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In situ variation of the electron density via a metallic gate can control the disorder potentials in two-
dimensional electron gases (2DEGs). This also influences the negative magnetoresistance at low magnetic
fields, which is commonly observed in ultrahigh mobility 2DEGs. We investigate the temperature-dependent
giant negative magnetoresistance (GNMR) as a function of the electron density for several temperatures and
currents. Thereby, we find that the GNMR behavior depends decisively on the electron density. This observation
is attributed to a changed disorder potential with electron density. In the case of higher electron densities, a
nonlinear current dependency of the GNMR is observed, which could be described within the hydrodynamic
regime.
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I. INTRODUCTION

Two-dimensional electron gases (2DEGs) with ultrahigh
mobility not only show an abundant number of fractional
filling factors, but also an astonishingly robust negative
magnetoresistance around B = 0 T [1–9]. The theoretical de-
scription of this strong negative magnetoresistance is still
an open issue as it involves several independent parame-
ters, e.g., temperature, in-plane magnetic field, etc. Below
800 mK, some ultrahigh mobility 2DEGs show a very strong
negative magnetoresistance which can be divided into two
parts [3–6,8]: a temperature-independent narrow peak around
B = 0 T and a temperature-dependent giant negative mag-
netoresistance (GNMR) at larger magnetic fields up to B =
100 mT. The narrow peak is robust against several external
tuning parameters and originates from an interplay of smooth
disorder and elastic scattering at macroscopic defects [6,8–
13]. In contrast, the GNMR at larger magnetic fields is sensi-
tive to a variety of different scatterings and interactions, which
makes its theoretical description more complex.

Over the years, different theoretical models have been
introduced to describe this GNMR. Initially the strong tem-
perature dependence as well as its sensitivity to in-plane
magnetic fields was described by an electron-electron interac-
tion correction to the conductivity considering mixed disorder
[3,4,6,14,15]. Regarding the dependence on the magnetic field
and the applied current, a model based on elastic scattering
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between Landau levels was also suggested [16]. Recently, the
GNMR was described by interactions within a hydrodynamic
model [17–20]. However, different groups reported on dis-
crepancies between the published theoretical models and the
observed GNMR [3–5,9].

In addition to experimental tuning parameters, the GNMR
seems to be influenced by different scattering events, e.g.,
interface roughness, oval defects, background impurities,
and remote ionized impurities, further complicating a com-
plete theoretical description. The contribution of the different
disorder potential changes with the electron density [21].
Therefore, we take a closer look at the electron density de-
pendence of the GNMR in this article to narrow down the
involved scattering mechanisms.

II. EXPERIMENTAL SETUP

In the case of ultrahigh mobility samples, the layer struc-
ture is complex, and also distant Si doped layers influence the
properties of the 2DEG. The investigated samples originate
from two different ultrahigh mobility materials (A and B)
with similar layer structures [6]. The layer structure of one
GaAs/AlGaAs heterostructure is depicted in the left inset of
Fig. 1. Here, the conduction band edge is illustrated from the
surface down to 350 nm beneath the surface. Both 2DEGs are
realized in a 30 nm wide GaAs quantum well (QW) at a depth
of 170 nm and they are δ-Si doped from both sides. The δ-Si-
doped GaAs layers are located at 80 nm and 260 nm beneath
the surface and enclosed in AlAs layers. These doping layers
form X minima in the conduction band which are also popu-
lated with free electrons. Additionally, two Si-donor layers are
situated at about 40 nm and 600 nm. The electron density and
the electron mobility is slightly different for both materials
(ne,A ≈ 3.2 × 1011 cm−2 and ne,B ≈ 3.3 × 1011 cm−2, respec-
tively, μA ≈ 8.5 × 106 cm2/Vs and μB ≈ 7.3 × 106 cm2/Vs).
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FIG. 1. The longitudinal resistivity ρxx against the magnetic field
B in the range of the strong negative magnetoresistance. The strong
negative magnetoresistance is divided into two sections fitted by
parabolic magnetic field dependences, the GNMR (green parabola)
and a narrow peak (red parabola). A plateau in the longitudinal
resistivity around Bc = ±12.5 mT marks the crossover between both
regions. Inset (left): Calculated conduction band of our heterostruc-
ture down to 350 nm beneath the surface using the program 1D
Poisson.exe [22,23]. The 2DEGs is located in a 30 nm wide GaAs
QW at a depth of 170 nm. Inset (right): Optical microscopy image
of the Hall geometry. The metallic top gate is separated by a 600 nm
thick PMMA layer.

Various samples were structured under comparable con-
ditions. The samples were etched 360 nm deep to define a
1200 µm long and 200 µm wide Hall bar. The distance be-
tween two longitudinal ohmic contacts was 275 µm. The Hall
bars were defined by photolithography and wet chemical
etching. In order to investigate the influence of the electron
density on the negative magnetoresistance we fabricated a
metallic top gate, which consists of 15 nm Au and 45 nm
Ti. Since top-gate electrodes often result in unwanted strain
and hysteresis effects, which decrease the sample quality, we
added a layer of approximately 600 nm polymethylmethacry-
late (PMMA) between the Hall bar and the metallic top gate
to reduce the strain effect, and to separate the electrode from
the surface, thus avoiding leakage currents. The resulting Hall
geometry is shown in Fig. 1 (right inset). The low temperature
magnetotransport measurements were performed in a dilu-
tion refrigerator with the electron temperature ranging from
100 mK to 800 mK. All measurements were carried out by
using low-frequency (13 Hz) lock-in technique. The proper-
ties of both materials for gated samples are summarized in

Table I. In the following we take a closer look on the results
of a gated sample of material A.

III. THE NEGATIVE MAGNETORESISTANCE

The longitudinal resistivity ρxx shown in Fig. 1 fo-
cuses onto the magnetic field range of the strong negative
magnetoresistance for a gated sample of material A at T =
0.1 K and for an applied current of I = 500 nA. For the condi-
tion UT G = 0 V, an electron density of ne,A =3.2 ×1011 cm−2

was detected. In Fig. 1, the strong negative magnetoresistance
consists of two contributions with parabolic magnetic field de-
pendencies: a GNMR spanning larger magnetic fields (green
parabola) and a narrow peak around zero magnetic field (red
parabola) [3–6,8]. A slight plateau in the longitudinal resis-
tivity around Bc = ±12.5 mT marks the crossover between
the peak and the GNMR [6,8]. Also marked in Fig. 1 is the
maximum of the peak ρ0 and the maximum of the GNMR
curvature ρGNMR.

The narrow peak is robust against several parameters and
originates from an interplay of smooth disorder and elas-
tic scattering on macroscopic defects [6,8–11], e.g., GaAs
droplets. Two parameters, the height of the peak and its
curvature, fully describe the peak. The height of the peak
�ρxx = ρ0 − ρxx(Bc) is given by the difference between the
longitudinal resistivity at zero magnetic field ρ0 and the value
of the plateau ρxx(Bc). The curvature of the peak Cpeak is de-
termined by fitting a parabola to the experimental data. These
values can be compared with the theoretical model of the peak
expressed by [6,8,10]

ρxx = ρ0 − ρ0
ω2

c

2 π nS v2
F

f (x), (1)

where ωc = eB/m∗ is the cyclotron frequency, vF is the Fermi
velocity, and f (x) is given by

f (x) = 2

x + 1

∫ ∞

0
dq

q J2
1 (q)

x q2 + 2
[
1 − J2

0 (q)
] (2)

with x = ρxx(Bc) × �ρ−1
xx , and J0,1(q) as Bessel functions.

The only free parameter in Eq. (1) is the density of the rare
strong scatterers nS which were identified as macroscopic
growth defects [6,8]. From the data in Fig. 1, we determined a
density of strong scatterers of ns = 1.3 × 104 cm−2 based on
a peak curvature of Cpeak = 55 k� m4/(V s)2.

Recently, it was demonstrated that the plateau in the
longitudinal resistivity around Bc = ±12.5 mT is dominated
by smooth disorder [6,8]. This value thus allows us to

TABLE I. Summary of the results of both ultrahigh mobility samples (A and B), which show a strong negative magnetoresistance. In
addition to the electron density ne and the mobility μ0 based on ρ0, we also determined the maximum of the GNMR curvature ρGNMR and its
corresponding mobility μGNMR. The quantum scattering time τq is calculated from the magnitude of the Shubnikov-de Haas oscillations [24],
while the transport scattering time for smooth disorder τL is based on the plateau in the longitudinal resistivity. The density of the rare strong
scatterers nS are extracted from the peak curvature [6,8].

Material ne ρ0 ρGNMR μ0 μGNMR τ τq τL ns

[cm−2] [�] [�] [cm2/Vs] [cm2/Vs] [s] [s] [s] [cm−2]

A ≈3.2 × 1011 2.3 1.65 8.5 × 106 11.8 × 106 3.2 × 10−10 1.8 × 10−12 5.0 × 10−10 1.3 × 104

B ≈3.3 × 1011 2.6 1.75 7.3 × 106 10.8 × 106 2.8 × 10−10 1.2 × 10−12 4.2 × 10−10 1.1 × 104
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extract the transport scattering time for smooth disorder via
τL = m∗/(e2 ne ρxx(Bc)), and we obtain τL = 5.0 × 10−10 s.
The transport scattering time for smooth disorder could be
also extracted from the quantum scattering time τq and the
spacer width via τsm = (kF d )2τq. Due to the fact that the
quantum scattering time is calculated from the magnitude of
the Shubnikov-de Haas oscillations following Coleridge et al.
[24], the corresponding transport scattering time τsm could be
influenced by inhomogeneities in the electron density and an
additional occupied sub-band in the QW [3,6]. Therefore, we
rely in the following on the transport scattering for smooth
disorder τL extracted from the plateau in the longitudinal
resistivity.

To compare our observations of the GNMR with theo-
retical models we refer to the electron-electron interaction
correction to the conductivity δσ ee

xx (T ) [3,14,25,26]. In accor-
dance with Ref. [15] we assume a model of mixed disorder
for the characterization of the GNMR. In the case of ballistic
transport and for strong magnetic fields, smooth disorder (e.g.,
ionized donors in the doping layers) is the dominating disorder
contribution, which is in accordance with our observations for
the narrow peak around zero magnetic field. The GNMR is
then expressed by

ρxx = ρGNMR − 2 c0

n2
e π2

√
h̄ τ kB T

×
√

τL

τ
× B2 (3)

with c0 = 0.276 and ρGNMR. The second term of Eq. (3) de-
scribes the curvature CGNMR of the GNMR. In our example we
calculated a GNMR curvature of CGNMR = 38 � m4/(V s)2

taking a transport scattering time of τ = 3.2 × 10−10 s into
account. However, the GNMR curvature obtained from the ex-
perimental data is much larger, CGNMR = 970 � m4/(V s)2, as
reported also before [3]. This discrepancy can be rationalized
by additional contributions to the resistivity correction, such
as unconsidered disorder potentials or scattering events in the
hydrodynamic regime [17–20].

Hydrodynamic phenomena are expected when the
electron-electron scattering length 
ee is much smaller than
the sample width w. The electron-electron scattering length
can be estimated through a model developed by Giuliani and
Quinn [27]. In our example, we calculate from this model
an electron-electron scattering length of 
GQ

ee = 0.014 m,
which is much larger than our sample width. Thus, scattering
events in the hydrodynamic regime should be negligible for
the description of our GNMR if we consider Giuliani and
Quinn [27]. On the other hand, we see that electron-electron
interaction plays a crucial role in describing the GNMR.
For this reason, we do not want to exclude scattering in
the hydrodynamic regime and consider an approach to
hydrodynamic transport suitable for our 2DEG. Recently,
Gornyi and Polyakov [12] describe the electron flow in the
hydrodynamic regime in the presence of randomly distributed
rare impenetrable scatterers and magnetic field, which would
be consistent with our observations. This description includes
a viscosity-modulated negative magnetoresistance of a
Lorentzian shape expressed by

ρxx(B) − ρGNMR

ρGNMR
� −

(
2 ωc τGNMR

ee

)2

1 + (
2 ωc τGNMR

ee

)2 . (4)

This equation yields an electron-electron scattering
time τGNMR

ee and we can extract a scattering length of

GNMR

ee = 1.4 × 10−6 m from the GNMR curvature, which
would be the smallest length scale in our problem.

IV. THE GIANT NEGATIVE MAGNETORESISTANCE AS A
FUNCTION OF ELECTRON DENSITY

In the following, we analyze the GNMR for different elec-
tron densities to get a deeper insight into the discrepancy
between theory and experimental data. In addition, we want
to understand if scattering in the hydrodynamic regime is a
relevant parameter to describe the GNMR. Figure 2(a) shows
the longitudinal resistivity ρxx as a function of the magnetic
field B in the range of the strong negative magnetoresistance
for several electron densities. Here, the electron density was
lowered from ne,A = 3.2 × 1011 cm−2 to 1.9 × 1011 cm−2 in
12 steps, while the temperature T = 0.1 K and the applied
current I = 500 nA were kept constant. As seen in Fig. 2(a),
the strong negative magnetoresistance becomes more pro-
nounced as the electron density decreases.

First, we investigate the influence of a negative gate voltage
on our ultrahigh mobility 2DEG. A negative voltage on the
metallic top gate causes a bending of the conduction band
and the wave function of the 2DEG is shifted to the lower
part of the GaAs QW. Hence, by decreasing the electron
density the influence of the disorder potential landscape below
the GaAs QW becomes stronger. Huang et al. [21] recently
showed that the scattering mechanism depends on the elec-
tron density in ultrahigh mobility samples. In the situation
of higher electron densities (ne > 1 × 1011 cm−2), scattering
on interface roughness is the dominant disorder potential,
while for lower electron densities the influence of background
impurities increase. Additionally, not only is the 2DEG de-
pleted by decreasing the gate voltage but also the upper X
minimum, which could also influence the magnetotransport
measurements. In Fig. 2(b), the electron density ne,A (blue
circles) and the mobility μA (red squares) are illustrated as
a function of gate voltages at T = 0.1 K. In the range from
UT G = −6 V to 0 V, the electron density increases linearly
with the gate voltage, only below UT G = −6 V one observes
a saturation due to charge redistribution in the region between
the metallic gate and the 2DEG during depletion [28]. Based
on the observed gate-induced ionization of the upper X min-
imum, one can assume a gate-dependent disorder potential
which strongly affects the development of the GNMR.

To analyze the narrow peak and the GNMR in more detail,
we determine its curvatures Cpeak and CGNMR as a function
of the electron density. Therefore, we fit a parabola of the
form ρxx = ρ0 − Cpeak × B2 to the experimental data of the
narrow peak, while the experimental data of the GNMR is
expressed by ρxx = ρGNMR − CGNMR × B2. In Fig. 2(c), the
results for both curvatures are plotted as a function of the
electron density. Here, it becomes clear that the curvature
of the GNMR (colored dots) is independent of the electron
density ne for the considered range, while the peak curva-
ture (black triangles) varies. Regarding the expression of the
narrow peak an increase of the peak width by reducing the
electron density ne is expected for a fixed density of strong
scatterers ns [see Eq. (1)]. While the theory of the narrow peak
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FIG. 2. (a) The longitudinal resistivity ρxx against the magnetic
field B in the range of the strong negative magnetoresistance for
different electron densities ne. The GNMR gets more pronounced
as the electron density decreases, while the narrow peak around
B = 0 T is left unchanged. (b) The electron density ne (circles) and
the mobility μe (squares) as a function of the gate voltages UT G.
For gate voltages smaller than UT G = −6 V a plateau is observed
due to charge redistribution. (c) The GNMR curvatures (colored
circles), the peak curvatures (black triangles), as well as their the-
oretically predicted values are shown as functions of the electron
density ne. The GNMR curvature seems to be independent of the
electron density ne, which is in contrast to the predicted theoretical
behavior (blue dashed line) [15]. The determined peak curvatures are
in the range of the theoretical predicted values (orange dashed line).
(d) Different transport scattering times extracted from the experi-
mental data as a function of the electron density ne. We determined
the transport scattering time τ (black circle), the electron-electron
scattering time τGNMR

ee (blue squares), and the transport scattering
time for smooth disorder τL (green triangle) [6,10]. (e) The mobil-
ity mean-free path 
 (black circles), the electron-electron scattering
lengths 
GQ

ee (red circles) [27], and 
GNMR
ee (blue circles) [12] against

the electron density ne.

(orange dashed line) captures nicely the experimental data,
the predicted GNMR curvature calculated from Eq. (3) (blue
dashed line) is much smaller than the one extracted from the
experimental data, see Fig. 2(c). Instead of an electron density
dependence, a constant value is observed. Consequently, the
used theoretical model [see Eq. (3)] does not capture the
essence of the GNMR. The reasons for this discrepancy could
be that the disorder potential depends on the electron density
which is not considered much by theory.

From the longitudinal resistivity for different electron den-
sities we extracted the transport scattering time τ based on
ρ0 and the transport scattering time for smooth disorder τL

calculated from the plateau in the longitudinal resistivity
around Bc = ±12.5 mT. We also determined the electron-
electron scattering time τGNMR

ee for each electron density
through Eq. (4). In Fig. 2(d), the different transport scattering
times are plotted against the electron density, the transport
scattering time τ (black circle), the electron-electron scatter-
ing time τGNMR

ee (blue squares), and the transport scattering
time for smooth disorder τL (green triangle). The transport
scattering time for smooth disorder τL is proportional to n3/2

e .
Also a clear dependency of the electron-electron scattering
time τGNMR

ee on the electron density is observed. Interestingly,
the electron-electron scattering time τGNMR

ee is proportional
to ne.

Finally, we also determine the mobility mean-free path 


and the electron-electron scattering lengths 
GQ
ee [27] and


GNMR
ee [12] as a function of the electron density, see Fig. 2(e).

Whereas the mean-free path 
 is on the order of the sample
size, the electron-electron scattering length 
GQ

ee considering
[27] is much larger for all electron densities. In contrast,

GNMR

ee extracted from Eq. (4) is smaller than the sample width.
Regarding 
GNMR

ee , scattering in the hydrodynamic regime
should be considered by describing the GNMR. For samples
with smooth sidewalls Keser et al. [29] observed a strong
electron density dependence of the electron-electron scatter-
ing length 
ee at 20 K. The electron-electron scattering length
is reduced by decreasing the electron density, which agrees
with our observation. In order to get an idea of a possible influ-
ence of different scattering regimes, we analyze the GNMR in
the following for two different electron densities for different
parameters. Therefore, we chose the situation for no applied
top-gate voltage UT G = 0 V to show the unaffected disorder
potential landscape of the sample, and for a lower top-gate
voltage UT G = −4 V before a saturation due to charge re-
distribution is observed to represent the situation for a bent
conduction band.

A. Temperature dependence of the giant negative
magnetoresistance

First, we take a look on the strong temperature dependence
of the GNMR. Figure 3 shows the temperature dependence
of the GNMR for two different electron densities, (a) ne,A

= 2.3×1011 cm−2 and (b) ne,A = 3.2×1011 cm−2. Here, the
longitudinal resistivity ρxx is plotted against the magnetic
field B for several temperatures T , which were increased from
0.1 K to 0.8 K in 11 steps while the applied current was
kept constant I = 500 nA. The GNMR vanishes with higher
temperature T for both electron densities, while the narrow
peak around zero magnetic field is left unchanged. To analyze
the influence of the temperature on the GNMR in more detail
we determine its curvature. At the lower electron density,
ne,A = 2.3 × 1011 cm−2, two different temperature regimes
can be clearly distinguished, see Fig. 3(a) (right). Above 0.3 K
a T −1 dependency is observed for the GNMR curvature while
for lower temperatures a T −1/2 dependency is determined.
The latter is in line with the electron-electron interaction cor-
rection considering mixed disorder [14,15], see Eq. (3).
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FIG. 3. (left) The strong negative magnetoresistance as a func-
tion of magnetic field B and temperature T for two different electron
densities (a) ne,A = 2.3×1011 cm−2 and (b) ne,A = 3.2×1011 cm−2.
For both electron densities, the GNMR shows a strong temper-
ature dependence, while the narrow peak around zero magnetic
field is left unchanged. (right) The determined GNMR curvatures
as a function of the temperature for (a) ne,A = 2.3×1011 cm−2

and (b) ne,A = 3.2×1011 cm−2. For the lower electron density,
ne,A = 2.3×1011 cm−2, two different temperature regimes are
clearly visible. In the case of the higher electron density,
ne,A = 3.2×1011 cm−2, a temperature dependence of roughly T −1 can
be estimated.

In the situation of the higher electron density ne,A = 3.2 ×
1011 cm−2, see Fig. 3(b), the curvature is hard to determine
for temperatures above T = 0.2 K. A temperature dependence
of roughly T −1 can be estimated for the lower temperatures,
which we observe for the lower electron density ne,A = 2.3 ×
1011 cm−2 above 0.3 K. The different temperature dependen-
cies may have their origin in the fact that the influence of the
interface roughness is stronger for higher electron densities
[21], while the influence of background impurities increases
by decreasing the electron density, which leads to a different
disorder potential. Already, Ref. [15] showed that a changed
disorder potential leads to a different temperature dependency.
Despite the predicted temperature dependencies for lower
electron densities, we still observe a discrepancy between
the experimental data and the interaction-induced resistivity
correction [3]. From this, we conclude that by increasing
the electron density the disorder potential landscape is more
complex as assumed.

B. Current dependence of the giant negative magnetoresistance

An alternative route to reducing the electron-electron
scattering length 
ee and changing transport characteristics
from ballistic to hydrodynamic is through increasing the
applied current I [30]. In another measurement cycle includ-
ing a new cool down of the sample, we also examined the
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FIG. 4. (left) The strong negative magnetoresistance as a func-
tion of magnetic field B and current I for two different electron
densities (a) ne,A = 2.5 × 1011 cm−2 and (b) ne,A = 3.4 × 1011 cm−2.
The current dependence of the GNMR is different for both elec-
tron densities, while the narrow peak is left unchanged. (right) The
determined GNMR curvatures as a function of the current I for
(a) ne,A = 2.5 × 1011 cm−2 and (b) ne,A = 3.4 × 1011 cm−2. In the
case of the lower electron density, ne,A = 2.5 × 1011 cm−2, a heating
effect due to the increased current can be assumed. For the higher
electron density, ne,A = 3.4 × 1011 cm−2, a clear nonlinear current
dependence is observed.

current dependent behavior of the GNMR. Therefore, we
gradually increased the amplitude of the lock-in amplifier be-
tween the individual measurements. After each measurement
cycle, the sample has to warm up to room temperature be-
cause the higher AC currents irreversibly changed the 2DEG.
Since the necessary warm ups lead to a change in the sample
quality, the selected electron densities differ slightly from
the previous ones. In the following, we examine the current
dependence of the GNMR for two different electron densi-
ties. Again, we chose the situation for no applied top-gate
voltage, UT G = 0 V, to show the unaffected disorder potential
landscape of the sample, and for a lower top-gate voltage,
UT G = −4 V. In Fig. 4 (left) the longitudinal resistivity ρxx is
shown as a function of the magnetic field B in the range of the
strong negative magnetoresistance for several currents I for
(a) ne,A = 2.5 × 1011 cm−2 and (b) ne,A = 3.4 × 1011 cm−2.
The current I is increased from 0.5 µA to 10 µA in several
steps. Immediately noticeable is that the current dependence
of the GNMR is very different for the two considered electron
densities, while the narrow peak is left unchanged in both
cases. To analyze the behavior of the GNMR in more detail,
we determine its curvature for both electron densities, shown
in Fig. 4 (right).

In the situation of the lower electron density ne,A =
2.5 × 1011 cm−2, Fig. 4(a), the GNMR starts to broaden by
increasing the current I . This is also reflected by its curvature.
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Here, the value of the curvature CGNMR decreases with the
current I, showing a decrease in the electron-electron scat-
tering time τGNMR

ee . These observations could hint toward a
growing importance of hydrodynamic contribution. Although,
a heating effect due to the higher current cannot be excluded.

For a higher electron density ne,A = 3.4 × 1011 cm−2, see
Fig. 4(b), the GNMR behaves completely different. Here,
the GNMR gets more pronounced by increasing the current
till I = 4 µA. Above I = 4 µA the GNMR broadens with in-
creasing current. This nonlinear behavior is also reflected by
its curvature. A maximum of the curvature is clearly ob-
served around I = 4 µA. Recently, this nonlinear behavior
of the GNMR was described by elastic scattering between
Landau levels [31]. This nonlinear current dependency of the
GNMR could be also caused by scattering in the hydrody-
namic regime. Interestingly, the electron-electron scattering
time τGNMR

ee increases with current and reaches a maximum
for I = 4 µA before it drops for larger currents. However,
the occupation of a second sub-band for higher electron
densities could be also responsible for the nonlinear current
dependency.

V. DISCUSSION AND SUMMARY

Regarding the electron density dependent measurements of
the GNMR for different parameters, the theoretical descrip-
tion of the GNMR is complex and must involve different
scattering regimes and a material specific disorder poten-
tial. The observed temperature dependence of T −1/2 of the
GNMR for the lower electron density ne,A = 2.5 × 1011 cm−2

is predicted by the electron-electron interaction correction to
the conductivity [15]. However, there is still a discrepancy
between the experimental data and this theoretical model
maybe caused by additional scattering events like interface

roughness or background impurities. The nonlinear current
dependency of the GMNR for the higher electron density
ne,A = 3.4 × 1011 cm−2 points in the direction of scattering in
the hydrodynamic regime as a further contribution but could
be also a sign for the occupation of a second sub-band.

To conclude, we analyzed the GNMR of an ultrahigh
mobility 2DEG for different electron densities ne via a metal-
lic gate. Remarkably, it seems that the curvature of the
GNMR is independent of the electron density, which is in
contrast to the predicted theoretical models. Therefore, we
investigate the GNMR as a function of the electron density ne

for several temperatures T and currents I . For the chosen
parameters, the appearance of the GNMR depends on the
electron density. This suggests that the scattering potentials
changed with the electron density as reported before by
Huang et al. [21], which is not considered in theoretical
models. From the GNMR under different conditions we also
extracted the electron-electron scattering time τGNMR

ee using
the hydrodynamic expression as in Ref. [12], see Eq. (4),
which interestingly appears to be proportional to the elec-
tron density ne. In addition, the observed nonlinear current
dependency of the GNMR could be described within the
hydrodynamic regime [17–20]. Therefore, a hydrodynamic
contribution to the GNMR should be also taken into account.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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