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In this work we describe the phenomenon of Weyl-point teleportation. Weyl points usually move continuously
in the configuration parameter space of a quantum system when the control parameters are varied continuously.
However, there are special transition points in the control space where the continuous motion of the Weyl points
is disrupted. In such transition points, an extended nodal structure (nodal line or nodal surface) emerges, serving
as a wormhole for the Weyl points, allowing their teleportation in the configuration space. A characteristic side
effect of the teleportation is that the motional susceptibility of the Weyl point diverges in the vicinity of the
transition point, and this divergence is characterized by a universal scaling law. We exemplify these effects via
a two-spin model and a Weyl Josephson circuit model. We expect that these effects generalize to many other
settings, including electronic band structures of topological semimetals.
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I. INTRODUCTION

Electronic band structures of crystalline materials often
exhibit band touching points [1–3], leading to characteristic
phenomena such as surface Fermi arcs [4], chiral anomaly,
anomalous Hall effect, quantum oscillations, and quantized
circular photogalvanic effect [5,6]. The generic pattern for
band touching is the Weyl point, where the dispersion relation
in the vicinity of the degeneracy point starts linearly in all
directions.

However, for many materials the spatial symmetry of the
crystal structure implies that band touching can happen in
the form of extended nodal structures, such as nodal lines
or nodal surfaces [7–21]. Furthermore, nodal lines and nodal
surfaces can also arise in parameter-dependent quantum sys-
tems [22–24] in the presence of fine-tuning or symmetries.
For brevity, we will use “fine-tuned” to describe both of these
scenarios.

Generic perturbations with respect to the fine-tuned setting
will necessarily dissolve the extended nodal structures into a
number of Weyl points. For example, mechanical strain can
break the symmetry of a crystal and thereby split a nodal line
into Weyl points [14]. Details of such a dissolution process
have various physical implications, e.g., a qualitative change
in the density of states and the properties of the surface states,
etc. In this work we uncover general properties of this disso-
lution process.

In the above setting, the six independent components of
the mechanical strain tensor provide examples of control pa-
rameters. We will refer to the fine-tuned control-parameter
point where the extended nodal structure appears as the
transition point. Furthermore, we will call the parameter
space in which the degeneracy structures live, i.e., the three-
dimensional momentum space in the above example, the
configuration space.

In this work our main observation is that a nodal loop or
nodal surface emerging at a transition point can be thought of
as a “wormhole” for Weyl points, allowing for the “teleporta-
tion” of Weyl points. A side effect of teleportation is that the
motion of the Weyl points becomes singular as the control pa-
rameters approach the transition point: an infinitesimal change
in the control parameters induces a macroscopic displacement
of the Weyl point in the configuration space.

II. TELEPORTATION OF MAGNETIC WEYL POINTS OF A
SPIN-ORBIT-COUPLED DOUBLE QUANTUM DOT

We illustrate Weyl-point teleportation using an elementary
model of a two-electron double quantum dot with spin-orbit
interaction. The setup is shown in Fig. 1(a). It consists of
a cylindrically symmetric semiconducting nanowire (blue)
where gate electrodes create a double-well potential (solid
red), with each well capturing a single spinful electron (red
clouds). The two localized spins interact with each other via
exchange interaction.

We assume that an external homogeneous electric field
E = (Ex, Ey, 0) breaks the cylindrical symmetry of the sys-
tem and induces an anisotropy in the Heisenberg interaction
among the spins via the spin-orbit interaction of the Rashba
type. The two-dimensional space of E serves as the con-
trol space. A homogeneous external magnetic field B is also
present in the setup, taken into account by a Zeeman inter-
action term in the model. The three-dimensional space of B
serves as the configuration space.

The two-electron system is described by the following 4 ×
4 Hamiltonian:

ĤDD = gμBB · (ŜL + ŜR) + JŜL · R(E )ŜR. (1)

Here ŜL/R is the spin operator of the left/right electron, g is
the g factor of the electrons, μB is the Bohr magneton, B is the

2469-9950/2024/109(20)/205415(11) 205415-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2129-2105
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.205415&domain=pdf&date_stamp=2024-05-13
https://doi.org/10.1103/PhysRevB.109.205415


FRANK, VARJAS, PINTÉR, AND PÁLYI PHYSICAL REVIEW B 109, 205415 (2024)

(a)

(c) (d) (e)

(b)

FIG. 1. Teleportation of magnetic Weyl points of a spin-orbit-coupled double quantum dot. (a) Double quantum dot hosting two interacting
electrons in the presence of a Zeeman field B, and spin-orbit interaction induced by the electric field E. (b) Trajectory of the control-parameter
vector, i.e., the electric field in the xy plane. The trajectory is parametrized by t ∈ [−1, 1] with ε = 1 V/µm (see text). (c, d, e) Evolution of
ground-state Weyl points in the configuration space (B space) as the control-parameter vector is varied according to panel (b). Parameters:
g = 2, J = 11.6 µeV. (c) Weyl points for t < 0. (d) Nodal surface (sphere) at t = 0 (black circle in panel b). Teleportation of Weyl points
happens at this point of the control-parameter trajectory. (e) Weyl points for t > 0.

external magnetic field, J is the exchange interaction strength,
and R(E ) is a 3 × 3 rotation matrix describing the effect of
spin-orbit interaction on the exchange interaction [25,26].

The exchange term in Eq. (1) can be derived from the
Rashba spin-orbit Hamiltonian and the corresponding two-site
Hubbard model. Here we outline the simple physical picture
that predicts the qualitative dependence of the rotation matrix
R on the electric field E (see Appendix A for more details).
Assume that the electric field creates a spin-orbit term of the
Rashba type, Hso = αŜ · (E × p̂) [27]. When an electron tun-
nels from the right dot to the left (p|| − ez), it feels a spin-orbit
magnetic field Bso ∝ ez × E, and hence its spin rotates around
Bso with an angle θ = γ E proportional to the electric field
causing the spin-orbit coupling. This effect is incorporated in
Eq. (1) as the matrix R:

R(E ) = exp

⎡
⎣γ

⎛
⎝ 0 0 Ex

0 0 Ey

−Ex −Ey 0

⎞
⎠

⎤
⎦. (2)

Without spin-orbit interaction (that is, E = 0), the system
is isotropic. At zero magnetic field, the ground state is a singlet
and the excited states are three degenerate triplets. Switching
on an external magnetic field leaves the energy of the singlet
state unchanged but lowers the energy of one triplet state.
At B0 = J/μgB the ground state becomes degenerate. In the
magnetic parameter space, the ground-state degeneracy points
form a nodal surface, i.e., a spherical surface with radius B0,
see Fig. 1(d).

With spin-orbit interaction (E �= 0), the ground-state de-
generacies split everywhere except the two points where

the external magnetic field B is parallel to the spin-orbit
magnetic field Bso. These two remaining degeneracy points
are located at

BW,±(E ) = ±B0
ez × E

E
, (3)

where ez is the z-directional unit vector.
The above observations naturally combine into the Weyl-

point teleportation effect, as illustrated by Figs. 1(b)–1(e).
Consider the continuous trajectory of the control vector
shown in Fig. 1(b), parametrized by t ∈ [−1, 1]. This trajec-
tory is defined as E(t ) = −t ε (1, 0, 0) for t < 0 and E(t ) =
t ε (0, 1, 0) for t � 0, with ε > 0 having the dimension of
electric field. This trajectory contains the transition point
E(0) = 0. For t < 0, Weyl points are located in ±B0ey (panel
b), whereas for t > 0, Weyl points are located in ±B0ex (panel
e), and for t = 0 there are no Weyl points but a degeneracy
sphere (panel d) that serves as a “wormhole,” allowing the
“teleportation” of the Weyl points as the control-space trajec-
tory traverses the transition point.

Note that in our model, the Weyl points do not move
“before” (t < 0) and “after” (t > 0) the teleportation. This
changes in more realistic models, e.g., taking into account
the electric-field dependence of the g factor; see also our
discussion on Weyl Josephson circuits below.

Two remarks related to our terminology are in order. (i)
In this section, and also throughout this work, we use the
term “Weyl point” in a more general sense than used in the
context of electronic band structures. We consider quantum
systems described by Hermitian Hamiltonian matrices that are
parametrized in a three-dimensional configurational parame-
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ter space, the latter not assumed to be a torus. [For example, in
this section the configurational space is the three-dimensional
(3D) Euclidean space formed by the magnetic field vectors.]
In this general setting, a Weyl point is a generic twofold
isolated degeneracy point [28], and such a degeneracy is split
linearly as we move away in the configurational space. (ii)
We use the terms “wormhole” and “teleportation” as simple
and descriptive phrases for the phenomenon described in this
work. Note that we do not wish to draw concrete analogies
with the concepts these terms describe in other fields of
physics, e.g., a wormhole in general relativity [29] or quantum
state teleportation [30].

III. DIVERGENCE OF MOTIONAL SUSCEPTIBILITY

Here we exemplify that the motion of Weyl points in the
configuration space is singular as the control parameters ap-
proach the transition point. We use the same two-spin model
as above.

First, we introduce the motional susceptibility matrix χ of
a Weyl point, which is the quantity characterizing the motion
of the Weyl point in configuration space in response to a small
change of the control parameters. This matrix depends on the
control parameters, and it is defined everywhere in the control
space except in the transition point. For a selected Weyl point
having the location BW(E ) in the configuration space [see,
e.g., Eq. (3)], it is defined as

χik (E ) = ∂BW,i(E )

∂Ek
, (4)

where i ∈ {x, y, z} and k ∈ {x, y}.
Hence for our two-spin model, this susceptibility matrix

has dimension 3 × 2. It can be obtained analytically from
Eq. (3), e.g, by selecting the Weyl point BW,+, via the defi-
nition (4) as

χ (E ) = B0

E3

⎛
⎜⎜⎝

−ExEy E2
x

−E2
y ExEy

0 0

⎞
⎟⎟⎠. (5)

The singular-value decomposition of this matrix has the form
χ = U�V T, where

U (E ) = 1

E

⎛
⎜⎝

−Ex Ey 0

−Ey −Ex 0

0 0 E

⎞
⎟⎠, (6)

�(E ) =

⎛
⎜⎝

�1 0

0 �2

0 0

⎞
⎟⎠, (7)

V (E ) = 1

E

(
−Ey −Ex

Ex −Ey

)
. (8)

Here, the two singular values are �1 = B0/E , �2 = 0.
Remarkably, the largest singular value �1 diverges as 1/E

as the control parameters approach the transition point E = 0.
This shows that for paths that go close but not through the
transition point, an infinitesimal change of the control pa-
rameter yields a large movement of the Weyl point in the
configuration space. This becomes a macroscopic jump when

the path passes through the transition point and teleportation
happens.

The phenomenon of diverging motional susceptibility
might have the following practical use. In an experimental
setting, real or numerical, it is conceivable that the motion of
Weyl points upon a change of the control parameters can be
monitored and hence the motional susceptibility can be com-
puted. Then the observation of a high (or increasing) motional
susceptibility can be used as a fingerprint of a nodal loop in
the vicinity and might assist in finding the transition point in
control space that corresponds to Weyl-point teleportation.

IV. WEYL JOSEPHSON CIRCUITS

To show the generic nature of the effects discussed above,
we now identify them in a different setup: a Weyl Joseph-
son circuit [24]. The inset of Fig. 2(a) shows the schematic
arrangement of a multiterminal Josephson circuit, originally
proposed in Fig. 1 of [24]. It is built from four superconduct-
ing terminals (black circles), where terminal 0 is grounded and
terminals 1, 2, and 3 are floating and controlled by local gate
electrodes. The corresponding dimensionless gate voltages are
denoted by ngα with α ∈ {1, 2, 3}. We regard these gate volt-
ages as the control parameters. Furthermore, the three loops
formed by the terminals, denoted as x, y, z in Fig. 2(a), are
pierced by controllable magnetic fluxes ϕx, ϕy, ϕz; we consider
the 3D space of these fluxes as the configuration space. We
denote the Josephson energy (capacitance) associated to the
junction between terminals α and β as EJ,αβ (Cαβ).

The Hamiltonian of this Josephson circuit reads

Ĥ = EC(n̂ − ng) · c−1(n̂ − ng)

−
3∑

α,β=0
α<β

EJ,αβ cos[ϕ̂α − ϕ̂β + γαβ (ϕx, ϕy, ϕz )]. (9)

Here n̂α is the number operator counting the Cooper pairs on
terminal α ∈ {0, 1, 2, 3}, and n̂ = (n̂1, n̂2, n̂3). Furthermore,
ϕ̂α are the phase operators canonically conjugated to n̂α ,
EC = (2e)2/(2C0) is a capacitance scale characteristic of the
network of terminals, c = C/C0 is the dimensionless capaci-
tance matrix defined from the capacitance matrix [31] C (see
Appendix B), and γαβ are control angles depending on the
fluxes as γ0β = 0, γ12 = ϕx, γ13 = −ϕz, and γ23 = ϕy.

If all three gate voltages ngα have integer or half-integer
values, then the Hamiltonian Ĥ above has an effective
time-reversal symmetry (see Appendix C), implying that
the ground-state degeneracy points, if they exist, form a
loop in the configuration space. This is exemplified in
Figs. 2(a) and 2(b), where the black circle in panel (a)
shows a gate-voltage vector with half-integer components,
whereas the black solid loop in panel (b) shows the
corresponding ground-state degeneracy pattern, i.e., a
nodal loop. The black circle in panel (a) is a transition
point, and the corresponding nodal loop is an extended
degeneracy pattern, analogous to the sphere in the magnetic
field space seen in Fig. 1(c). The circuit parameters used to
obtain this result are (EJ,01, EJ,02, EJ,03, EJ,12, EJ,13, EJ,23)/h =
(2, 4, 6, 3, 3, 6) GHz and (C01,C02,C03,C12,C13,C23)/h =
(2, 1, 2, 3, 4, 3) fF. Furthermore, capacitances between
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(a) (b) (c)

FIG. 2. Weyl points and their teleportation in a Weyl Josephson circuit. (a) Continuous trajectory � → ◦ → + of the control-parameter
vector, i.e., the vector ng of gate voltages that control the Weyl Josephson circuit proposed in [24] (inset). (b) Evolution of four Weyl points
in the configuration space, i.e., the space of the flux vector ϕ, as the control parameter is varied on the path � → ◦ → + in (a). Teleportation
of the Weyl points happens at ng = (0.5, 0.5, 0.5), marked by the black circle in (a), when the degeneracy points in the configuration space
form a nodal loop (black) in panel (b). See text for parameters. (c) Scaling of Weyl-point motion in a Weyl Josephson circuit. The greatest
singular value �1 of the motional susceptibility matrix χ exhibits a 1/t divergence as the control vector approaches the transition point as
ng(t ) = ng0 + te. The two data sets correspond to e = e� and e = e+ (see text), and the motion of the top-left Weyl point in panel (b). The
straight lines in (c) are single-parameter fits to the data, see inset.

terminals 1, 2, 3 and their respective control gates are
Cg,1 = Cg,2 = Cg,3 = 0.1 fF. (Numerical techniques used to
obtain this result can be found in Appendix D.)

The nodal loop serves as a wormhole for the Weyl
points, enabling their teleportation. This is illustrated in
Figs. 2(a) and 2(b). In Fig. 2(a) a continuous trajectory
� → ◦ → + including the transition point (◦) is shown
(green line). Here the incoming and outgoing paths are
straight, enclosing a finite angle. Formally, the trajectory
in control space is defined as ng(t ) = ng0 − te� for t < 0,
ng(t ) = ng0 + te+ for t � 0, with e = e� = (3, 8, 6)/

√
109,

e = e+ = (3, 8,−6)/
√

109, and t ∈ [−0.1, 0.1]. The corre-
sponding motion of four ground-state Weyl points in the
configuration space is shown in (b), where the red (blue) color
denotes the +1 (−1) topological charge (ground-state Chern
number) of the Weyl point. Even though the path in the control
space is continuous [Fig. 2(a)], the Weyl-point positions in the
configuration space suffer a sudden jump as the control-space
trajectory crosses the transition point [Fig. 2(b)].

In the two-spin model described above, we have demon-
strated the 1/E divergence of motional susceptibility of the
Weyl points. We now identify the same type of divergence
in this Weyl Josephson circuit model, using the results in
Fig. 2(c). For each of the two directions of Fig. 2(a), i.e.,
the ones denoted by the green square and the green cross,
we numerically compute the greatest singular value of the
motional susceptibility matrix of a selected Weyl point as
the control vector is changed according to ng(t ) = ng0 + te
with t ∈ [10−4, 10−2] for two cases: e = e� and e = e+.
Figure 2(c) shows the obtained data points along with the two
single-parameter fits to the data (solid lines). These results
reveal that in the vicinity of the transition point (that is, for
t → 0), all of these singular values show a 1/t divergence.
We have checked that this behavior holds for all Weyl points
created from the nodal loop for various Hamiltonian parame-
ter values and directions in control space.

Based on our results for the two-spin model and the
Weyl Josephson circuit model, we conjecture that this 1/t
divergence of Weyl-point motional susceptibility is a generic
feature in the vicinity of a nodal loop and a nodal surface,
irrespective of the specific physical setup. We pose it as an
open problem to rigorously identify the preconditions of this
scaling law.

V. DISCUSSION

So far, we have discussed examples of Weyl-point telepor-
tation with control trajectories such that the number of Weyl
points before and after the transition point were the same.
Here we prove that this does not hold in general; using the
example of the Weyl Josephson circuit, in Sec. V A we show
that the number of Weyl points can change. Furthermore, in
Sec. V B we discuss the relation of this work to prior research,
and in Sec. V C we make further remarks on the divergence of
the motional susceptibility.

A. Appearance and disappearance of Weyl points
at the nodal loop

We highlight a further effect that can accompany Weyl-
point teleportation: the appearance and disappearance of Weyl
points at the nodal loop. This effect appears in the Weyl
Josephson circuit but is absent in the two-spin system studied
above and also absent in Refs. [32,33]. In this Weyl Josephson
circuit, the number of Weyl points that survive the dissolution
of the nodal loop depends on the direction in which the control
vector ng is tuned away from the transition point (0.5,0.5,0.5).
The number of surviving Weyl points is 4 in both directions in
Fig. 2(a), as shown in Fig. 2(b). However, as shown in Fig. 4
of Appendix E, by varying the direction in the control space,
the number of surviving Weyl points can be also be 0 or 8.
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B. Relation to prior works

Here, we discuss the relation of this work to two important
prior theory papers [32,33]. Reference [32] studied a specific
phase transition of superfluid 3He-A. We identify the effect
they predict as a special version of Weyl-point teleporta-
tion. In particular, Ref. [32] describes a parameter-dependent
Hamiltonian exhibiting a sudden exchange of two oppositely
charged Weyl points upon the continuous tuning of a single
control parameter. Note that in that work, the motional sus-
ceptibility is not introduced; our analysis of their model shows
that the motional susceptibility in their case behaves regularly
in the transition point. These observations imply that having
an at least two-dimensional control space (i) is not necessary
for the existence of Weyl-point teleportation but (ii) might be
necessary to guarantee divergent motional susceptibility in the
vicinity of the transition point.

Reference [33] studies phase transitions from a nodal-line
semimetal to a Weyl semimetal. The authors of that work
constrain their study to the three Cartesian coordinate axes
of a 3D control-parameter space. We interpret their results
as an example of Weyl-point teleportation. The control space
they considered is essentially one dimensional (i.e., the points
of the Cartesian coordinate axes in a 3D Euclidean space),
and they do not study the motional susceptibility of the Weyl
points. Our analysis of their model shows that if we extend the
control space to the full 3D Euclidean space, then the motional
susceptibility does diverge in the vicinity of the transition
point, similar to the examples in our work.

Finally, we note that neither of the above prior works
anticipates the possibility of appearance or disappearance of
Weyl points upon the phase transition.

C. Further remarks on the diverging motional susceptibility

The divergent motional susceptibility of the Weyl points in
the vicinity of the nodal surface or nodal line can be regarded
as a side effect of teleportation. A simple argument for the
power-law divergence and the power −1 is as follows. For
concreteness and simplicity, we focus on the case of the nodal
line.

Consider a circular path connecting the control points
ng0 + te1 and ng0 + te2, centered around the transition point
ng0. The path length in the control space approaches zero as
t → 0, being proportional to t . We compare this with the cor-
responding Weyl-point path length in the configuration space.
The path of the Weyl point converges to the nodal line as t →
0; therefore, the path length converges to the arc length of the
nodal line between the teleportation points. (In Appendix E
we show a semianalytic method to determine the teleportation
points.) This simple consideration explains that in the vicinity
of the transition point, a small change in the control vector
can imply a large jump of the Weyl points; furthermore, it
provides an interpretation of the 1/t-type divergence of the
motional susceptibility.

As exemplified by our results for the two-spin and Weyl
Josephson circuit setups, Weyl-point teleportation might re-
quire the fine-tuning of multiple control parameters. A more
generic transition between different degeneracy patterns in
configurational space is the merger of two oppositely charged
Weyl points. To be specific, let us consider a hypothetical

setup where the control space is partitioned to two parts
(phases), one without Weyl points (trivial phase) and the
other with two oppositely charged Weyl points (Weyl phase),
separated by a phase boundary.

In this setting one can consider “smooth” control trajec-
tories, which connect the two phases, and “broken” control
trajectories, which approach the phase boundary from the
Weyl phase and “bounce back” from the phase boundary. On
the one hand, in the context of an electronic band structure, a
smooth control trajectory may correspond to a phase transition
between a Weyl semimetal and a trivial insulator. On the
other hand, the broken control trajectory is reminiscent of the
control trajectories in our examples, cf. Figs. 1(b) and 2(a).
Nevertheless, the broken control trajectory, bouncing back
from the phase boundary, does not induce a discontinuous
jump in the motion of the Weyl points, and hence we do not
regard that as an instance of Weyl-point teleportation.

Note, however, that we do expect a universal power-law
divergence of the motional susceptibility also in this case,
as the control vector approaches the phase boundary, with a
power of −1/2. This expectation is based on literature exam-
ples where such behavior is observed [24,34–36]. Importantly,
his power-law divergence is not related to the bounce-back
character of the control trajectory, but it also holds for the
smooth control trajectory that connects the two phases.

Finally, we address the question of how the motional sus-
ceptibility matrix and its divergence changes if we change the
coordinate system of the control space. Assume that we fix the
coordinate system in the control space, compute the motional
susceptibility matrix with respect that coordinate system, and
find the –1 power law characterizing Weyl-point teleportation,
as seen above. A natural choice for the coordinate change is a
diffeomorphism from the control space to itself, a coordinate
transformation which includes linear coordinate changes as
special cases. If we change our coordinate system with a
diffeomorphism, then the susceptibility matrix does change.
However, the –1 power-law divergence of the susceptibility
remains.

VI. CONCLUSIONS

In conclusion, we have argued that nodal loops and nodal
surfaces of parameter-dependent quantum systems serve as
wormholes for Weyl points, allowing their teleportation. Fur-
thermore, as the control parameters approach the transition
point where the degeneracy points form a loop or a surface, the
pace of motion of the Weyl points in the configuration space
diverges, following a simple scaling law. We exemplified more
general teleportation patterns on a two-spin model and a Weyl
Josephson circuit, and we expect that they generalize naturally
to many other settings, including electronic [3,11,14,19,33],
photonic [37,38], phononic [39], magnonic [40], and synthetic
[41] band structures.
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APPENDIX A: EXCHANGE ROTATION
IN THE INTERACTING TWO-SPIN MODEL

Here we provide a heuristic estimate for the exchange ro-
tation angle γ E included in the interacting two-spin model of
the main text. The exchange interaction in Eq. (2) in the main
text contains a rotation matrix of angle γ E . To estimate γ in
a realistic setting, we consider electrons in an InAs nanowire
(meff = 0.023 me), subject to an electric field that is assumed
to be homogeneous. We identify the exchange rotation angle
with the spin rotation angle via

γ E = 2π�d/�so (A1)

of a free conduction electron in the nanowire, as it traverses
the interdot distance �d of the double-quantum-dot system.
The spin-orbit length �so, according to [27], can be expressed
as

�so = h̄2

meffeα0E
, (A2)

with α0 = 1.17 nm2.
The above relations imply

γ = 2π ldmeffeα0

h̄2 ≈ 222 nm/V, (A3)

where an interdot distance of �d = 100 nm was used. That is,
an electric field E = 1 µm/V implies an exchange rotation of
γ E = 0.222 radians, approximately 13 degrees.

APPENDIX B: THE CAPACITANCE MATRIX OF THE
WEYL JOSEPHSON CIRCUIT

The capacitance matrix [31] of the Weyl Josephson circuit
described in the main text reads

C =
⎛
⎝ C1 −C12 −C13

−C12 C2 −C23

−C13 −C23 C3

⎞
⎠, (B1)

where

C1 = C01 + C12 + C13 + Cg1, (B2a)

C2 = C02 + C12 + C23 + Cg2, (B2b)

C3 = C03 + C13 + C23 + Cg3. (B2c)

APPENDIX C: EFFECTIVE PT SYMMETRY
PROTECTING THE NODAL LOOPS OF THE WEYL

JOSEPHSON CIRCUIT

The Josephson-circuit Hamiltonian Ĥ (ng,ϕ) has time-
reversal symmetry in the absence of magnetic fluxes:

T Ĥ (ng, 0)T −1 = Ĥ (ng, 0), (C1)

where T = K is the complex conjugation in the charge basis
[24], and hence T 2 = 1. Furthermore, for nonzero magnetic
flux, the relation (C1) generalizes as

T Ĥ (ng,ϕ)T −1 = Ĥ (ng,−ϕ). (C2)

In the charge basis, this is translated to

H∗
n,n′ (ng,ϕ) = Hn,n′ (ng,−ϕ). (C3)

Other symmetries of Ĥ are charge inversion,

H (ng,ϕ)n,n′ = H (−ng,−ϕ)−n,−n′ , (C4)

and discrete charge translation symmetry,

H (ng,ϕ)n,n′ = H (ng + m,ϕ)n+m,n′+m, (C5)

where m is an arbitrary integer offset charge vector.
The charge inversion and charge translation together give

H (ng,ϕ)n,n′ = H (m − ng,−ϕ)m−n,m−n′ . (C6)

This relation implies that for a fixed integer or a half-integer
offset charge vector ng = m

2 , it holds that

H

(
m
2

,ϕ

)
n,n′

= H

(
m
2

,−ϕ

)
m−n,m−n′

. (C7)

This relation can be expressed by the charge inversion opera-
tor P (m/2), whose matrix elements in the charge basis are

P(m/2)
n,n′ = δn,m−n′ . (C8)

With this definition, we rewrite Eq. (C7) as

P (m/2)Ĥ

(
m
2

,ϕ

)
(P (m/2))−1 = Ĥ

(
m
2

,−ϕ

)
, (C9)

inverting the charge with respect to m
2 . This is an exact sym-

metry even when the charge basis is restricted to a finite
interval symmetrically around m

2 .
Henceforth we fix the charge inversion point as m

2 and
suppress it in the formulas below. Then the combination of
charge inversion and time-reversal symmetry results in

(PT )Ĥ (ϕ)(PT )−1 = Ĥ (ϕ), (C10)

i.e., we have identified an antiunitary symmetry PT with
(PT )2 = 1 that restricts the Hamiltonian at every value of
ϕ for a fixed ng = m

2 integer or a half-integer offset charge
vector. Carrying out a basis transformation from the charge
basis by the unitary U = √

P , PT is represented as complex
conjugation, making the transformed H (ϕ) real. The codi-
mension for real-valued symmetric matrices to be twofold
degenerate is 2 (see, e.g., Ref. [1]), meaning that the level
crossings generally appear as one-dimensional space curves
in the three-dimensional ϕ parameter space.

To show a specific example, we consider the truncated
8 × 8 Hamiltonian of the Josephson circuit in the charge basis
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{|000〉, |100〉, |010〉, |001〉, |111〉, |011〉, |101〉, |110〉}, which
reads

H8×8(ng,ϕ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε000 h01 h02 h03 0 0 0 0
h01 ε100 h∗

12 h31 0 0 h03 h02

h02 h12 ε010 h∗
23 0 h03 0 h01

h03 h∗
31 h23 ε001 0 h02 h01 0

0 0 0 0 ε111 h01 h02 h03

0 0 h03 h02 h01 ε011 h12 h∗
31

0 h03 0 h01 h02 h∗
12 ε101 h23

0 h02 h01 0 h03 h31 h∗
23 ε110

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C11)

where

εabc = EC[(a, b, c)T − ng] · c−1[(a, b, c)T − ng] (C12)

hαβ = − 1
2 EJ,αβe−iγαβ . (C13)

At the time-reversal offset charge point ng = ( 1
2 , 1

2 , 1
2 )T ≡ 1

2 ,
the diagonal elements have the property

εa,b,c = ε1−a,1−b,1−c, (C14)

yielding the PT symmetry

PH∗
8×8(ϕ)P−1 = H8×8(ϕ), (C15)

with P = σx ⊗ 14×4. The corresponding unitary matrix U =√
i/2(12×2 − iσx ) ⊗ 14×4 transforms the Hamiltonian matrix

to be real-valued,

UH8×8(ϕ)U −1 = [UH8×8(ϕ)U −1]∗. (C16)

APPENDIX D: WEYL JOSEPHSON CIRCUIT:
NUMERICAL TECHNIQUES

The calculations of the Weyl Josephson circuits were done
numerically with the aid of analytical techniques. The starting
point of the calculation was the truncated matrix represen-
tation of the Hamiltonian of Eq. (10) of the main text. The
matrix representation was obtained by projecting the Hamil-
tonian onto the subspace spanned by the charge basis states
|n1, n2, n3〉, with n1, n2, n3 ∈ {−1, 0, 1, 2}, yielding a 43 ×
43 = 64 × 64 matrix.

This charge interval is chosen to be symmetric to 1/2, to
respect the symmetry of Eq. (C10) protecting the nodal loop
at ng0 = (0.5, 0.5, 0.5). The range of the charge states was
chosen to be large enough to describe the physical system
accurately and small enough to save computational time.

To check the error due to the truncation of the Hamil-
tonian, we have compared the numerically identified nodal
loops for smaller and larger matrix dimensions, see Fig. 3(a).
Besides the 64 × 64 truncation size, the figure shows results
with the 8 × 8 and 216 × 216 Hamiltonians, corresponding
to the charge ranges 0 � n1,2,3 � 1 and −2 � n1,2,3 � 3, re-
spectively. We found that all truncated Hamiltonians have the
same qualitative behavior, i.e., presence of nodal loop, Weyl-
point teleportation, and susceptibility divergence. Moreover,
the quantitative difference between the results from the two
larger Hamiltonians is negligible, e.g., the distance between

(a) (b)

FIG. 3. Nodal loop in the Weyl Josephson junction. (a) Numeri-
cal identification of nodal loops and Weyl points was carried out by
truncating the infinite-dimensional Hilbert space of the Weyl Joseph-
son circuit. Larger Hamiltonian matrices give more accurate results:
the corresponding nodal loops converge. (b) Numerical search for
the points (red) of the nodal loop (black). The search consists of two
nested iterations: the inner iteration (purple) searches for the inter-
section of the nodal loop with a plane (green). After the intersection
is found, the outer iteration makes a step of a finite distance in the
tangential direction of the nodal loop (gray) and determines the new
searching plane as the perpendicular plane passing through the new
point (blue). The first inner iteration searches in the ϕz = 0 plane.

the points of the nodal loops in the ϕz = 0 plane is 0.036 rad
[see Fig. 3(a)].

In the following sections, we present the numerical tech-
niques for characterizing the nodal loop and searching for the
Weyl points. We use a generic description where p is the three-
component configurational parameter in the configurational
space where the Weyl points and the nodal loop are present,
and q is the k-component control parameter which can tune
the system. The correspondence between this notation and
the notation of gate voltages and magnetic fluxes in the Weyl
Josephson circuit reads

p ≡ ϕ = (ϕx, ϕy, ϕz ), (D1)

q ≡ ng = (ng,1, ng,2, ng,3). (D2)

1. Effective 2 × 2 Hamiltonian near twofold degeneracies

Searching for the degeneracies of a large Hamiltonian
can be computationally demanding. To ease the problem,
a useful technique is to reduce the Hamiltonian to a
low-dimensional effective model with Schrieffer–Wolff trans-
formation. Consider the Hamiltonian H (p, q) depending on
the three-dimensional configurational space p and the k-
dimensional q control space. At (p0, q0), the ith and (i + 1)th
energies, to be denoted as Ei(p0, q0) and Ei+1(p0, q0), are
close together and well separated from the other energy levels.

In our method to find a degeneracy point in the vicinity of
such a quasidegenerate point (p0, q0), a useful ingredient is to
expand the Hamiltonian in linear order as

H (1)(p0 + δp, q0 + δq) =

H (p0, q0) + ∂H

∂ p

∣∣∣∣
p0,q0

· δp + ∂H

∂q

∣∣∣∣
p0,q0

· δq, (D3)

and project it to the subspace of the quasidegenerate levels
with P0 = |�i〉〈�i| + |�i+1〉〈�i+1|, where |�i〉 and |�i+1〉 are
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the ith and (i + 1)th energy eigenstates of H (p0, q0). This
projection yields the following 2 × 2 effective Hamiltonian:

H (1)
eff = P0H (1)P0

≡ σ · �(1) = σ · [�0 + gpδp + gqδq]. (D4)

Here, σ = (σx, σy, σz ) is the vector of Pauli operators acting
on the quasidegenerate subspace. We neglected the σ0 term in
the expansion because it does not affect the splitting between
the two states.

By the above definition, the only nonzero component of the
polarization vector �0 is its third component. Furthermore,
we call gp and gq the configurational-space and control-space
effective g tensors, which are real-valued 3 × 3 and 3 × k
matrices:

[�0(p0, q0)]3 = 1

2
[Ei(p0, q0) − Ei+1(p0, q0)],

[gp(p0, q0)]α,β = 1

2
Tr

(
σαP0

∂H

∂ pβ

∣∣∣∣
p0,q0

P0

)
, (D5)

[gq(p0, q0)]α,β = 1

2
Tr

(
σαP0

∂H

∂qβ

∣∣∣∣
p0,q0

P0

)
.

Note that the polarization vector and the effective g tensors
are basis dependent. The SU(2) transformation of the basis
multiplies them with a corresponding SO(3) matrix from the
left. If the transformation is only the change of the phase
difference between the states, the corresponding orthogonal
matrix Rz(ϕ) describes a rotation around the z axis. Later, we
use these basis-dependent quantities to calculate the location
and the susceptibility matrix of the Weyl points which are
independent from the basis choice. This independence can be
inferred from the formulas.

When searching for a degeneracy point p0 + δp in the
vicinity of p0, for a fixed value of q0 + δq, an approximate
result can be obtained by requiring that the energy gap of the
effective Hamiltonian of Eq. (D4) should vanish:

�(1) = 0. (D6)

The solution of this equation for δp provides the approximate
position p0 + δp of the degeneracy point.

It is worth noting that the second-order Schrieffer–Wolff
transformation is more than the projection of a second-order
expansion of the Hamiltonian to its near-degenerate subspace.

2. Finding Weyl points

The Weyl points are the generic pointlike degeneracies in
the 3D configurational space (containing the points p) for
a fixed control-parameter vector q0. We neglect q0 in the
arguments for brevity. The equation providing an approximate
position of the degeneracy is that the effective Hamiltonian
should vanish, i.e.,

H (1)
eff (p0 + δp) = σ · [�0(p0) + gp(p0)δp] = 0. (D7)

Rearranging yields

gp(p0)δp = −�0(p0), (D8)

which is solved using the inverse of the g tensor,

δp = −g−1
p (p0)�0(p0). (D9)

The resulting p0 + δp is not an exact Weyl point in general,
but it is closer to the Weyl point than p0. Following this
scheme, we iterate the process with the following formula,

pn+1 = pn − gp(pn)−1�0(pn), (D10)

until the energy splitting is sufficiently small; in our numerics
we used the threshold of 10−12 GHz. The starting point p0
needs to be close to the exact Weyl point. When searching for
an ordinary Weyl point with the above iteration, the effective g
tensor is nonsingular throughout the iteration, as it is nonsin-
gular in the Weyl point. Hence the inverse used in the iteration
of Eq. (D10) does exist.

3. Finding the nodal loop

In the presence of a nodal loop, our goal is to numerically
locate a discrete set of its points that allows us to draw the
loop. To achieve that, we intersect the latter with planes in
the configurational space, as shown in Fig. 3(b). From the
initial point p [see, e.g., the blue point in the ϕz = 0 plane
in Fig. 3(b)], we restrict the displacement δp as

δp = c1v1 + c2v2 = (v1 v2)︸ ︷︷ ︸
V

(
c1

c2

)
︸ ︷︷ ︸

c

, (D11)

where v1 and v2 are two arbitrary vectors in the 3D config-
urational space that spans the plane. The condition for the
Weyl point in the linearized effective Hamiltonian in Eq. (D8)
changes to

gp(p0)V︸ ︷︷ ︸
gV

c = −�0(p0). (D12)

At first sight this is an overdetermined linear set for c1 and c2,
since it contains three conditions but only two variables. How-
ever, because of the PT symmetry discussed in Appendix C,
there is a basis where the effective Hamiltonian is real-valued.
In this basis the second component of Eq. (D12) simplifies to
the identity 0 = 0, meaning that there is a unique solution for
the equation.

One way to solve Eq. (D12) is to look for the vector c where
|gV c + �0|2 is minimal. Note that at the minimum point, the
minimum value is actually zero. Equating the derivative of
|gV c + �0|2 with respect to c to zero yields

gT
V gV c = −gT

V �0. (D13)

Note that Eq. (D13) can also be obtained by multiplying
Eq. (D12) with gT

V from the left. Now we can solve Eq. (D13)
using the inverse of the 2 × 2 matrix gT

V gV as

c = −(
gT

V gV
)−1

gT
V �0. (D14)

Following the spirit of the iteration at the end of the previ-
ous section, the analogous iteration to find the intersection of
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the nodal loop and the considered plane is defined as

pn+1 = pn + δp = pn + V c

= pn − V
[
V TgT

p(pn)gp(pn)V
]−1

V TgT
p(pn)�0(pn),

(D15)

where we have used Eqs. (D11), (D12), and (D14).
The first point of the loop is searched in the ϕz = 0 plane.

Then every starting point searching the points of the nodal
loop is 0.01 rad distance in the tangential direction of the
nodal loop from the previous point. The search is restricted
to the plane perpendicular to the step (Fig. 3). The tangential
vector v of the nodal loop is determined by the g tensor as
gpv = 0, which means that the splitting is zero in the linear
order in that direction.

4. Susceptibility matrix of ordinary Weyl points

Here we express the motional susceptibility matrix χ in-
troduced in Eq. (4) of the main text with the configurational-
and control-space effective g tensors gp and gq, respectively.
The susceptibility matrix χ describes the motion of the Weyl
points in the configurational parameter space p upon changing
the control parameters q. The linear effective Hamiltonian
expanded at a Weyl point does not have a constant term:

�(1)(p, q) = gp(p0, q0)δp + gq(p0, q0)δq. (D16)

The condition for Weyl points reads �(1) = 0. Rearranging
this equation and acting with g−1

p from the left gives

δp = −(
g−1

p gq
)
δq = χ (p0, q0)δq, (D17)

which determines the linear order displacement δp of the Weyl
point for the arbitrary perturbation δq in the control space,
which is in fact the definition of the susceptibility matrix.

Notice that the susceptibility matrix is independent from
the choice of basis in the twofold-degenerate eigenspace at
the Weyl point. Changing the basis multiplies the g tensors gp

and gq with the same orthogonal matrix from the left, and this
exactly cancels out in the expression g−1

p gq.

APPENDIX E: SURVIVOR WEYL POINTS CLOSE
TO THE TRANSITION POINT

In this section we derive the location of the Weyl points that
“survive” upon an infinitesimal perturbation of a nodal loop.
Moreover, we show that the number of survivor Weyl points
depends on how the nodal loop is perturbed: for the example
considered, the number of survivor Weyl points is either 0, 4,
or 8.

The nodal loop p0(s) in the configurational parameter
space can be parametrized by its arc length s and its vicinity
can be parametrized by the δp⊥ perpendicular displacement
from the nodal loop. The perturbed effective Hamiltonian
reads

�(1) = gp(s)δp⊥ + gq(s)δq, (E1)

where we omitted the q0 dependence in the arguments of the
g tensors for simplicity because the nodal loop corresponds to
only specific discrete q0 values. The survivor Weyl points are

(a) (b)

FIG. 4. Survivor Weyl points of the broken nodal loop. (a) The
zeros of the function η3(s) [third component of right-hand side of
Eq. (E4)] determines where the survivor Weyl points are located for
an infinitesimal perturbation. For perturbations in different directions
of the control space, the function η3(s) is different, causing the
Weyl-point teleportation. (b) The direction of the perturbation also
determines the number of the survivor Weyl points. The pale gray
region has no Weyl points, the medium gray has four Weyl points,
and the dark gray region has eight Weyl points. The perturbations
used in the main text are in the four-point region. For both markers
(square, cross) in (b), the arc-length parameters of the survivor Weyl
points are depicted by the same markers on (a).

located at the arc-length parameter s where the condition

�(1) = 0 (E2)

has a solution for δp⊥. The gp(s) configurational-space effec-
tive g tensor is a singular matrix for the points of the nodal
loops, and hence we cannot solve Eq. (E2) using the inverse of
it. Instead, we use the singular-value decomposition of gp(s)
to rewrite Eq. (E2) as

U (s)�(s)V (s)−1δp⊥ = −gq(s)δq, (E3)

�(s)V (s)−1δp⊥︸ ︷︷ ︸
δ p̃⊥

= −U (s)−1gq(s)δq︸ ︷︷ ︸
η(s,δq)

, (E4)

where � = diag(�1, �2, 0) is a diagonal matrix and U and V
are 3 × 3 orthogonal matrices. The third column of � is zero;
therefore the third component of the left-hand side is also zero.
Therefore, the third component of Eq. (E4), that is,

η3(s0, δq) = 0, (E5)

can be used to find the arc-length parameters s0 where Weyl
points appear upon applying the perturbation δq. It is worth
noting that η(s, δq) is independent of the choice of the basis
of the two-dimensional degenerate subspace at the Weyl point.
The first-order perpendicular-to-nodal-loop of the survivor
Weyl points is given as

δp⊥ = −g+
p (s0(δq))gq(s0(δq))δq, (E6)

where g+
p = V �+U −1 is the Moore–Penrose inverse of

the g tensor with �+ = diag(�−1
1 , �−1

2 , 0). There is also
a first-order parallel-to-nodal-loop motion of the survivor
Weyl points, but determining that requires a second-order
calculation.

This derivation indicates the Weyl-point teleportation: For
infinitesimal perturbations δq in different directions the func-
tion η3(s, δq) has roots at different arc-length values [see
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FIG. 5. Schematic representation of simultaneous Weyl-point
teleportation and annihilation. Left: A continuous trajectory (green
solid) through the transition point (black point) in control space
(Ct) and another continuous trajectory (green dashed) that slightly
avoids the transition point. Right: Weyl-point trajectories. For the
solid control trajectory on the left, the four Weyl points (boxes) move
toward the nodal loop (closed black curve) and undergo teleportation
such that only two of them survive (crosses). For the dashed control
trajectory on the left, Weyl points exhibit continuous trajectories,
with one pair undergoing pair annihilation (white star).

Fig. 4(a)], meaning that different points of the nodal loop sur-
vive. For infinitesimally small perturbations δq = nδq, only
the direction n describes the location of the surviving Weyl
points. Their number also depends on the direction of the
perturbation, which gives a phase diagram on the unit sphere
[see Fig. 4(b)].

Figure 5 schematically shows a case where the broken
control trajectory goes through the transition point (left panel)
such that the number of Weyl points changes upon the tran-
sition from 4 (red and blue boxes in right panel) to 2 (red
and blue cross in right panel). Solid red and blue lines show
the corresponding Weyl-point trajectories, exhibiting telepor-
tation (black point in left panel, black solid closed curve in
right panel). To characterize the divergence of the motional
susceptibility in the vicinity of the transition point, we spec-
ify a control trajectory that is similar to the broken one but
slightly avoids the transition point (dashed line in left panel).
Along this trajectory, there must be an annihilation between
two oppositely charged Weyl points. As argued above, we
expect that such an annihilation process is characterized by
a diverging motional susceptibility with a power −1/2.
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