is
half filled.

Recently, a method has been developed to explore topolog-
ical superconducting states in quasi-one-dimensional systems
by exploiting a magnetic flux. When the flux threads through
the loop of an Aharonov-Bohm interferometer [54–59] or the
core of a nanotube [60–63], a topological superconducting
state can be induced in the presence of a spin-orbit cou-
pling (SOC). Nevertheless, the majority of existing routes
toward realizing topological superconductivity in quasi-one-
dimensional systems rely on two basic ingredients: strong
spin-orbit couplings or helical magnetic orders. In this paper,
we propose a topological superconducting model consisting
of a one-dimensional AFM atomic ring deposited on the sur-
face of an s-wave superconductor, in the absence of SOCs.
The ring exhibits superconductivity due to the proximity
effect from the substrate. We find that topological supercon-
ductivity emerges when a magnetic flux threads through the
ring and when the AFM moments are perpendicular to the
external magnetic field. Further studies reveal that the perpen-
dicularity is guaranteed by either the external magnetic field
or a Rashba SOC. Therefore, the proposed model serves as a
promising platform for realizing topological superconductiv-
ity.

The paper is organized as follows: In Sec. II, we intro-
duce the model of the antiferromagnetic ring and discuss its
topological properties. In Secs. III and IV, we examine the
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FIG. 1. (a) A schematic representation of an AFM ring with a
flux threading through it. (b), (c) The normal-state bands of the AFM
ring when the chemical potential μ = 0. In (b), the phase φ (= φ0/L,
where L is the number of sites in the ring) is 0, while in (c), φ is
0.06π . The magnetic Zeeman field V splits the bands of different
spins by an energy δV . The phase φ induces a shift of the bands
along the wave vector k. (d) The bands of the Hamiltonian (2) with
μ = μ0 = 0.1, � = 0.3, and φ = 0.06π . The other parameters in
(b)–(d) are JS = 0.2 and V = 0.4.

influences of the Rashba spin-orbit coupling and magnetic
field, respectively. Section V discusses the magnetic order
when both the Rashba spin-orbit coupling and magnetic field
coexist with superconducting pairing. In Sec. VI, we extend
the study to a ring deposited on a two-dimensional surface,
where the system favors a ferromagnetic order. Staggered
arrangements of magnetic atoms restore topological super-
conductivity, and the orientation of the magnetic moments
is determined by introducing a minor Rashba spin-orbit cou-
pling. Finally, in Sec. VII, we provide a brief summary and
discussion of the results.

II. MODEL OF ANTIFERROMAGNET RING ADOPT ON
S-WAVE SUPERCONDUCTOR

We consider a ring of antiferromagnetically ordered mag-
netic atoms deposited on the top surface of a hollow cylinder
s-wave superconductor, as illustrated in Fig. 1(a). The un-
derlying superconductor induces superconductivity in the
magnetic ring due to the proximity effect [18]. When a per-
pendicular magnetic field is applied on the surface, it creates
both a Zeeman field V on the ring and a flux φ0 through the
ring. Suppose the surface is in the x-y plane, as the magnetic
moments lie in the surface, the effective Hamiltonian of the
ring can be expressed as

H0 =
∑

j

te−iφc†
j c j+1 + J (−1) jc†

j S j · σc j

+ μc†
j c j + V c†

jσzc j + �c†
j↑c†

j↓ + H.c. (1)

The first term is the hopping term with a phase factor
φ = φ0/L, which can also be effectively obtained through a

supercurrent [27,64,65]. t is the itinerant electrons’ hopping
amplitude between nearest-neighbor sites and L is the total
number of sites in the ring. Here, c†

j = (c†
j↑, c†

j↓), with c†
jσ

the electron creation operators on site j. The second term
accounts for the in-plane AFM arranged magnetic atoms with
S j = S(cos ϕ, sin ϕ, 0), where ϕ is a random angle. J stands
for the exchange coupling constant between itinerant electrons
and the on-site magnetic moment, and σ = (σx, σy, σz ) is the
vector of spin Pauli matrices. The third and fourth terms
represent the chemical potential and external Zeeman field,
respectively. The last term is the pairing term due to the prox-
imity effect, and � is the induced pairing parameter which is
assumed to be uniform. All the energies are in units of t in the
entire paper.

The Hamiltonian can be expressed in momentum space
as H0 = ∑

k �
†
k H0(k)�k , where the basis spinor is �k =

[ fA, fB]T , with fδ = [cδk↑, cδk↓, c†
δ−k↓,−c†

δ−k↑]. Here, cδkα =√
2
L

∑
j e−ikR jδ cδ jα , where α labels spins and δ = A/B repre-

sents the sublattice sites,

H0(k) = [ξ0(k)τz + η0(k)]k/2 + �τx + V σz

+ μτz + (Jsxσx + Jsyσy)z, (2)

where ξ0(k) = 2t cos φ cos k
2 , η0(k) = 2t sin φ sin k

2 , sx =
S cos ϕ, and sy = S sin ϕ. τ are Pauli matrices acting on
particle-hole space. k/2 = cos k

2x − sin k
2y, with x,y,z be-

ing three Pauli matrices acting on the sublattice space.
The normal-state energy dispersions are given by ε±

1,2(k) =
μ ±

√
[ξ0(k) + η0(k) ∓ V ]2 + J2S2, which are illustrated in

Figs. 1(b) and 1(c). The presence of the Zeeman field causes a
splitting of the bands for different spins. The flux φ0 induces
a shift of the dispersions by 2φ along the wave vector k,
leading to an odd number of Fermi-level crossings on each
side of the first Brillouin zone when the chemical potential μ

satisfies JS < |μ| < μ1 or μ2 < |μ| < μ2 + δV . According
to Kitaev’s criterion [66], the system becomes topologically
nontrivial when a weak superconducting pairing is introduced
in these regions. However, as illustrated in Fig. 1(d), the
bands exhibit asymmetric behavior between the two sides of
the first Brillouin zone. Consequently, the condition |μ| <

JS becomes a prerequisite for the system to be gapped,
contradicting the aforementioned Kitaev’s criterion. This ob-
servation suggests that the topological criterion cannot be
met in a gapped system. Interestingly, when considering the
superconducting pairing, the bands exhibit a twisting behavior
near the Fermi level, indicating that the system may become
nontrivial if the pairing strength exceeds the energy gap. Fig-
ure 2(a) illustrates the open boundary energy spectrum with
varying pairing strength �. Zero-energy modes (denoted by
red solid lines) emerge when the pairing strength surpasses
the gap, suggesting the possible presence of topologically
nontrivial states.

To determine the exact topological properties of the Hamil-
tonian (2), a topological invariant needs to be introduced. Due
to the breaking of time-reversal symmetry by the magnetic
field, the system possesses only particle-hole symmetry C =
τyσyK (K denotes the complex conjugate operator), rendering
it a one-dimensional class-D superconductor [67], which is
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FIG. 2. (a) The open boundary spectrum of the AFM ring with
200 sites as a function of the superconducting pairing strength �.
(b)–(d) The topological phase diagrams for the ring. In (a)–(c), the
phase φ is set to 0.06π . (a), (b), (d) V = 0.4; (a), (c), (d) μ = 0.1,
JS = 0.2. The blue regions represent topologically nontrivial phases.
The red dashed line in (c) marks the scanning trajectory of the open
boundary spectrum shown in (a).

characterized by a Z2 topological invariant associated with
the particle-hole symmetry operator. The invariant, initially
proposed by Kitaev [66], is given by the sign of the Pfaf-
fian of the Hamiltonian matrix expressed in the Majorana
fermion representation. In this model, the Z2 invariant is
written as

M = Sgn
∏

k=K0

{[C(k) + V ]2 + J2S2 − �2 − μ2}, (3)

with C(k) = 2t sin φ cos k and K0 = 0, π . A detailed deriva-
tion process is presented in Appendix A. The condition M <

0 (M > 0) indicates the existence of topologically nontrivial
(trivial) states. We show the phase diagrams in Figs. 2(b)–
2(d). Therefore, we confirm that the zero modes observed in
Fig. 2(a) are indeed Majorana zero modes, as they manifest
within the topologically nontrivial regime denoted by the red
dashed line in Fig. 2(c).

III. THE INFLUENCE OF SPIN-ORBIT INTERACTION

The aforementioned model relies on the presence of AFM
order, wherein the magnetic field must be oriented perpendic-
ularly to the AFM moments. As elucidated in Sec. I, there
exist various means to attain AFM order. We concentrate
on the RKKY mechanism and employ a classic spin ap-
proximation for the magnetic atoms, treating them as local
magnetic fields, since many experimental results have closely
matched theoretical calculations well under the approximation
[33,34,68–73]. Prior research has indicated that when a mag-
netic atomic chain is formed on an s-wave superconductor,
the magnetic atoms self-organize into a helical magnetic mo-
ment structure, where the pitch angle is commensurate with

the Fermi wave vector at 2kF a [18–20]. Nevertheless, the
moments of an AFM order established via this method exhibit
a random orientation. To fix the orientation, it is imperative to
consider additional effects.

First, we consider the Rashba SOC induced in a mag-
netic atomic chain by breaking the inversion symmetry along
the z direction (assuming the substrate surface is in the x-y
plane) when the chain is deposited on a substrate. The Rashba
SOC takes the form αR(k × σ )z, which breaks the system’s
spin-rotation symmetry from SU(2) down to U(1), thereby
providing a means to adjust the orientation of the AFM mo-
ments. Since our focus is not on discussing the topologically
nontrivial superconductivity induced by a strong SOC in this
model, we minimize the influence of the SOC on topological
properties by assuming a negligible Rashba SOC with a tiny
αR. When the chain is oriented along the y direction, the SOC
becomes (αRk, 0, 0), requiring the moments of the AFM order
to be either parallel to the x axis, lying in the y-z plane, or
canted along the x axis relative to the y-z plane.

In our model, the AFM order is achieved by setting the
chemical potential to μ = 0. Under periodic boundary condi-
tions, the normal-state Hamiltonian with Rashba SOC can be
expressed in k space as

Hα (k) =
(

2t cos
k

2
+ 2αR sin

k

2
σx

)
k/2 + Jsxσxi

+ (Jsyσy + Jszσz )z, (4)

with k ∈ (−π, π ). i represents either z or the identity ma-
trix, denoted as 0. The possible orientations of the AFM
moments are described by selecting different i. When i =
z, the Hamiltonian describes a perfect AFM order with mo-
ments aligned along a random orientation, and the energy
dispersions are given by

ε±
12(k) = ±

√
A2 + B2 ∓ 2

√
B2

(
A2 − J2s2

x

)
, (5)

with A2 = 4t2 cos2 k
2 + J2S2 and B = 2αR sin k

2 . For the
energy dispersions of the form ε±

1,2(k) = ±√
f ∓ 2

√
g, the

two lower bands are given by ε−
1,2(k) = −√

f ∓ 2
√

g. Since
the system is half filled, the two lower bands are completely
occupied. At T = 0K , the free energy of the system can be
expressed as G = ∑

k F (k), where F (k) = ε−
1 (k) + ε−

2 (k) =
−

√
[ε−

1 (k) + ε−
2 (k)]2 = −√

2
√

f +
√

f 2 − 4g. Here,

Fα
1 (k) = −

√
2A2 + 2B2 + 2

√
(A2 − B2)2 + 4B2J2s2

x .
Evidently, with respect to sx, the minimum value of Fα

1 (k)
occurs at sx = ±S for every k.

When i = 0, the Hamiltonian contains a canted AFM
order. The energy dispersions are

ε±
1 (k) = ±

√
A2 − 2aJsx − B,

ε±
2 (k) = ±

√
A2 + 2aJsx + B, (6)
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with a = 2t cos k
2 > 0 for k ∈ (−π, π ). The sum of the two

lower bands can take two forms. One is Fα
2 (k) = −2|B|,

which is discarded since it is larger than Fα
1 (k) for all

values of k. The other form is Fα
2 (k) = ε−

1 (k) + ε−
2 (k) =

−
√

2A2 + 2
√

A4 − 4a2J2s2
x , whose minimum value occurs at

sx = 0 for each k.
We find Fα

1 min(k) = Fα
1 (k)|sx=±S < Fα

2 (k)|sx=0 = Fα
2 min(k),

indicating Fα
1 min(k) < Fα

2 min(k) and the free energy Gα
1 min <

Gα
2 min. Therefore, the system favors an AFM order with the

maximum |sx| = S and minimum |sy| = |sz| = 0, implying
that the AFM moments align with the x direction (noting that
the chain is oriented along the y direction). Obviously, if the
chain is instead oriented along the x direction with the SOC
taking the form (0, αRk, 0), the AFM moments will preferen-
tially align with the y direction. These results indicate that the
Rashba SOC can fix the AFM moments to be confined within
the surface plane and perpendicular to the ring, as illustrated
in Fig. 1(a).

IV. THE EFFECT OF MAGNETIC FIELD

An external magnetic field also breaks the SU(2) spin-
rotation symmetry down to U(1) spin-rotation symmetry. The
perpendicular magnetic field applied on the surface requires
the AFM moments to be either parallel to the z axis, confined
within the x-y plane, or canted along the z axis relative to
the x-y plane. The normal-state Hamiltonian containing these
three scenarios can be written as

HM (k) = 2t cos
k

2
k/2 + V σz

+ (Jsxσx + Jsyσy)z + Jszσzi. (7)

When i = z, the Hamiltonian describes the AFM
orders encompassing the first and second scenarios.
The sum of the two lower bands gives F M

1 (k) =
−

√
2(A2 + V 2) + 2

√
(A2 + V 2)2 − 4V 2(a2 + J2s2

z ). For
each value of k, F M

1 (k) is minimized when sz = 0, implying
that the minimum value of the free energy [GM

1 = ∑
k F M

1 (k)]
occurs at sz = 0.

When i = 0, the system exhibits a FM order with the
moments aligned with the direction of the magnetic Zee-
man field V . The corresponding Hamiltonian describes the

third scenario, with F M
2 (k) = −

√
2 f2 + 2

√
f 2
2 − 4g2, where

f2 = A2 + V 2 + 2V Jsz and g2 = a2(Jsz + V )2. When V >

a, F M
2 (k) monotonically decreases in the interval [−S, S].

When V < a, F M
2 (k) monotonically decreases in the inter-

val [−S, sz0], with sz0 = JS2V
a2−V 2 > 0. The minimum value of

F M
2 (k) occurs at sz = sz0 when sz0 < S, and sz = S when

sz0 > S. Thus, for both V > a and V < a, a positive sz is
required for the minimum value of F M

2 (k). As a consequence,
the minimum value of the free energy, GM

2 = ∑
k F M

2 (k), must
occur at a positive s′

z. Since the preceding discussion does not
have any limitation on sx and sy, if the condition s′

z < S is sat-
isfied, where S2 = s2

x + s2
y + s′2

z , nonzero values for sx and sy

are required. A detailed derivation is provided in Appendix B.
It is obvious that GM

1 min = GM
1 |sz=0 = GM

2 |sz=0 > GM
2 |s′

z
=

GM
2 min, indicating that the system favors a canted AFM order,

whose moments’ out-of-plane components in the z direction
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FIG. 3. (a) An AFM ring on an s-wave superconductor canted
under a magnetic field V applied perpendicular to the ring plane.
ϕ represents a random angle. (b) The canted AFM moments, with
the AFM components along the x direction and the FM components
along the z direction. (c) The FM moments along the z direction,
twisted from an initial AFM order by a large V . (d) The cosine of
the canted angle as a function of V for different SOC strengths with
JS = 0.2.

are ferromagnetically ordered and the in-plane components in
the x-y plane remain antiferromagnetically ordered, as shown
in Fig. 3(a). Continuously increasing the strength of the mag-
netic field, the AFM order will eventually transition into a
fully FM order, as illustrated in Fig. 3(c).

V. MAGNETISM UNDER SPIN-ORBIT COUPLING,
MAGNETIC FIELD, AND SUPERCONDUCTIVE PAIRING

When both the Rashba SOC and perpendicular magnetic
field are present simultaneously, they naturally compete due
to their adherence to different U(1) spin-rotation symmetries.
This competition yields a unilateral outcome, as the U(1) sym-
metry of the SOC is disrupted, while the U(1) symmetry of
the magnetic field remains intact. Consequently, the magnetic
field induces FM order, thereby breaking the U(1) symmetry
of the SOC. The subsequent proof will substantiate this claim.

The Hamiltonian, which encompasses both a perpendicular
magnetic field and in-plane Rashba SOC, is derived by in-
corporating 2αR sin k

2σxk/2 into Hamiltonian (7). When i =
z, F1(k) yields F1(k) = −

√
2 f1 + 2

√
f 2
1 − 4g1, where f1 =

A2 + B2 + V 2 and g1 = B2(A2 − J2s2
x ) + V 2(a2 + J2s2

z ). The
minimum value of F1(k) coincides with the minimum of g1,
necessitating sx = ±S, and sz = sy = 0.

When i = 0, the equation F2(k)= −√
2 f2+2

√
f 2
2 − 4g2 holds, with f2 = A2 + V 2 + B2 + 2V Jsz

and g2 = B2(a2 + J2s2
y ) + a2(Jsz + V )2. It is evident that to

obtain the minimum value of F2(k), sy = 0 is required. When
V > aT , where T = Jsz+V√

B2+(Jsz+V )2
, F2(k) monotonically

decreases within the interval [−S, S]. When V < aT , F2(k)
exhibits monotonic decrease in the interval [−S, sz0], with
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sz0 = V
D−2(a2−V 2 )+

√
D2+4B2(a2−V 2 )

2J (a2−V 2 ) > V B2+J2S2

2J (a2−V 2 ) > 0 and

D = a2 − V 2 + B2 + J2S2. The minimum value of F2(k)
occurs at sz = sz0 when sz0 < S, and at sz = S when
sz0 > S. These results closely resemble those obtained
when considering only the perpendicular magnetic field,
as discussed in Sec. IV. The minimum value of F2(k)
requires a positive sz under both conditions V > aT and
V < aT . Hence, G2 min is located at a positive s′

z. For a more
comprehensive derivation, refer to Appendix C.

It is observed that G1 min = G1|sz=0 = G2|sz=0 > G2|sz=s′
z
=

G2 min, indicting a preference for canted antiferromagnetically
ordered moments with induced FM components aligned paral-
lel to the magnetic field V . Furthermore, the SOC continues to
influence the orientation of the AFM components, as depicted
in Fig. 3(b), rather than allowing random orientations, which
is indicated by the requirement of sy = 0 for G2 min. Fig-
ure 3(d) presents the numerically solved results of the induced
FM orders under varying strengths of SOC and magnetic
field within a 160-site ring. It appears that the SOC not only
influences the orientation of the AFM components, but also
plays a role of compensating for the effects of the magnetic
fields.

When introducing a flux φ0 into the system, the wave
vector k is replaced with k ± 2φ (where φ = φ0/L), while the
structure of F (k) remains unchanged. The flux solely shifts
the bands along the k direction without elevating or lowering
any band and has no impact on the free energy.

When the AFM ring is deposited on an s-wave su-
perconductor, the canted magnetic moments persist as
AFM in the x-y plane and FM along the z direction.
We self-consistently solve the real-space Bogoliubov–de
Gennes (BdG) equation for the modified Hamiltonian
(1), where J (−1) jS j is substituted with JS j and S j =
S(sin θ j cos ϕ j, sin θ j sin ϕ j, cos θ j ). We select a ring consist-
ing of 160 sites and initialize the process with random values
of θ j and ϕ j at each site. Throughout this process, we exclu-
sively perform self-consistent calculations to determine the
orientation of each magnetic moment with a fixed pairing
strength � (the detailed self-consistency process can be found
in Ref. [19]). Figure 4(a) presents numerical results of the
induced FM components of the magnetic moments for varying
pairing strengths, while more detailed results, including AFM
components, are depicted in Figs. 4(b) and 4(c). Our results
indicate that a weak pairing, such as � = 0.1, does not disrupt
the magnetic orders present in the normal state (� = 0), as
illustrated in Fig. 4(a). When the pairing strength increases,
orders deviate from the normal state. This deviation generates
not only in the induced FM components, but also in the AFM
components. For example, when � = 0.35, the AFM compo-
nents no longer align along the x axis, but can potentially exist
along any direction within the x-y plane. With a larger �, such
as � = 0.6, the AFM components are completely oriented
along the y axis. These deviations occur due to the significant
Cooper pairing strongly distorting the band structure, leading
to adjustments in the free energy and magnetic order. Never-
theless, as long as the AFM components are confined to the
x-y plane, the Hamiltonian (1) can be realized by modifying
Jsx(y) to Jsx(y) sin θ and V to V + JS cos θ . Figures 4(e) and
4(f) display the Majorana zero modes and one example of
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FIG. 4. Self-consistently solved magnetic orders and the corre-
sponding zero modes in real space for a system with 160 sites. (a) The
FM moment components induced by a magnetic field; (b)–(d) both
the induced FM and the in-plane AFM components along the x-y
directions under different superconducting pairing strengths. The
parameters are set as αR = 0.05, JS = 0.2, φ = 0.05π , and μ = 0.
(e), (f) The open boundary energy levels of the ring and LDOS of
one zero mode, respectively. The magnetic configuration is selected
from (c) and marked by open circles for � = 0.35 and V = 0.4. The
“N” in (e) denotes the energy-level index.

their local density of states (LDOS) in a scenario where the
AFM components deviate from the x direction. The magnetic
structure, selected from Fig. 4(c), is marked by openy circles
with fixed � = 0.35 and V = 0.4.

VI. MAGNETIC ORDER ON 2D SURFACE

If the substrate superconductor surface is sufficiently large
to be treated as two dimensional (2D), the magnetic atoms ex-
hibit a preference for FM order [23]. We find that topological
superconductivity is reconstructible by adopting the magnetic
atoms on the next-nearest-neighbor lattice sites. When a verti-
cal magnetic field is applied to the surface and the substrate’s
influence is integrated out [18], the 1D effective Hamiltonian
can be expressed in k space as

Ĥ (k) = [ξ0(k)τz + η0(k)]k/2 + �τx + V σz

+ J (sxσx + syσy)(z + 0)/2. (8)

The system remains a one-dimensional class-D superconduc-
tor, and the Z2 invariant can be determined by calculating
the Pfaffian of the Hamiltonian matrix in the Majorana
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FIG. 5. (a)–(d) The topologically nontrivial phases (blue regions)
in the parameter space with different patch angles ϕ. (e) The open
boundary energy spectrum with the scanning trajectory denoted by
a red dashed line in (b). (f) The LDOS of the zero mode marked
in (e) by the open circle. In (a)–(f), αR = 0, φ = 0.04π , and � =
0.5. Other parameters in (a)–(d) are ϕ = 0, 0.01π , 0.1π , and 0.2π ,
respectively. In (e) and (f), ϕ = 0.01π , JS = 0.2, and in (f), V = 0.4.

fermion representation. The calculation method is detailed in
Appendix A and the corresponding topological phase diagram
is presented in Fig. 5(a).

Contrary to AFM orders, the SOC or magnetic field do
not ensure the perpendicularity between the ferromagnetically
ordered moments and the magnetic field, which is crucial
for the system to exhibit topological nontriviality. The U(1)
spin-rotation symmetry of the Rashba SOC promotes FM
order with in-plane moments, but it is disrupted by the per-
pendicular magnetic field, favoring FM order with moments
parallel to the field. When both the magnetic field and SOC
are present simultaneously, the FM moments are likely to
align parallel to the magnetic field. However, previous studies
have shown that in the presence of SOC, magnetic atoms favor
a helical magnetic order with a pitch angle of 2kRa, where
kR = m∗αR [20,23], and m∗ represents the effective mass
of electrons. When the magnetic field exceeds the critical
value associated with the SOC energy scale αRkF , a homo-
geneous magnetization parallel to B is induced and the helical
components become perpendicular to B [20]. In the subse-
quent discussion, we aim to briefly explore the potential for
achieving topological superconducting states in this helically

ordered ring. For simplicity, we exclude the SOC term in the
Hamiltonian and disregard the induced homogeneous mag-
netization along B. This decision is justified by the minor
influence of the tiny SOC on the topological properties, re-
sulting solely in a small pitch angle for the helical order.
Moreover, the induced homogeneous magnetization is rel-
atively small in comparison to the external field, and its
magnitude varies with different strengths of B. After consid-
ering the negligible SOC and the resulting small pitch angle,
denoted as ϕ, we apply the transformation dj↑ = c j↑ei jϕ/4 and
d j↓ = c j↓e−i jϕ/4 to the Hamiltonian, yielding the expression
of the Hamiltonian in k space as

Ĥ ′(k) = [ξk/2τz + ηk/2]k/2 + �τx + V σz

+ JSσx (z + 0)/2, (9)

with ξk/2 = 2t cos φ cos ϕ

4 cos k
2 + 2t sin φ sin ϕ

4 cos k
2τzσz and

ηk/2 = 2t sin φ cos ϕ

4 sin k
2 − 2t cos φ sin ϕ

4 sin k
2τzσz. It can be

anticipated that if the pitch angle is small, the system’s
topological properties closely resemble those of a ring with
in-plane FM moments (ϕ = 0). In Fig. 5(b), we present the
topological phase diagram of the Hamiltonian (9) with a small
pitch angle of ϕ = 0.01π . The topologically nontrivial area
is almost the same as that of the FM order. To test the sta-
bility of the topological phases against the helical orders, we
examine the effects of different pitch angles and present the
results in Figs. 5(b)–5(d). The comparisons confirm that the
topological phases are robust despite variations in the pitch
angles. Since a half-filled ring with a helical order generally
does not exhibit topologically nontrivial superconductivity;
these nontrivial phases are induced by the flux φ0. Finally,
we show the open boundary spectrum of the ring with 160
sites in Fig. 5(e), along with the LDOS of a zero mode in
Fig. 5(f). This zero mode is localized at the ends of the ring
and identified as a Majorana zero mode.

VII. SUMMARY AND DISCUSSION

We present a one-dimensional topological superconductor
model with an AFM ordered ring on an s-wave supercon-
ductor. The model requires a perpendicular magnetic field
imposing on the ring, providing both a Zeeman field normal
to the AFM moments and a magnetic flux through the ring.
We first analyze the effects of an in-plane Rashba SOC and
the perpendicular magnetic field in the normal states. Both of
them reduce the symmetry of the system, leading to distinct
orientations of the magnetic moments. The Rashba SOC fa-
vors in-plane and chain-perpendicular AFM moments, while
the perpendicular magnetic field cants the in-plane AFM mo-
ments by inducing FM components parallel to the field and
maintaining the in-plane AFM components with a random
direction. When both the in-plane Rashba SOC and perpendic-
ular magnetic field are present, the competition between their
influences is one sided. The magnetic field tends to induce the
FM components along its direction, while the SOC reinforces
the effect of the magnetic field and governs the orientation
of the in-plane AFM components by ensuring that they are
perpendicular to the chain.

Second, we investigate the influence of the superconduct-
ing pairing which distorts the bands near the Fermi level. The
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pairing primarily impacts the canted AFM order by twisting
the orientation of the in-plane moment components, which
appears to change from being perpendicular to the ring to
being parallel as the pairing strength increases. Such a twist
does not hinder the realization of one-dimensional topological
superconductivity.

Third, on the two-dimensional surface, the RKKY effect
favors FM magnetic order, whose moments cannot be oriented
normal to the external magnetic field. We introduce a minor
Rashba SOC to construct a helical magnetic order with a small
pitch angle. The helical magnetic order’s moments can be
oriented in-plane by applying a perpendicular magnetic field.
With this magnetic order, if magnetic atoms are deposited on
next-nearest-neighbor lattice sites of an s-wave superconduc-
tor, a magnetic flux can induce topological superconducting
states.

To achieve topological nontriviality in our model, J2S2 −
μ2 and �2 must be on the same order of magnitude, as il-
lustrated in Fig. 2(b). In experiments, the exchange coupling
strengths are expected to be of the order of electronvolts,
while the superconducting order parameters � are of the
order of millielectronvolts when depositing transition-metal
atoms onto conventional superconductors. It is a big chal-
lenge to find high � superconductors, while increasing the
chemical potentials and reducing the strengths of exchange
couplings are feasible solutions. There are reports of achiev-
ing small J when depositing Fe atoms onto the surface
of superconducting Ta(100) − (3 × 3)O [74], and also re-
ports of reducing J through the hydrogenation of adatoms
[75] or replacing the magnetic atoms with paramagnetic
metal-organic molecules, where the molecular ligand with
inert organic groups separates the central magnetic ion from
its conducting environment [76].

Recent studies have investigated the impact of quantum
many-body effects on the topological properties of dilutely
deposited magnetic chains, where the spins of the mag-
netic atoms are treated quantum mechanically [77,78]. It
is a challenge to stabilize the magnetic structure under
this effect. However, the actual spin structure of a mag-
netic chain is influenced by various effects, such as the
RKKY effect, Dzyaloshinskii-Moriya interaction, SOC, and
the Kondo effect. The dominant interaction depends on the
substrate material, adatom species, distances between mag-
netic atoms, and exchange coupling strengths. Nevertheless,
the classical approximation remains a valuable tool, given
its success in explaining numerous experimental observations
[33,34,68–73]. Our proposal presents a potential approach
to engineer the magnetic spin structure and achieve topo-
logical superconductivity. We believe this manuscript may
provide valuable insights for experimental investigations in
this field.
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APPENDIX A: CALCULATION
OF THE INVARIANT M

Here we present two approaches to calculate the Z2

invariant M of the Hamiltonian (1). The first approach
involves transforming the Hamiltonian directly into the
Majorana fermion representation. We choose the basis
[rA, j, rB, j]T , where rδ, j = [aδ,2 j−1,↑, aδ,2 j,↑, aδ,2 j−1,↓, aδ,2 j,↓]
and cδ, j,α = 1√

2
(aδ,2 j−1,α + iaδ,2 j,α ), c†

δ, j,α = 1√
2
(aδ,2 j−1,α −

iaδ,2 j,α ), with δ = A/B representing the sublattice sites. Sub-
sequently, we perform a Fourier transformation to express
the Hamiltonian in the Majorana fermion representation
in k space,

Ĥ0(k) =
(

2t sin φ sin
k

2
− 2t cos φ cos

k

2
σy

)
k/2

− μσy − V τzσy + �τyσx − (Jsxτxσy − Jsyτy)z.

The Z2 invariant is expressed as

M = Sgn
∏

k=K0

{Pf[Ĥ0(k)]} = SgnP(0)P(π ),

with Pf denoting the Pfaffian and K0 = 0 or π ,
P(0) = (4t2 cos2 φ + �2 + J2S2 − μ2 − V 2)2 − 4(J2S2 −
μ2)(�2 − V 2), and P(π ) = (4t2 sin2 φ − �2 + J2S2 − μ2 −
V 2)2 − 4V 2(�2 − J2S2 + μ2).

Employing the second approach, we initially perform a
unitary transformation on the Hamiltonian (1), such that c j↑ =
ei

ϕ j
2 d j↑ and c j↓ = e−i

ϕ j
2 d j↓. Here, ϕ j+1 − ϕ j = π represents

the different angle between the magnetic moments of two
neighboring atoms in the antiferromagnetically ordered mag-
netic system. After that, the Hamiltonian can be written as

H ′
0 =

∑
j

ite−iφd†
j σzd j+1 + Jd†

j S · σd j + μd†
j d j

+ V d†
j σzd j + �d†

j↑d†
j↓ + H.c.,

with d†
j = (d†

j↑, d†
j↓). Then we express the transformed

Hamiltonian in the Majorana fermion representation. We em-
ploy the basis [a2 j−1,↑, a2 j,↑, a2 j−1,↓, a2 j,↓]T to the transfor-
mations d j,α = 1√

2
(a2 j−1,α + ia2 j,α ) and d†

j,α = 1√
2
(a2 j−1,α −

ia2 j,α ) to express H ′
0 in the Majorana fermion representation

and then express it in k space. We have

Ĥ ′
0(k) = 2t cos φ sin kτz − (2t sin φ cos k + V )τzσy − μσy

+ �τyσx − Jsxτxσy + Jsyτy.

The Z2 invariant is written as

M = Sgn
∏

k=K0

{Pf[Ĥ ′
0(k)]} = Sgn

∏
k=K0

{[C(k) + V ]2

+ J2S2 − �2 − μ2},
with C(k) = 2t sin φ cos k and K0 = 0, π .

We have confirmed the consistency of the results obtained
by the two methods by comparing the phase diagrams calcu-
lated using each method.
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APPENDIX B: DERIVATION OF THE INFLUENCE OF MAGNETIC FIELD

When i = z, the energy dispersions of the Hamiltonian (7) are given by

ε±
1,2(k) = ±

√
A2 + V 2 ∓ 2

√(
a2 + J2s2

z

)
V 2.

We have F M
1 (k) = −

√
2(A2 + V 2) + 2

√
(A2 + V 2)2 − 4V 2(a2 + J2s2

z ). F M
1 (k) attains its minimum value for all values of k

when sz = 0. Thus the free energy GM
1 = ∑

k F M
1 (k) is minimized when sz = 0.

When i = 0, the energy dispersions become

ε±
1,2 = ±

√
A2 + V 2 + 2JszV ∓ 2a(Jsz + V ),

and F M
2 (k) = ε−

1 + ε−
2 . The extremum of F M

2 (k) can be determined by differentiating F M
2 (k) with respect to sz. ∂F M

2 /∂sz =
J (V −a)ε−

2 +(V +a)ε−
1

ε−
1 ε−

2
. When a < V , ∂F M

2 /∂sz < 0, F M
2 monotonically decreases. The minimum value of F M

2 occurs at sz = S. When

a > V , F M
2 has only one extremum value, which exists at sz0 = JS2V

a2−V 2 > 0, indicating that F M
2 is monotonic in both sides of

the extremum value. We can judge whether it monotonically decreases or increases through checking the sign of differentiating
F M

2 (k) at any arbitrary sz. For convenience, we choose sz = −S. We find when JS < a + V , ∂F M
2 /∂sz|−S = − 2aJ2S

ε−
1 ε−

2
< 0, and

when JS > a + V , ∂F M
2 /∂Jsz|−S = −2J JSV +a2−V 2

ε−
1 ε−

2
< 0. F M

2 monotonically decreases from −S to sz0. If sz0 < S, the minimum

value of F M
2 occurs at sz = Sz0. If sz0 > S, the minimum value occurs at S. Since sz0 is dependent on k, the precise value of the

induced FM order cannot be readily determined. However, it can be affirmed with certainty that the free energy GM
2 = ∑

k F M
2 (k)

possesses a minimum value at a positive value of s′
z.

APPENDIX C: DERIVATION OF THE INFLUENCE WHEN MAGNETIC FIELD AND SOC COEXIST

In Sec. V, when i = z, the dispersions become

ε±
1,2 = ±

√
A2 + B2 + V 2 ∓ 2

√
B2

(
A2 − J2s2

x

) + V 2
(
a2 + J2s2

z

)
.

F1(k) = −
√

2 f1 + 2
√

f 2
1 − 4g1 with f1 = A2 + B2 + V 2 and g1 = B2(A2 − Js2

x ) + V 2(a2 + J2s2
z ). When |sx| = S, sz = sy = 0,

F1(k) attains its minimum value for all values of k. Consequently, the free energy G1 = ∑
k F1(k) also possesses a minimum

value when the condition sx = S is satisfied.
When i = 0, the energy dispersions are given by

ε±
1,2 = ±

√
f2 ∓ 2

√
g2 = ±

√
(A2 + B2 + V 2 + 2V Jsz ) ∓ 2

√
B2

(
a2 + J2s2

y

) + a2J2s2
z + 2a2V Jsz + a2V 2.

F2(k) = −
√

2 f2 + 2
√

f 2
2 − 4g2. To obtain the minimal value of F2(k), the condition sy = 0 must be satisfied. Subsequently,

the minimum value of F2(k) can be determined by differentiating it with respect to sz. ∂F2/∂sz = J (V −aT )ε−
2 +(V +aT )ε−

1

ε−
1 ε−

2
with

T = Jsz+V√
B2+(Jsz+V )2

and |T | < 1.

When V < aT , we have Jsz + V > 0 and V < a. Let ∂F2/∂sz = 0; we get the extremum point sz0 =
V

D−2(a2−V 2 )+
√

D2+4B2(a2−V 2 )
2J (a2−V 2 ) > 0 with D = a2 − V 2 + B2 + J2S2. We figure out the monotonicity in either side of the extremum

point sz0 via comparing the values of (V − aT )ε−
2 and (V + aT )ε−

1 . [(V − aT )ε−
2 ]2 − [(V + aT )ε−

1 ]2 = 1
g2

[V
√

g2 − a2(Jsz +
V )]2( f2 + 2

√
g2) − 1

g2
[V

√
g2 + a2(Jsz + V )]2( f2 − 2

√
g2) = 4√

g2
(C1 − C2), with C1 = V 2g2 + a4(Jsz + V )2 and C2 =

a2V (Jsz + V ) f2. C1 − C2|sz=−S = a2JS[a2(JS − V ) + V (JS − V )2 + V B2] = a2JS
T 2 [V (V − JS) − (aT )2] < a2JS

T 2 [V 2 − (aT )2].
Here, T = T |sz=−S . We remind readers that here we are discussing the situation with 0 < V < aT . Therefore, C1 − C2 < 0

and |(V − aT )ε−
2 | < |(V + aT )ε−

1 |. Finally, ∂F2/∂sz|sz=−S = (V −aT )ε−
2 +(V +aT )ε−

1

ε−
1 ε−

2
< 0. Therefore, ∂F2/∂sz < 0 in the interval

[−S, sz0). F2(k) decreases from sz = −S to sz0. The minimum value of F2(k) occurs at sz0.
When V > aT , ∂F2/∂sz < 0, indicating that F2 monotonically decreases in the interval [−S, S]. F2 attains its minimum value

when sz = S.
Therefore, either V < aT or V > aT , and the minimum value of F2(k) occurs at a positive sz.
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