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Microscopic many-body theory of two-dimensional coherent spectroscopy of exciton
polarons in one-dimensional materials
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We have developed a microscopic many-body theory of two-dimensional coherent spectroscopy (2DCS) for
a model of polarons in one-dimensional (1D) materials. Our theory accounts for contributions from all three
processes: excited-state emission (ESE), ground-state bleaching (GSB), and excited-state absorption (ESA).
While the ESE and GSB contributions can be accurately described using Chevy’s ansatz with one-particle-hole
excitation, the ESA process requires information about the many-body eigenstates involving two impurities. To
calculate these double polaron states, we have extended Chevy’s ansatz with one-particle-hole excitation. The
validity of this ansatz was verified by comparing our results with an exact calculation using Bethe’s ansatz. Our
numerical results reveal that in, the weak interaction limit, the ESA contribution cancels out the total ESE and
GSB contributions, resulting in less significant spectral features. However, for strong interactions, the features
of the ESA contribution and the combined ESE and GSB contributions remain observable in the 2DCS spectra.
These features provide valuable information about the interactions between polarons. Additionally, we have
investigated the mixing time dynamics, which characterize the quantum coherences of the polaron resonances.
Overall, our theory provides a comprehensive framework for understanding and interpreting the 2DCS spectra
of polarons in 1D materials, shedding light on their interactions and coherent dynamics.
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I. INTRODUCTION

Monolayer transition-metal-dichalcogenides (TMDs) have
attracted intense interest due to their intriguing electrical
and optical properties in low dimensions arising from tightly
Coulomb-bound electron-hole pairs (i.e., excitons) and exci-
tonic complexes such as trions and biexcitons [1,2]. From
a perspective of developing practical applications of low-
energy-threshold electronics and optoelectronics, it is of
central importance to characterize and manipulate the non-
linearity or many-particle interactions among excitons and
excitonic complexes [3]. In this respect, a remarkable tool
is nonlinear two-dimensional coherent spectroscopy (2DCS)
built on four-wave mixing [4–7]. It measures the full third-
order nonlinear optical susceptibility of materials as functions
of excitation and emission energies, and can be implemented
to probe the formation and dynamics of excitons and excitonic
complexes at the femtosecond timescale. In recent measure-
ments, 2DCS has been successfully applied to characterize an
excitonic complex known as exciton polarons in monolayer
MoSe2 [8], which is formed by doping the two-dimensional
materials with electrons (or holes) [9,10]. It has also been used
to reveal the interaction effect between exciton polarons in
monolayer WSe2 [11].

Here, we aim to present a microscopic many-body theory
for 2DCS of exciton polarons in TMD materials when their
motion is restricted to a specific direction. Our motivation for
investigating such effectively one-dimensional (1D) materials
is twofold. First, the deterministic dimensionality engineering
of TMD materials brings the additional benefit of coherent
propagation of light-emitting quasiparticles for constructing

all-optical integrated logic circuits. As experimentally demon-
strated, most recently by Chernikov and Menon and their
coworkers [12], this can be achieved by merging 1D semi-
conductor nanowires with TMD monolayers into a hybrid
heterostructure, where the strain mismatch confines the mo-
tion of excitons and creates an artificial strain-induced exciton
transport channel. By narrowing the channel width down to
about 60 nm in the near future [12], the truly 1D regime could
be reached to demonstrate mesoscopic quantum transport of
excitons and excitonic complexes.

On the other hand, a microscopic theoretical framework
of 2DCS of 1D quantum many-body systems might become
feasible, because of the much-reduced numerical workload for
describing the excited many-body states involved in 2DCS.
In the past, theoretical descriptions of 2DCS rely heavily on
the simplification that treats the many-body interacting system
as a few-energy-level structure [5–7]. Only recently, micro-
scopic many-body descriptions were developed to study the
time-resolved ARPES (angle-resolved photoemission spec-
troscopy) spectrum of a two-band model semiconductor [13]
and to attempt to understand the 2DCS of exciton polarons
in TMD materials [14–20]. For the standard rephasing mode
[6,7], the two contributions from the excited-state emission
(ESE) process and the ground-state bleaching (GSB) process
have been numerically calculated [18,19]. The remaining pro-
cess of the excited-state absorption (ESA) is often neglected,
partly because the related two-polaron states are difficult to
account for due to their enormously large Hilbert space.

In this work, we overcome this difficulty by construct-
ing approximate but reasonably accurate two-polaron states
in one dimension. The account of all the three processes

2469-9950/2024/109(20)/205414(9) 205414-1 ©2024 American Physical Society

https://orcid.org/0000-0002-9064-5245
https://orcid.org/0000-0002-1541-1756
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.205414&domain=pdf&date_stamp=2024-05-13
https://doi.org/10.1103/PhysRevB.109.205414


JIA WANG, HUI HU, AND XIA-JI LIU PHYSICAL REVIEW B 109, 205414 (2024)

completes the full microscopic description of the rephasing
2DCS. Therefore, our results pave a useful way to quanti-
tatively understand the 2DCS of exciton polarons in strain-
engineered 1D TMD materials, to be carried out in the near
future. By extending our calculations to the two-dimensional
case with a restricted Hilbert space, the interaction effect and
dynamics of exciton polarons, as recently observed in mono-
layer WSe2 [11], may also be better explained.

The rest of the paper is organized as follows. In the fol-
lowing section, we outline the overall theoretical approach.
We discuss the model Hamiltonian and derive the detailed
expressions for the three processes of the rephasing 2DCS,
with the help of Chevy’s ansatz that takes into account one-
particle-hole excitations for the perturbed Fermi sea [21]. In
Sec. III, we first present the numerical results for both the
single polaron state and the bipolaron state. The accuracy of
Chevy’s ansatz is examined, in comparison with the available
exact solution based on the Bethe ansatz [22,23] for the spe-
cific interaction parameter. We then discuss in detail the 2DCS
at the zero mixing time delay t2 = 0 and show the prominent
feature due to interaction effect between two polarons. The
coherent dynamics as a function of nonzero mixing time delay
t2 is also investigated. In Sec. IV, we briefly summarize the
key results of the work. Finally, Appendix A gives the ma-
trix elements used to diagonalize the model Hamiltonian and
Appendix B presents the finite size scaling for the bipolaron
energy and the energy difference responsible for the induced
interaction between polarons.

II. THEORETICAL APPROACH

A. Model Hamiltonian

We consider a system of excitons interacting with sur-
rounding excess charges of electrons or holes in a 1D space.
The excess charges are represented by the fermionic cre-
ation and annihilation field operators c†

k and ck , respectively.
The excitons, characterized by a significantly larger binding
energy compared to other energy scales in the system, are
described by the bosonic creation and annihilation field op-
erators X †

k and Xk , respectively, with their internal degrees of
freedom frozen [1]. The system can be effectively described
by the following Hamiltonian [10]:

H =
∑

k

[
εkc†

kck + εX
k X †

k Xk
] + U

∑
qkp

X †
k c†

q−kcq−pXp

+UX

∑
qkp

X †
k X †

q−kXq−pXp, (1)

where U represents the interaction strength between excitons
and excess charges, and UX represents the bare interaction
strength between excitons. εX

k and εk represent the kinetic
energies of excitons and excess charges, respectively. It is
convenient to set the reduced Planck constant h̄ = 1.

One can verify that the Hamiltonian H, the total momen-
tum P = ∑

k k(c†
kck + X †

k Xk ), the number of excitons NX =∑
k X †

k Xk , and the excess charge number N = ∑
k c†

kck all
commute with each other. This implies that the Hamiltonian
is block diagonal with respect to the quantum numbers P,
N , and NX . In the subsequent analysis, we will focus on the
case where P = 0 and a fixed number of excess charges, N .

FIG. 1. Three double-sided Feynman diagrams that represent the
three contributions to the standard rephasing 2D coherent spec-
tra under the phase-match condition ks = −k1 + k2 + k3, with the
time ordering of excitation pulses indicated on the left [6,7]. The
evolution, mixing, and emission time delays are labeled as t1, t2,
and t3, respectively. (a) shows the process of excited-state emission
(ESE), R2(t1, t2, t3), (b) corresponds to the ground-state bleaching
(GSB), R3(t1, t2, t3), and (c) gives the excited-state absorption (ESA),
R∗

1 (t1,t2, t3). In the diagrams, we use |g〉 to denote the Fermi sea
and |e〉 (|B〉) to label the many-body states with a single exci-
ton (two excitons or a biexciton), respectively. There are infinitely
many many-body states |e〉 (Fermi polaron) and |B〉 (bipolarons), as
indicated by different colors.

We denote the block of the Hamiltonian with exciton number
NX as HNX . To obtain the matrix representation of HNX , we
can expand H using a basis set that includes NX excitons. In
this study, we employ an extended version of Chevy’s ansatz
[21] to construct such a basis set, which will be described in
detail later. This basis set allows us to represent the many-
body states with a specific number of excitons, enabling us to
diagonalize HNX and study the properties of the system.

Furthermore, we consider a zero-temperature scenario,
where the initial state is prepared as the ground state |FS〉 =∑

εk�EF
c†

kck|vac〉, corresponding to the Fermi sea with no
excitons. The excess charges are described by occupying all
single-particle states below the Fermi energy EF . Here, |vac〉
represents the vacuum state. The number of excess charges N
is fixed by the Fermi energy EF . It is common and convenient
to define the zero-point energy by subtracting the back-
ground energy of the Fermi sea, denoted as EFS = ∑

εk�EF
εk ,

from the total Hamiltonian H. By setting EFS as the zero-
point energy reference, we can redefine the Hamiltonian as
H → H − EFS without affecting the physical properties and
dynamics of the system.

B. Two-dimensional coherent spectroscopy

2DCS spectroscopy has been implemented in experiments
to study exciton polaron physics in TMD materials [7,8,11].
In 2DCS, three excitation pulses with momenta k1, k2, and
k3 are applied to the system being studied at times τ1, τ2, and
τ3, separated by an evolution time delay t1 = τ2 − τ1 and a
mixing time delay t2 = τ3 − τ2, as shown in the left part of
Fig. 1. These pulses generate a signal with momentum ks as
a result of the nonlinear third-order process of the many-body
interaction effect. The signal can then be measured after an
emission time delay t3 using frequency-domain heterodyne
detection.

During the excitation period, each excitation pulse creates
or annihilates an exciton. Since the photon momentum of the
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excitation pulses is negligible, the exciton has zero momen-
tum. Therefore, each pulse can be described by the interaction
operator V , given by

V ∝ X0 + X †
0 . (2)

The excitation pulse periods are much shorter than the
time delays and are therefore assumed to be instantaneous.
The form of V ensures that the eigenstates of HNX only
couple to the eigenstates of HNX ±1 after each pulse. According
to the standard nonlinear response theory [6], the signal is
given by the third-order nonlinear response function:

R(3) ∝ 〈[[[V (t1 + t2 + t3),V (t1 + t2)],V (t1)],V ]〉, (3)

where V (t ) ≡ eiHtVe−iHt represents the time-dependent in-
teraction operator, and 〈· · · 〉 denotes the quantum average
over the initial many-body configuration of the system without
excitation pulses, which, at zero temperature, corresponds to
the ground state. By expanding the three bosonic commu-
tators, four distinct correlation functions and their complex
conjugates are obtained [6]. In the rephasing mode, with
t1 > 0 and ks = −k1 + k2 + k3, three relevant contributions
are dominant. These contributions include (A) the excited-
state emission (ESE) process:

R2 = 〈VV (t1 + t2)V (t1 + t2 + t3)V (t1)〉, (4)

visualized by the double-sided Feynman diagram in Fig. 1(a);
(B) the ground-state bleaching (GSB) process:

R3 = 〈VV (t1)V (t1 + t2 + t3)V (t1 + t2)〉, (5)

visualized by the double-sided Feynman diagram in Fig. 1(b);
and (C) the excited-state absorption (ESA) process:

R∗
1 = −〈VV (t1 + t2 + t3)V (t1 + t2)V (t1)〉, (6)

involving intermediate many-body states of two excitons, as
shown in Fig. 1(c).

Recently a microscopic calculation of the ESE and GSB
contributions was conducted [18,19]. Following the approach
outlined in Ref. [18,19], we can derive the expressions

R2 =
∑
nm

ZnZmeiE (P)
n t1 ei[E (P)

n −E (P)
m ]t2 e−iE (P)

m t3 , (7)

R3 =
∑
nm

ZnZmeiE (P)
n t1 e−iE (P)

m t3 , (8)

where the indices n and m span the entire set of many-body
eigenstates of the Hamiltonian H1, which corresponds to the
case where the exciton number is fixed to NX = 1. The Hamil-
tonian H1 can be interpreted as a polaron Hamiltonian, and its
eigenenergies and eigenstates are denoted as E (P)

n and |n〉P,
respectively. The residue Zn is given by Zn = |φ(n)

0 |2, where
φ

(n)
0 ≡ 〈FS|X0|n〉P represents the projection of the polaron

state onto the Fermi sea with a noninteracting impurity at zero
momentum. It satisfies

∑
n |φ(n)

0 |2 = 〈FS|X0X †
0 |FS〉 = 1.

To calculate the ESA contribution, we insert V ∝ X0 + X †
0

into Eq. (6) and obtain

R∗
1 = −〈FS|X0eiH1(t1+t2+t3 )X0e−iH2t3 X †

0 e−iH1t2 X †
0 |FS〉, (9)

where H1 and H2 are the Hamiltonians for a single exciton
and two excitons (bipolaron), respectively. The many-body
eigenenergies and eigenstates of H2 are denoted as E (B)

η and

|η〉B, respectively. For simplicity, we will use roman letters
to represent the polaron eigenstates and eigenenergies, and
greek letters for the bi-polaron eigenstates and eigenener-
gies. Hereafter, the superscripts and subscripts P and B are
dropped for convenience. By applying eiH1t = ∑

n |n〉〈n|eiEnt

and eiH2t = ∑
η |η〉〈η|eiEηt , we can simplify the expression for

R∗
1 as follows:

R∗
1 = −

∑
nmη

φ
(n)
0 �(n,η)�(m,η)∗φ(m)∗

0 eiEnt1 ei[En−Em]t2 ei[En−Eη]t3 ,

(10)
where �(n,η) ≡ 〈n|X0|η〉 represents the projection of the ηth
bipolaron state onto the nth polaron state with a noninteracting
impurity at zero momentum. This expression can be simply
understood from the double-sided Feynman diagrams shown
in Fig. 1(c). The four weighting factors represent the transition
rates and the three exponents show the dynamical phases
accumulated during the three time-evolution periods.

We can also define �
(η)
0 ≡ 〈FS|X0X0|η〉/√2 as the pro-

jection of the bipolaron state onto the Fermi sea with
two noninteracting impurities, with the factor 1/

√
2 arising

from the normalization condition. It can be verified that,
by inserting

∑
n |n〉〈n| = 1 between the two X0 operators,

we have �
(η)
0 = ∑

n φ
(n)
0 �(n,η)/

√
2. Furthermore, we have∑

nmη φ
(n)
0 �(n,η)�(m,η)∗φ(m)∗

0 = 2
∑

η |�(η)
0 |2 = 2.

After performing a double Fourier transformation with
respect to t1 and t3 on R2(t1, t2, t3), R3(t1, t2, t3), and
R∗

1(t1, t2, t3), we obtain the 2DCS spectrum given by the
following expressions:

SESE(ω1, t2, ω3) = −
∑
nm

ZnZm

ω+
1 + En

ei[En−Em]t2

ω+
3 − Em

, (11)

SGSB(ω1, t2, ω3) = −
∑
nm

ZnZm

ω+
1 + En

1

ω+
3 − Em

, (12)

SESA(ω1, t2, ω3) =
∑
nmη

φ
(n)
0 �(n,η)

ω+
1 + En

ei[En−Em]t2
�(m,η)∗φ(m)∗

0

ω+
3 − Eη + En

.

(13)

Here, ω+ ≡ ω + i0+ represents the complex frequency with a
positive infinitesimal imaginary part. The spectra SESE, SGSB,
and SESA depend on the excitation energy ω1, the mixing time
t2, and the emission energy ω3.

In the limit of vanishing interaction strength between exci-
tons and the Fermi sea (U = UX = 0), only the lowest energy
levels in the polaron states and bipolaron states contribute
significantly to the 2DCS. Specifically, we have n = η =
0, |n = 0〉 = X †

0 |FS〉, and |η = 0〉 = X †
0 X †

0 |FS〉/√2. In this
case, we find that En = Eη = 0, φ

(n=0)
0 = 1, and �(n=0,η=0) =√

2. As a result, the expressions for the 2DCS spectra sim-
plify to SESE(ω1, t2, ω3) = SGSB(ω1, t2, ω3) = −1/(ω+

1 ω+
3 )

and SESA(ω1, t2, ω3) = 2/(ω+
1 ω+

3 ). Therefore, the total 2DCS
spectrum, obtained by summing these contributions, adds up
to zero, as anticipated for a noninteracting system. This re-
sult reflects the absence of interactions and signifies that the
noninteracting system does not exhibit any coherent twodi-
mensional spectroscopic features.

Furthermore, we can observe the following inte-
grals over the frequency variables:

∫∫
dω1dω3SESE =∑

nm ZnZmei[En−Em]t2 ,
∫∫

dω1dω3SGSB = ∑
nm ZnZm = 1, and

205414-3



JIA WANG, HUI HU, AND XIA-JI LIU PHYSICAL REVIEW B 109, 205414 (2024)

∫∫
dω1dω3SESA = −∑

nmη φ
(n)
0 �(n,η)�(m,η)∗φ(m)∗

0 ei[En−Em]t2 .

Applying
∑

η �(n,η)�(m,η)∗ = 〈n|X0X †
0 |m〉 = δnm +

〈n|X †
0 X0|m〉 = δnm + φ

(n)∗
0 φ

(m)
0 gives

∫∫
dω1dω3SESA = −

∫∫
dω1dω3SESE

−
∫∫

dω1dω3SGSB. (14)

This result indicates that the total signal integrated over all
frequencies is exactly zero, which can be regarded as a sum
rule of the 2D spectrum. We emphasize that these general
conclusions hold universally and are not contingent on the
variational basis employed or the microscopic details, such as
the one-dimensional configuration of the system.

C. Chevy’s ansatz

To solve the model Hamiltonian with general interaction
strengths U and UX , we utilize Chevy’s ansatz [21], which
allows for up to one-particle-hole excitation in the Fermi sea.
For the case of a single exciton, the ansatz is given by

|n〉 = φ
(n)
0 |0〉1 +

∑
kpkh

φ
(n)
kpkh

|kpkh〉1, (15)

where the basis states are defined as |0〉1 = X †
0 |FS〉 and

|kpkh〉1 = X †
−kp+kh

c†
kp

ckh |FS〉. The subscript 1 indicates the
presence of a single impurity. By computing the matrix el-
ements of H1 as 1〈i|H| j〉1, where the indices i and j can
be either {0} or {kp, kh}, we can determine the variational
coefficients φ

(n)
0 , φ

(n)
kpkh

and the corresponding eigenenergy En

by diagonalizing H1.
For the case of two excitons, the ansatz is given by

|η〉 =
′∑
k

�
(η)
k |k〉2 +

′∑
k

∑
kpkh

�
(η)
kkpkh

|kkpkh〉2, (16)

where the prime in the summation over k indicates the
avoidance of double counting (with details presented in
Appendix A). The basis states are defined as |k〉2 =
CkX †

−kX †
k |FS〉 and |kkpkh〉2 = Ck,kp,kh X †

−kX †
k−kp+kh

c†
kp

ckh |FS〉,
where Ck = 1/

√
1 + δk,0 and Ck,kp,kh = 1/

√
1 + δ−k,k−kp+kh ,

with δab being Kronecker delta function, are introduced to
ensure the orthogonality of the basis. Similarly to the sin-
gle impurity case, we construct the Hamiltonian matrix H2

with matrix elements 2〈i|H| j〉2, where the indices i and j
correspond to {k} or {k, kp, kh}, and we find the variational
coefficients �

(η)
k ,�

(η)
kkpkh

and the corresponding Eη by diago-
nalizing H2. The details of the matrix elements of H1 and H2

can be found in Appendix A, where explicit expressions for
these elements are provided.

The variational coefficients and eigenvalues are then
utilized to obtain the expressions of Eqs. (11)–(13). Specifi-
cally, �(n,η) in Eq. (13) is given by �(n,η) = √

2φ
(n)∗
0 �

(η)
0 +∑

kp,kh>kp
φ

(n)∗
kpkh

�
(η)
0kpkh

+ ∑
kp,kh<kp

φ
(n)∗
kpkh

�
(η)
−kp+khkpkh

.

III. RESULTS AND DISCUSSIONS

A. Numerical method

To perform numerical investigations, we consider the
Hamiltonian in Eq. (1) within a 1D tight-binding model con-
sisting of L sites. The excess charge density is given by
n = N/La, where a is the lattice spacing. Both the excess
charges and the exciton move on the same lattice with hopping
strengths tc and td , respectively. The single-particle energy
dispersion relations are given by

εk = −2tc cos (ka) 
 −2tc + k2

2mc
, (17)

εX
k = −2td cos (ka) 
 −2td + k2

2mX
, (18)

where mc ≡ 1/(2tca2) and mX ≡ 1/(2td a2) in the dilute limit
(n → 0) of interest. From now on, the lattice spacing is set
to unity (a = 1) unless otherwise specified. For convenience,
we introduce the dimensionless quantities u = Umc/n and
uX = UX mc/n. Additionally, we define an energy unit εc =
n2/2mc. We typically assume periodic boundary conditions,
which restrict the momentum k on the lattice to take values
within the first Brillouin zone, i.e., k = 2πν/L with the in-
teger ν = −L/2 + 1, . . . ,−1, 0, 1, . . . , L/2. Any momentum
index appearing in Eqs. (15) and (16), therefore, should also
be projected into the first Brillouin zone.

In this finite-size lattice model, the level spacing in the
single-particle dispersion relation is on the order of tc/L,
which tends to zero as the system size L approaches infinity
in the thermodynamic limit. However, in practical calcula-
tions, L is typically finite. To account for this discreteness,
we introduce a small parameter δ = 20tc/L = 20εc/nN as a
replacement for the infinitesimal 0+ in Eqs. (11)–(13). This
parameter helps eliminate the discretization effects in the
single-particle energy levels. Thus, δ serves as an artificial
resolution limit for resonance peaks in our calculations, indi-
cating that only resonance widths larger than δ are considered
physically meaningful. On the other hand, the resonance po-
sitions are generally not strongly affected by increasing L
beyond a certain threshold. It is important to note that our
numerical simulations do not include any phenomenological
parameters such as decoherence rates, which are often used
for qualitative understanding of experimental data.

Figure 2 illustrates the spectral function for a single impu-
rity, denoted as A(ω), which represents the absorption spectra
of our 1D polaron. It is defined as the negative imaginary
part of the quantity

∑
n Zn/(ω + iδ − En). In the figure, we

have removed the trivial mean-field contribution by apply-
ing En → En − nU . The parameters chosen for the plot are
n = 0.5, tc = 4εc, and td = 4εc.

In Figs. 2(a) and 2(b), we present the spectral function
at u = −8 for two different lattice sizes, L = 102 and L =
202, respectively. Two distinct polaron resonances can be
observed, one at negative frequency EA ≈ −9.3εc and the
other at positive frequency ER ≈ 29.6εc. These resonances are
commonly referred to as the attractive and repulsive polarons
[24], respectively. It can be noted that the resonance peaks
have different widths for the two lattice sizes, while their
positions are approximately the same. For comparison, we
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FIG. 2. The spectral function of 1D polaron with parameters n = 0.5, tc = 4εc, and td = 4εc. (a) and (b) display the spectral function for
two different lattice sizes, L = 102 and L = 202, respectively. The chosen interaction strength is u = −8. In addition, we include plots of the
residue Zn as a function of the polaron energy En for comparison. (c) illustrates the spectral function as a function of the inverse interaction
parameter 1/u with lattice size L = 150. Please note that the color axis in (c) is displayed in a logarithmic scale.

also plot the residue Zn as a function of En. It can be seen
that the attractive polaron resonance corresponds to a single
polaron state with large residue, while the repulsive polaron
receives contributions from multiple many-body eigenstates.

In Fig. 2(c), we examine the dependence of the spectral
function on the interaction parameter 1/u. It exhibits an inter-
esting symmetry between positive and negative interactions,
which arises due to the half-filling condition n = N/L = 0.5
and the removal of mean-field contributions.

We have compared our numerical results for the
two-polaron case using the ansatz in Eq. (16) and parameters
L = 50, N = 25 with exact Bethe’s ansatz calculations
from Ref. [23] for the case of u = uX . The results, shown
in Fig. 3(a), demonstrate excellent agreement. The energy

differences between the lowest Eη (denoted as EB) and
two times the lowest En (corresponding to the attractive
polaron energy EA) are displayed in this figure. The quantity
EB − 2EA represents the binding energy of two attractive
polarons in the bipolaron ground state. Figures 3(b) and 3(c)
depict |�(η)

0 |2 as a function of Eη for u = uX = −1.5 and
−8, respectively. Here, |�(η)

0 |2 plays a role similar to Zn

for single polaron states. It can be observed that |�(η)
0 |2 is

small for the many-body ground state corresponding to EB,
indicating that this state is bound and has little overlap with
noninteracting scattering states. Conversely, another state
with energy EP2 > 2EA exhibits a large |�(η)

0 |2, as indicated
in Figs. 3(b) and 3(c). We will see later that this P2 state
contributes significantly to SEAE.

FIG. 3. (a) The comparison between our numerical results for the bipolaron binding energy using Chevy’s ansatz (CA) with one-particle-
hole excitation and the exact results using Bethe’s ansatz (BA) from Ref. [23]. The CA calculation is carried out for L = 50 and N = 25. (b) and
(c) show the projection probability of the bipolaron to two-free-impurity |�(η)

0 |2 as a function of the corresponding many-body eigenenergy Eη

for parameters u = uX = −1.5 and u = uX = −8, respectively. The dashed line shows 2EA for comparison.
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FIG. 4. The 2DCS for u = uX = −1.5, L = 50, and N = 25. (a) shows SESE + SGSB, (b) shows SESA, and (c) shows the total.

B. Zero mixing time delay t2 = 0

Let us consider the case where the mixing time delay is
zero, t2 = 0. In this case, the expressions for the different
contributions to the signal can be simplified as

SESE(ω1, 0, ω3) = SGSB(ω1, 0, ω3)

= −
∑
nm

Zn

ω+
1 + En

Zm

ω+
3 − Em

, (19)

SEAS(ω1, 0, ω3) =
∑
nη

√
2φ

(n)
0

ω+
1 + En

�(n,η)�
(η)∗
0

ω+
3 − Eη + En

. (20)

We present the numerical results for these quantities in Figs. 4
and 5 for the cases of interaction strength u = uX = −1.5
and u = uX = −8, respectively. In these figures, (a) shows
Re[SESE + SGSB], (b) shows Re[SESA], and (c) shows the real
part of the total STOT = SESE + SGSB + SESA.

For weak interaction u = uX = −1.5, we observe that
Re[SESE + SGSB] in Fig. 4(a) is symmetric with respect to
−ω1 and ω3, and is dominated by a peak around (−ω1, ω3) ≈
(EA, EA), as expected [7,18]. On the other hand, Re[SESA]
in Fig. 4(b) is dominated by a nonsymmetric dip around
(−ω1, ω3) ≈ (EA, EP2 − EA). From Fig. 3(b), we can see that
EP2 ≈ 2EA, indicating EP2 − EA ≈ EA. Consequently, the peak
observed in Fig. 4(a) and the dip in 4(b) largely offset each
other, resulting in a considerably diminished feature in the

total signal depicted in (c). This observation aligns with our
expectation that weak interactions yield a weak nonlinear
response. We contend that the general characteristics of 2DSC
in the weak interacting regime are not confined solely to the
strictly one-dimensional configuration of the material inves-
tigated in our model here. This assertion stems from the fact
that the total signal, integrated across all frequencies, equals
zero as mandated by the sum rule in Eq. (14). This implies
that the negative contributions from the stimulated SEA signal
and the positive contributions from the ESE and GSB signals
nearly cancel each other due to their significant overlap.

For strong interaction u = uX = −8, Fig. 5 (a) shows
diagonal peaks at (−ω1, ω3) ≈ (EA, EA) and (ER, ER), corre-
sponding to the attractive and repulsive polaron peaks. The
off-diagonal peaks (−ω1, ω3) ≈ (EA, ER) and (EA, ER) repre-
sent the quantum coherences between the polarons [7,14,18].
In Fig. 5(b), we observe that SESA is dominated by a dip
around (−ω1, ω3) ≈ (EA, EP2 − EA). However, the center of
the dip deviates sufficiently from the peak at (EA, EA), allow-
ing both the peak and the dip structure to be observed in the
total signal in (c).

It is interesting to note that the ground state of the
two-impurity system at EB does not contribute significantly,
suggesting that it corresponds to a bound state with limited
overlap with two free polarons. In contrast, the state asso-
ciated with EP2 ≈ −14.8εc exhibits a large overlap, allowing

FIG. 5. The 2DCS for u = uX = −8, L = 50, and N = 25. (a) shows SESE + SGSB, (b) shows SESA, and (c) shows the total.
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FIG. 6. For the parameter u = uX = −8, L = 50, and N = 25, this figure depicts the simulated real part of the rephasing 2D signal
S(ω1, t2, ω3) as a function of the mixing time delays t2 at three specific regions: (a) the diagonal peak (−ω1, ω3) ≈ (EA, EA), (b) the dip
at (EA, EP2 − EA), and (c) the off-diagonal cross-peak (EA, ER ). The thin blue solid and red dashed-dotted curves represent the contributions of
SESE + SGSB and SESA, respectively. The thick black solid curve represents the total signal.

us to interpret the difference EP2 − 2EA, which represents the
distances between the dip and the peak in Fig. 5(c), as the
induced interaction Uint between two free attractive polarons.
Notably, this induced interaction Uint ≈ 3.8εc is positive, and
this behavior can be understood in terms of phase-space filling
effects [11]. Furthermore, it is worth mentioning that, for
our chosen parameter regime, Uint is much smaller than EA,
which suggests that the interpretation of Uint as an interaction
in a perturbative picture remains self-consistent. This inter-
pretation can potentially be extended to interactions among
multiple polarons.

C. Mixing time t2 dynamics

Figure 6 illustrates the mixing time dynamics of the 2DCS
at several different frequencies (−ω1, ω3) for u = uX = −8,
L = 50, and N = 25. Panel (a) displays the diagonal peak
corresponding to the attractive polaron around (EA, EA), while
panel (c) depicts the off-diagonal peak around (EA, ER). The
contribution to the total signal STOT (thick black solid curve)
for these two peaks primarily stems from SESE + SGSB (thin
blue solid curve) throughout all times. In contrast, the total
signal dip at (EA, EP2 − EA) shown in panel (b) is predom-
inantly determined by SESA (thin red dash-dotted curve).
We observe that all signals exhibit fast oscillations with a
frequency of ω2 = ER − EA ≈ 38.9εc. However, the behavior
over longer timescales is less regular, possibly due to the finite
lattice spacing.

IV. CONCLUSIONS

In conclusion, we have presented a microscopic theory of
the rephasing 2DCS of 1D exciton polarons in monolayer
TMD materials. Our theory includes the crucial excited-state
absorption process, which is less considered in earlier the-
oretical investigations [14,15,18,19]. In the weak-coupling
limit, this process cancels out the other two contributions
from the excited-state emission process and the ground-state
bleaching process. In the strong-coupling limit, it provides
useful features to visualize the polaron-polaron interaction.
We have carried out numerical calculations within Chevy’s

ansatz that includes one-particle-hole excitations of the Fermi
sea. Our results are quantitatively reliable, as benchmarked
by the exact Bethe ansatz solution for the bipolaron binding
energy at the specific interaction parameter. Further im-
provement with multi-particle-hole excitations would provide
independent confirmation of the accuracy of our predictions.
Alternatively, future 2DCS measurements of exciton polarons
in 1D strain-engineered monolayer MoSe2 and WSe2 may
present a stringent test of our results.

Our full microscopic calculations of the rephasing 2DCS
of exciton polarons can be easily extended to the two-
dimensional configuration. However, the numerical effort
becomes enormous due to the much-enlarged Hilbert space. A
possible solution is to find out the most important intermediate
states for bipolarons. This issue will be addressed in future
studies.
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APPENDIX A: MATRIX ELEMENTS OF THE MODEL
HAMILTONIAN

In the extended Chevy’s ansatz, Eq. (16), which corre-
sponds to the case of two bosonic impurities, the prime in the
summation over k indicates the avoidance of double counting.
To be explicit, we define

|k〉2 = CkX †
−kX †

k |FS〉 (A1)

with the condition k � 0, and

|kkpkh〉2 = Ck,kp,kh X †
−kX †

k−kp+kh
c†

kp
ckh |FS〉 (A2)

with the restriction that k − kp + kh � −k. Here, Ck =
1/

√
1 + δk,0 and Ck,kp,kh = 1/

√
1 + δ−k,kph , where δab is the
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Kronecker delta function, are introduced to ensure the or-
thogonality of the basis. We also define kph = k − kp + kh

for convenience. It should be emphasized, as mentioned in
the main text, that any momentum index appearing should be
projected into the first Brillouin zone to impose the periodic
boundary condition.

The matrix elements of the Hamiltonian H2 expanded by
|k〉2 and |kkpkh〉2 can be explicitly given by

2〈k′|H |k〉2 =
[(

EFS + εX
k + εX

−k + 2nU
)
δk′k + 2V

L
Ck′Ck

]
,

(A3)

2〈k′|H |kkpkh〉2 = U

L

(
δk′kph + δk′,−kph + δk′,−k + δk′k

)
Ck′Ckkpkn

(A4)

and

2〈k′k′
pk′

h|H |kkpkh〉2 = (
EFS − εkh + εkp + εX

−k + εX
kph

+ 2nU
)

× δk′kδk′
pkpδk′

hkh + Ck′k′
pk′

h
Ckkpkh

× U

L

(
δk′

hkh − δk′
pkp

)(
δk′

phkph + δ−k′,−k

+ δ−k′,kph + δk′
ph,−k

)

+Ck′k′
pk′

h
Ckkpkh

2V

L
δk′

pkpδk′
hkh , (A5)

where in practical calculations we often subtract the unim-
portant Fermi sea energy EFS and the mean-field contribution
2nU from the diagonal matrix elements.

For completeness, we also list here the matrix elements of
H1 expanded by the basis |0〉1 and |kpkh〉1:

1〈0|H |0〉1 = EFS + nU + εX
k=0, (A6)

1〈0|H |kpkh〉1 = U

L
, (A7)

1〈kpkh|H |k′
pk′

h〉1 = [EFS + nU + �ε(kp, kh)]δkpk′
p
δkhk′

h

+ U

L

(
δkhk′

h
− δkpk′

p

)
, (A8)

where �ε(kp, kh) = εkp − εkh + εX
−kp+kh

.

APPENDIX B: FINITE-SIZE SCALING
FOR THE BIPOLARON STATES

It is important to investigate the thermodynamic limit
L → ∞, N → ∞, and n = N/L → 0.5. Figure 7 shows that
the quantities EP2 , EA, EB, and Uint = EP2 − 2EA converge to
constant in this limit.

FIG. 7. (a) EP2 , 2EA, and EB as a function of L, all of which con-
verge to constant in large L limit. (b) Uint = EP2 − 2EA as a function
of L, which converges to a positive constant value in large L limit.
Other parameters are n = 0.5 and u = uX = −8.
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