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Valley filtering in 8-Pmmn borophene based on an electrostatic waveguide constriction
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Materials with tilted Dirac cones, such as 8-Pmmn borophene, are being explored for valleytronic applications
as the tilting direction is different for nonequivalent valleys. In this paper, a valley-filtering device based on
electrostatic waveguides is proposed. First, these waveguides are examined from a theoretical point of view. An
inner product is defined starting from the probability current density along the waveguide axis. It is shown that the
bound modes with real eigenvalues are mutually orthogonal and orthogonal with respect to all radiating modes.
In a next step, by exploiting these orthogonality properties, a simulation procedure is introduced based on an
explicit, symplectic partitioned Runge-Kutta time-stepping method specifically adapted for this problem. Finally,
this approach is applied to the situation of a waveguide nanoconstriction and it is demonstrated that this structure
can function as a valley filter. Within a certain window in the energy domain, transmission is practically zero for
one valley, while being almost perfect for the other one. The effect of several design variables, such as length
and width of the constriction, is carefully investigated. Moreover, the effect of misalignment between the tilting
direction and the waveguide axis is assessed, showing that the proposed valley-filtering design is robust against
deviations up to several tens of degrees. In addition, the simulation results reveal that the dispersion relation
of the waveguide modes is not necessarily monotonic, which can give rise to oscillations in the transmission
function due to interference effects.
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I. INTRODUCTION

Low-energy excitations in materials such as graphene,
topological insulators, and Dirac semimetals behave as mass-
less Dirac particles [1]. The charge carriers in these materials,
also called Dirac materials, adhere to a linear instead of a
parabolic dispersion relation. Hence, they exhibit remark-
able similarities with light and for several optical phenomena
an analog can be found in the aforementioned materials.
The refraction and reflection of a Dirac particle incident on
a pn junction is comparable to light incident on a layer
with a different refractive index and the angle of refrac-
tion obeys Snell’s law in which the refractive index has
been replaced by the kinetic energy [2]. Several potential
applications have been proposed that exploit this peculiar
scattering behavior, such as Veselago lenses [3], transistors
[4–7], and reflectors [8], while the theoretical foundations
have been experimentally verified in graphene in [9,10]. The
domain of electron optics is not restricted to only scattering at
pn junctions; electronic analogs of the Goos-Hänchen effect
[11,12], zero-index metamaterials [13], gradient-index optics
[14], and waveguides have been investigated as well. Even
though it is difficult to confine particles in Dirac materials
because of the Klein tunneling effect, it has been demon-
strated that one-dimensional waveguides can be created in
graphene by employing electrostatically induced quantum
wells [15–22], barriers [23], and combinations thereof [21].
In contrast to nanoribbons, another possible realization of a
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one-dimensional electronic channel in graphene, these waveg-
uides are well separated from the edges and thus they do
not suffer from edge scattering [16]. The existence of the
guided modes has been experimentally verified for a quantum
well that was electrostatically induced by a charged carbon
nanotube in [20].

Recently, materials with tilted anisotropic Dirac cones
have attracted considerable interest. Compared to the Dirac
cones of graphene and other, ordinary Dirac materials, these
tilted Dirac cones are not rotationally invariant and the axes
of the cones exhibit a tilt with respect to the energy axis
[24]. Tilted Dirac cones are expected for the quasi-two-
dimensional organic conductor α-(BEDT-TTF)2I3 [25–27],
quinoid graphene [26], hydrogenated graphene [28], 8-Pmmn
borophene [29–32], and 1T ′-MoS2 [33]. 8-Pmmn borophene
is a two-dimensional allotrope of boron and consists of two
nonequivalent buckled sublattices [24]. By means of a first-
principles numerical method it has been predicted that its
dispersion relation contains two nonequivalent Dirac cones,
kD and −kD, that have an opposite tilting direction [29,30].
Similarly as for graphene, a continuum Hamiltonian has been
derived for the low-energy excitations starting from a tight-
binding description [31]. The tilted Dirac dispersion holds
for energies up to approximately 1 eV [24], which makes
this material an ideal test bed to explore the physics associ-
ated with tilted Dirac cones. Moreover, in recent years much
progress has been made in the synthesis of different types
of two-dimensional boron allotropes by means of molecular
beam epitaxy, liquid-phase exfoliation, and micromechanical
exfoliation [34–38], paving the way for future use in nano-
electronic devices.
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Several papers have addressed the pn junction and the
npn junction in 8-Pmmn borophene [39–45]. It has been
demonstrated that perfect transmission through a poten-
tial barrier now occurs at a nonzero incidence angle, i.e.,
oblique Klein tunneling [39,40,42]. Additionally, the locking
relation between momentum and velocity has been lifted,
enabling electron retroreflection at a pn junction [40]. More-
over, as the valleys, kD and −kD, exhibit a different tilting
direction, 8-Pmmn borophene is also an alluring material
for valleytronic applications. Valley-filtering devices have
been proposed based on the Goos-Hänchen effect [45], on
magnetic-electric barriers [46], and on superlattice structures
[47]. In [45,47] the valley filtering is achieved by an elec-
trostatic potential that is discontinuous; such a potential is
hard to realize experimentally in two-dimensional materials
[48]. In [46], an additional vector potential is required to
achieve valley filtering. In [49], it has been shown that the
eigenmodes of a straight electrostatically induced waveguide
in the presence of tilting can be related to the eigenmodes of
the untilted situation by means of a simple transformation.
After a subsequent theoretical study of the eigenmodes of a
waveguide defined by a smooth hyperbolic secant potential,
for which analytical solutions can be found, it was suggested
that these electrostatically induced waveguides could be of
use in valleytronic applications. In this paper, however, we
take it a step further and propose a concrete valley-filtering
device based on a nanoconstriction in a waveguide in 8-Pmmn
borophene obtained by means of a smooth electrostatic poten-
tial. Our proposal is threefold. First, we demonstrate that the
two valleys exhibit different transmission properties through
a waveguide constriction and we exploit this to propose a
concrete topology of a valley filter in 8-Pmmn borophene.
Second, we thoroughly study the properties of the entire de-
vice by means of numerical experiments, using a conservative,
explicit partitioned Runge-Kutta time-stepping method [50],
which is here specifically adapted to the tilted Dirac equation.
This study yields insight into the working of such structure
and clarifies the impact that various geometrical parameters
have on the performance of the device. In addition, as it is
from an experimental standpoint not possible to exactly set
the orientation of the top gate with respect to the lattice of the
Dirac material, the nonideal situation, for which the axis of the
waveguide deviates from the tilting direction, is investigated
as well. Third, an inner product is introduced based on the
probability current density and the orthogonality relations are
thoroughly examined. Note that these relations are derived for
the specific waveguide problem at hand and do not straight-
forwardly follow from the traditional orthogonality analysis
used in quantum mechanics (QM). Besides providing us valu-
able information concerning the properties of the different
eigenmodes, these orthogonality relations are necessary for
the efficient calculation of the transmission function in combi-
nation with the time-stepping method discussed in this paper.
One single simulation run returns the transmission function
for a wide range of energies.

The outline of this paper is as follows. First, the waveg-
uide’s eigenmodes are discussed from a theoretical point of
view in Sec. II. Special attention is given to the orthogonality
of the eigenmodes. Afterward, in Sec. III, the numerical mod-
eling method, which is based on a conservative time-stepping

FIG. 1. Plot of the two nonequivalent Dirac cones of 8-Pmmn
borophene for V = 0. The left (right) plot relates to the valley index
τ equal to 1 (−1).

algorithm, is detailed. In Sec. IV it is demonstrated that a
waveguide nanoconstriction constitutes an excellent valley fil-
ter and, in addition to the effect of several design parameters,
misalignment between the tilting direction and the waveguide
is investigated as well. Finally, the findings of this paper are
summarized in Sec. V.

II. THEORY

A. Generalized eigenvalue problem

The tilted Dirac equation in 8-Pmmn borophene has the
form [31]

ih̄
∂

∂t
� = [τ (vxσx px + vyσy py + vtσ0 py) + V σ0]�, (1)

with � = (u
v) the two-component wave function and σx =

(0 1
1 0), σy = (0 −i

i 0 ) the Pauli spin matrices. The matrix σ0

is the unit matrix, while px and py are momentum operators.
The potential energy is represented by V and depends on the
position. The constants vx, vy, and vt have as values 0.86 ×
106 m/s, 0.69 × 106 m/s, and 0.32 × 106 m/s, respectively
[31]. The variable τ , the valley index, is equal to 1 for kD and
−1 for −kD. The corresponding dispersion relation for V = 0
is given by

E = τvt py ±
√

(vx px )2 + (vy py)2, (2)

which is plotted in Fig. 1. It is evident that the Dirac cone
is not rotationally symmetric and that the axis of the cone
exhibits a tilting with respect to the E axis. The equal-energy
lines are ellipses for the tilted Dirac equation instead of circles
as for the standard Dirac cone.

In the remainder of this section, it is assumed that
V is y invariant and, thus, that the propagation direc-
tion of the waveguide is the y direction. Consequently,
the following substitutions, u(x, y, t ) = u′(x)ei(kyy−ωt ) and
v(x, y, t ) = v′(x)ei(kyy−ωt ), are introduced into (1), yielding

ky

(
τvt −iτvy

iτvy τvt

)(
u′

v′

)
=

(
E−V (x)

h̄ iτvx
d
dx

iτvx
d
dx

E−V (x)
h̄

)(
u′

v′

)
, (3)

a generalized eigenvalue problem, with ky the eigenvalue and

(u′
v′) the eigenmode. Note that the energy E (= h̄ω) is a pa-

rameter here. Even though the other situation, with ky as
parameter and E as eigenvalue, is a well-studied problem in
QM, we did not opt for it because of the following reasoning.
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Consider a mode characterized by a certain E and ky injected
into the waveguide. Because the employed potentials are time
independent, the energy E of the injected mode is conserved,
in contrast to ky, and hence, this means that in the waveguide
structure only modes with the same energy E are excited. To
determine these and their relevant expansion coefficients, it is
more logical to investigate the generalized eigenvalue problem
of (3) instead of its traditional QM counterpart.

It is easily verified that (3) can be rewritten as

ky

(
τvt τvy

τvy τvt

)(
u′

−iv′

)
=

(
E−V (x)

h̄ −τvx
d
dx

τvx
d
dx

E−V (x)
h̄

)(
u′

−iv′

)
.

(4)
Equation (4) shows that one can choose u′ real and v′ purely
imaginary if ky is real. Additionally, it also follows that if ky

is an eigenvalue related to the eigenmode (u′
v′), then the com-

plex conjugate k∗
y , together with ( u′∗

−v′∗), satisfies (3) as well.
Without tilting (vt = 0), ky being an eigenvalue related to the

eigenmode (u′
v′) implies that −ky is an eigenvalue related to the

eigenmode (v
′

u′). It is evident that, because of the tilting, this
property does not hold in general for the tilted Dirac equation.

B. Orthogonality relations

In a next step, we intend to define a suitable inner product
as the orthogonality relations will be of use in Sec. III to
construct an efficient numerical procedure. In the traditional
QM analysis, where ky is a parameter and E the eigenvalue,
the orthogonality relations of the eigenmodes with respect to
the inner product

〈�1, �2〉 =
∫ +∞

−∞
dx �

†
2�1 (5)

immediately follow from the Hamiltonian being a self-adjoint
operator. However, in this work, where E is a parameter and
ky the eigenvalue, the operator

(
τvt τvy

τvy τvt

)−1
(

E−V (x)
h̄ −τvx

d
dx

τvx
d
dx

E−V (x)
h̄

)
(6)

is not self-adjoint. Moreover, numerical tests have pointed
out that two different eigenmodes �1 and �2, characterized
by different eigenvalues ky,1 and ky,2 for the same energy
E , are not orthogonal with respect to (5). Consequently, a
different inner product needs to be considered to discuss the
orthogonality properties of the eigenmodes.

Before proceeding to this inner product, an expression for
the probability current density is first needed. Therefore, take
the adjoint of (1) and right-multiply it by �. Additionally, left-
multiply (1) by �†. Subtracting both results yields

∂�†�

∂t
+ ∇xy · [τ (vt uy�

†� + �†σ�)] = 0, (7)

with ∇xy = ∂
∂x ux + ∂

∂y uy, where ux and uy are the unit vectors
along the x and y axes, respectively, and σ = vxσxux + vyσyuy.
Equation (7) corresponds to a continuity equation, and con-
sequently, an expression for the particle probability current

density is found, viz.,

j = τ (vt uy�
†� + �†σ�). (8)

Whereas the second term τ�†σ� was expected, an additional
term τvt uy�

†� is now also present in the expression for the
particle current density because of the tilting. This term is
proportional to the position probability density �†�. Note
further that j is real-valued.

Inspired by the expression for the probability current den-
sity, the following inner product is proposed:

〈�1, �2〉 =
∫ +∞

−∞
dx(u′

2
∗ v′

2
∗)

(
τvt −iτvy

iτvy τvt

)(
u′

1

v′
1

)
. (9)

If �1 = �2, the integrand equals the y component of (8) and
〈�1, �1〉 is interpreted as the total particle current through the
cross section of the waveguide for that particular mode with
eigenvalue ky,1. Note that in (9) it was implicitly assumed—for
simplicity but without loss of generality—that y = 0; other-
wise an additional, exponential term is present in front of the
integral depending on y and both eigenvalues, ky,1 and ky,2.

To discuss general properties regarding orthogonality, as a
first step, (3) is substituted into (9), yielding

1

ky,1

∫ +∞

−∞
dx(u′

2
∗ v′

2
∗)

(
E−V (x)

h̄ iτvx
d
dx

iτvx
d
dx

E−V (x)
h̄

)(
u′

1

v′
1

)
. (10)

Next, the eigenmodes of the waveguide are assumed to vanish
at infinity. This way, the position of the eigenmodes can be
interchanged by means of integration by parts:

1

ky,1

[∫ +∞

−∞
dx(u′

1
∗ v′

1
∗)

(
E−V (x)

h̄ iτvx
d
dx

iτvx
d
dx

E−V (x)
h̄

)(
u′

2

v′
2

)]∗
. (11)

Finally, using (3) again, and since 〈�1, �2〉∗ = 〈�2, �1〉, the
following expression is obtained,

ky,1〈�1, �2〉 = k∗
y,2〈�1, �2〉. (12)

Equation (12) gives us important insights into the properties
of the eigenmodes. First, assume that the two modes are
equal, so we are investigating the inner product of a mode
with itself. In this case, if the inner product is nonzero, and
thus the propagation of the mode along y corresponds to a
nonzero particle flow, then the eigenmode is associated with a
real eigenvalue. If the eigenvalue is complex, this necessarily
leads to 〈�,�〉 being zero for the corresponding eigenmode
�. Note that the amplitude of a mode with real eigenvalue
is constant along y; only the phase factor eikyy changes. For
a mode with complex eigenvalue ky = β + αi, propagation
along the y axis results in a factor eiβye−αy, affecting both
phase and amplitude. Consequently, for α > 0, propagation
along y entails an additional damping factor.

In a next step, the situation in which the two eigenmodes
differ from each other is investigated. If the two eigenmodes
correspond to two distinct real eigenvalues, then it is clear
that the eigenmodes will be orthogonal according to the inner
product defined by (9). Even when one of the eigenvalues is
real and the other one complex, the eigenmodes are still or-
thogonal. Only when both eigenvalues are complex and when
ky,1 = k∗

y,2, then the eigenmodes are not necessarily orthogo-
nal. Thus, these eigenmodes do not diagonalize the probability
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current density operator, which implies that a linear combina-
tion of these complex eigenmodes can still result in a nonzero
particle flow along the y direction even though 〈�,�〉 equals
zero for a single one. All eigenmodes would be orthogonal
with respect to each other if k∗

y,2 would be replaced by ky,2 in
(12). This could be achieved as follows. Recall that if ky is an

eigenvalue with eigenmode (u′
v′), then k∗

y is also an eigenvalue

with eigenmode ( u′∗
−v′∗). Consequently, instead of (9) one could

choose as inner product

〈�1, �2〉 =
∫ +∞

−∞
dx(u′

2 v′
2)

(
τvt −iτvy

−iτvy −τvt

)(
u′

1

v′
1

)
.

(13)
This change does not affect the eigenmodes with real eigen-
value. However, the inner product of an eigenmode with itself
is not necessarily real anymore and the physical meaning of
(13) is unclear. Hence, in the remainder of this paper (9) is
employed.

Note that the waveguide has been chosen to align with the
y axis. Alternatively, if one would have chosen another orien-
tation, a similar discussion about the orthogonality properties
is possible. In the same way, the current in the longitudinal
direction is then used to construct the inner product. Further
details can be found in Appendix A.

C. Bound and radiating modes

The set of eigenmodes satisfying (3) can also be subdi-
vided based on their behavior at infinity. This distinction is
illustrated by Fig. 2. Bound modes decrease to zero at infinity.
An example is shown in Fig. 2(b). Because of this boundary
condition, only a discrete set of bound modes, represented by
blue crosses in Fig. 2(a), can be found. In contrast to bound
modes, radiating modes exhibit oscillatory or wavelike behav-
ior at infinity, which is illustrated by Fig. 2(c). The relaxation
of the boundary condition inevitably leads to a continuum
of modes with eigenvalues, given by red dots in Fig. 2(a),
being real or complex. The bound modes completely describe
the unabated propagation of particle probability density along
y within the waveguide, while the radiating modes relate to
particle probability density leaking out of the waveguide’s
confining potential.

An important remark is in place here. As radiating modes
exhibit oscillating behavior at infinity, the validity of the
assumption—made in Sec. II B—that the eigenmodes vanish
at infinity may be questioned. Nevertheless, a similar interpre-
tation to that for electromagnetic eigenmodes can be invoked.
One possible approach to construct the radiating modes of an
electromagnetic waveguide is to surround the structure by a
perfectly conducting bounding box in the transversal direction
and consider the eigenmodes in the limit of an infinite-sized
cross section [51]. In this paper, the radiating modes are inter-
preted in a similar way.

III. METHOD

To analyze the waveguide constriction based valley filter,
a numerical time-stepping technique, originally developed
for the conventional, time-dependent Dirac equation [50], is
adapted to the case of the tilted Dirac equation (1). The time-

FIG. 2. (a) Eigenvalues of (3) distributed in the complex plane
for valley kD. The hyperbolic secant potential (14), with V0 =
0.45 eV and constant W = 10 nm, was chosen together with an
energy E equal to −0.02 eV. (b) Plot of the real part of u as a
function of the position x for the bound eigenmode associated with
ky = −1.54 nm−1 [indicated by a large blue cross in (a)]. (c) Plot
of the real part of u as a function of the position x for the radiating
eigenmode associated with ky = (0.023 + 0.096i) nm−1 [indicated
by a large red dot in (a)].

dependent tilted Dirac equation is discretized by means of a
staggered grid, where the two components of the wave func-
tion, u and v, are located at different positions in space. The
spatial derivatives are approximated by fourth-order central
differences to reduce dispersion errors. The resulting system
of ordinary differential equations is solved by an explicit,
symplectic partitioned Runge-Kutta time-stepping method
[52,53], which is also fourth-order accurate [54]. Similarly
as in [50], it can be demonstrated by means of Poisson maps
that the resulting scheme has excellent conservation properties
and that, in contrast to standard explicit Runge-Kutta time
stepping, it does not introduce additional, artificial dissipation.
Moreover, the explicit partitioned Runge-Kutta method does
not require the storage of intermediate steps, making it an
efficient method in terms of memory usage. All mathematical
details are provided in Appendix B.

The simulation setup of an electrostatic waveguide with
nanoconstriction is depicted in Fig. 3. For the potential profile,
the hyperbolic secant function is chosen

V (x, y) = − V0

cosh[β(y)x]
, (14)
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FIG. 3. Illustration of the simulation setup of an electrostatic
waveguide with nanoconstriction. The middle region (black) repre-
sents a two-dimensional plot of the potential profile. The simulation
domain is terminated by an absorbing layer (gray region). The con-
striction is of length L. The source is indicated by a red line, while
the blue dashed line represents the observer.

with β(y) = 2arccosh(2)
W (y) and W (y) is the full width at half max-

imum at position y, satisfying

W (y) = W0 + (W1 − W0)
1

1 + exp

(
|y|−L/2

LT

) , (15)

with W0 and W1 the widths outside and inside the constriction.
The parameters L and LT determine the length of the con-
striction and the length of the transition region, respectively.
The relevance of the hyperbolic secant potential for top-gated
structures has been demonstrated in [16]. It was compared to
the potential of a wire suspended above a conducting plane
and a good agreement was obtained.

As source a bound mode with energy E and real eigen-
value ky is chosen, implemented by means of the total field
scatter field (TFSF) approach [55]. This bound mode is in-
jected into the electrostatic waveguide at the red line shown in
Fig. 3. This incoming mode is normalized by requiring that
the inner product (9) with itself is equal to 1. The e−iEt/h̄

time dependency of the source is further modulated by an
additional Gaussian 1/(

√
2πσt )e−(t−t0 )2/2σ 2

t , where σt and t0
determine the width and the position of the Gaussian, respec-
tively. This way, the source has a finite support in the time
domain. As we intend to obtain quantitative results, such as
the transmission function from one mode to another mode,
an observer is added, which is indicated by the blue dashed
line. Here, the outgoing wave function is transformed to the
energy domain by means of the fast Fourier transform (FFT)
algorithm. For every value of the energy E the resulting wave
function is composed of different eigenmodes. By taking the
inner product (9) of this wave function with a relevant, bound
eigenmode, the associated expansion coefficient is extracted.

Multiplication by its complex conjugate and additionally di-
viding by the spectral content of the source, a transmission
function from one mode to another is obtained as a function
of the energy. With this approach, a single simulation run in
the time domain provides us with the transmission function
for a desired range of energies.

To calculate the eigenvalues and related eigenmodes, a
similar discretization procedure as for the numerical time-
stepping method (see Appendix B) is applied. A staggered
grid is employed together with a fourth-order central differ-
ence approximation for the spatial derivatives.

To prevent scattering at the boundaries from polluting the
FFT, the simulation domain needs to be truncated by an ab-
sorbing boundary layer, which is indicated by the gray region
in Fig. 3. For simplicity reasons, an absorbing potential ap-
proach is chosen, which boils down to imposing an additional
imaginary potential near the edges [56]. In Sec. II, it was im-
plicitly assumed that the potential V (x) was real. Hence, given
that the orthogonality properties are employed to calculate the
transmission function, this part should be briefly revisited. It
is straightforward to show that for a complex potential (12)
contains an additional term

ky,1〈�1, �2〉 = + k∗
y,2〈�1, �2〉

− 2i

h̄

∫ +∞

−∞
dx Im(V )(u′

2
∗u′

1 + v′
2
∗v′

1).
(16)

If one of the two modes is a bound mode, which means that
the wave function does not overlap with the imaginary poten-
tial in the absorbing layer, then the additional term disappears.
Consequently, a bound mode with real eigenvalue is still
orthogonal with respect to all other eigenmodes. Therefore,
for the interesting case of transmission of this type of eigen-
mode, the above discussed procedure remains valid. Note that
the eigenvalues of radiating modes that were previously real
become complex in the presence of this absorbing potential
because of the extra term in (16).

IV. RESULTS

A. Without constriction

We start this section by investigating the dispersion relation
of the bound modes with real eigenvalues (determined by
means of the numerical procedure outlined in Sec. III) for
the two different valleys of 8-Pmmn borophene, displayed in
Figs. 4(a) and 4(b). The hyperbolic secant potential (14) is
employed, characterized by V0 = 0.45 eV and by a full width
at half maximum W independent of y and equal to 10 nm.
The dispersion relation of the eigenmodes is bounded by the
full black line and the dashed black line, which represent the
dispersion relation of a free particle (V = 0) and of a particle
under the influence of a constant potential −V0, respectively.
The absolute value of the group velocity |dE/dh̄ky| of the
forward-propagating modes in valley kD tends to go to vy +
vt , while for the backward-propagating mode this is vy − vt .
For valley −kD it is the other way around as Figs. 4(a) and
4(b) are reflections of each other with respect to the E axis.

Figures 4(c) and 4(d) focus on the lowest-order forward-
propagating mode and zoom in on a particular part of the
dispersion relation. The eigenvalues are plotted for different
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FIG. 4. (a), (b) Plots of the eigenvalues ky of the bound modes versus energy E for the hyperbolic secant potential (14) with W = 10 nm
and V0 = 0.45 eV. (a) Gray dots represent the eigenvalues corresponding to valley kD, while in (b) the eigenvalues associated with valley −kD

are displayed. (c), (d) Plots of the eigenvalue ky of the lowest-order, forward-propagating bound mode as a function of energy E for a set of
values of the full width at half maximum W for the valleys kD and −kD, respectively. For (a)–(d) the dispersion relation in the case of zero
potential is given by the full black line. The dashed black line is the dispersion relation in the case of a constant potential −V0. The eigenvalues
ky were calculated by means of the numerical procedure outlined in Sec. III.

values of the full width at half maximum W . Its effect on
the dispersion relation of the eigenmodes is evident: smaller
values of W shift the curve upward. From these figures it is
also observed that the parameter W allows one to tune the
number of bound modes propagating through the waveguide.
For example, for an energy equal to −0.06 eV, the lowest-
order forward-propagating bound mode for valley −kD exists
for all four indicated values of W , while for valley kD this is
not the case anymore for W equal to 4 nm.

B. With constriction

From the analysis of the previous section it becomes appar-
ent that the structure depicted in Fig. 3 can act as a valley filter.
Assume that W0 is equal to 10 nm and W1 is 4 nm; then for
both valleys a bound mode with energy of −0.06 eV can be
emitted by the source and will be propagating in the forward
direction. However, only for the valley −kD, the lowest-order
mode is retained in the narrow section. (Note that—in a
similar fashion—the potential depth V0 also allows one to tune

the waveguide properties and thus constitutes a second ap-
proach to create valley filters.) For the aforementioned values
of W0, W1, E , and V0, Fig. 5 qualitatively demonstrates this
effect on the propagation of a wave packet that has been con-
structed by modulating the lowest-order bound eigenmode by
an additional Gaussian 1/(

√
2πσt )e−(t−t0 )2/2σ 2

t , with σt = 10
fs and t0 = 50 fs. In the case of valley kD, at 60 fs the wave
packet is injected by the source into the waveguide’s bottom
wide section. When traversing the transition region, this in-
coming mode couples exclusively to radiating modes, which
is shown in Fig. 5(b), as there is no forward-propagating
bound mode in the narrow section. Consequently, a consid-
erable part of the wave packet leaks out of the waveguide
(and is in our simulation absorbed by the imaginary potential).
At the other end of the narrow section, the radiating modes
couple in the waveguide’s upper, wide section to the forward-
propagating bound mode [Fig. 5(c)].

In the case of the valley −kD, the incoming bound mode
couples almost entirely to the forward-propagating bound
mode of the narrow section thanks to the smooth transition.
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FIG. 5. (a)–(f) Snapshots of the probability density, demonstrating the valley-filtering effect of a nanoconstriction. Plots (a)–(c) are
attributed to valley kD and (d)–(f) to −kD. The potential profile corresponds to (14) with V0 = 0.45 eV and with W varying with the position
y according to (15). The full width at half maximum of the broad part of the potential W0 is 10 nm, while the full width at half maximum of
the narrow section W1 equals 4 nm. The length of the narrow section L is 50 nm and the length of the transition region is characterized by
LT = 5 nm. The spectral content of the incoming mode is centered around E = −0.06 eV.

In the narrow section, the mode is better confined, leading
to a brighter spot in Fig. 5(e). At 300 fs, the wave packet
starts to couple into the broad waveguide section. Compared
to Fig. 5(d), the wave packet is somewhat elongated along
the waveguide axis due to dispersive effects. Note that the
snapshots in Figs. 5(a)–5(c) and in Figs. 5(d)–5(f) are taken
at different time instants because the group velocity of a
forward-propagating wave packet in valley kD approximates
vy + vt , while this is vy − vt for valley −kD.

In a next step, the valley filter is investigated from a quan-
titative point of view. The transmission function is determined
as detailed in Sec. III and the results are shown in Fig. 6.
Note that we restrict ourselves to the zero-temperature trans-
mission function. For elevated temperatures it is expected that
electron-phonon coupling plays a significant role. Hence, the
effect that this electron-phonon interaction has on the valley-
filtering properties of the nanoconstriction is left for future
work. In Fig. 6(a), the transmission function of the two valleys
is compared, while variations in the parameters W1, L, and LT

are studied in Figs. 6(b)–6(d) for valley kD. Figure 6(a) shows
that an energy window can be specified for which the trans-
mission through the nanoconstriction equals practically 1 for
valley −kD, while it is zero for kD. Hence, Fig. 6(a) demon-
strates that the nanoconstriction functions as a valley filter.

In Fig. 6(b), the width of the narrow region W1 is varied.
For larger W1, the transition from zero to perfect transmission
is shifted toward more negative energies. This is completely
in accordance with the results of Fig. 4(c), where it was
shown that the dispersion relation of the lowest-order bound
eigenmode is shifted downward for larger values of W .

The effect of the length of the narrow region L is illustrated
by Fig. 6(c). For larger values of L, the transition from zero to
perfect transmission is steeper. That is to say, for values of
the energy E for which the narrow section does not support
a forward-propagating mode, the transmission is lower for
larger values of L. As in this case the injected mode couples
exclusively to radiating modes, the longer the length of the
constriction, the more these radiating modes diffract away
from the waveguide axis, resulting in a lower transmission.

The study presented in Fig. 6(d) considers the parameter
LT , which is an indication for the length of the transition
region. A larger LT leads to a smoother transition between
the modes of the broad section and those of the narrow sec-
tion. Accordingly, the losses are lower for large LT and the
transmission is higher. This is clearly observed in Fig. 6(d).
However, for larger values of the energy E , there are some
unexpected oscillations present in the transmission function.
These oscillations are more pronounced for shorter transition
regions.
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FIG. 6. Transmission through the nanoconstriction as a function of the energy E for various design parameters. The transmission for the
valleys kD and −kD is depicted in (a) for V0 = 0.45 eV, W0 = 10 nm, W1 = 4 nm, L = 50 nm, and LT = 5 nm. The effect of the width of the
narrow section W1, the length of the narrow section L, and the length of the transition region are illustrated by (b), (c), and (d), respectively. In
(b)–(d) the same parameters as in (a) are employed except for the one that is varied. Only valley kD is considered in (b)–(d).

To thoroughly investigate this effect, first, a similar vari-
ation of the parameter LT is shown in Fig. 7 but now for a

FIG. 7. Effect of the parameter LT on the transmission through
the nanoconstriction as a function of the energy E for the valley
kD. The employed parameters are V0 = 0.45 eV, W0 = 10 nm, W1 =
4 nm, and L = 100 nm.

constriction that is twice as long, i.e., L = 100 nm. The period
of the oscillations has been approximately halved, indicat-
ing that the oscillations originate from interference effects.
Second, Fig. 8(a) depicts a detail of the dispersion relation
of the lowest-order forward-propagating bound mode for the
valley kD in the narrow part of the filter. It is observed that the
dispersion relation exhibits a double mode degeneracy (one
E value corresponds to two ky values on the same dispersion
curve), which explains the results of Figs. 6(d) and 7. For an
energy of −0.034 eV, for example, an incoming mode can
couple to two forward-propagating bound modes, indicated
by a blue and red dot in the figure. As seen in Figs. 8(b) and
8(c) these modes have a similar profile as a function of the
position x, however, at different length scales. Furthermore,
these two forward-propagating bound modes arrive at the sec-
ond transition region with a different phase. For this specific
example, the phase difference approximately amounts to 2π

and, thus, the modes interfere constructively at the other end
of the narrow section. As a result, the transmission function
clearly shows a peak at −0.034 eV in Fig. 7 for LT = 1 nm.
From (15) it is deduced that for smoother transitions, i.e., for
larger values of LT , the effective length of the nanoconstric-
tion is slightly less leading to a shift of the peak to the right.
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FIG. 8. (a) Detail of the dispersion relation of the lowest-order
forward-propagating bound mode in a hyperbolic secant potential
(14), with parameters W = 4 nm and V0 = 0.45 eV. The eigenvalues
ky were calculated by means of the numerical procedure outlined in
Sec. III. The considered valley is kD. The two eigenmodes indicated
with a red and blue dot correspond to an energy E of −0.034 eV.
They are plotted as a function of the position x in (b) and (c),
respectively. (b) corresponds to ky = 0.142 nm−1, while ky is equal
to 0.200 nm−1 for the eigenmode presented in (c).

Additionally, the incoming mode couples predominantly into
the mode with the largest ky value for smoother transitions,
which reduces the amplitude of the oscillations.

All previous simulations considered the situation for which
the axis of the waveguide matches exactly with the tilting
direction. This is the ideal scenario but it might be hard to
fabricate it in a perfect way. Therefore, in a last set of simu-
lations, we investigate the effect of θ , the angle between the
axis of the waveguide and the tilting direction of the lattice.
Consider the case where the waveguide is rotated in the xy
plane by an angle θ , while the lattice orientation is fixed. Due
to the anisotropy and the tilting, the eigenmode problem for
this case has changed with respect to (3). The orthogonal-
ity relations between the eigenmodes are found in the same
way as in Sec. II B, such that the numerical procedure to
calculate the transmission function is still applicable. This
altered eigenmode problem is further detailed in Appendix A.
The results, presented in Fig. 9, indicate that for larger values
of the mismatch angle θ the transmission function is shifted
toward lower values of the energy. This behavior is observed
for both valleys, although the shift is smaller for valley −kD.

(a)

(b)

FIG. 9. Effect of the parameter θ , the angle between the axis of
the waveguide and the tilting direction, on the transmission through
the nanoconstriction as a function of the energy E for valley kD

(a) and valley −kD (b). The employed parameters are V0 = 0.45 eV,
W0 = 10 nm, W1 = 4 nm, and L = 50 nm.

When the angle θ equals 90◦, and thus when the tilting is
perpendicular to the axis of the waveguide, valley filtering
should be entirely absent. Hence, the transmission function of
both valleys should converge toward each other for increasing
mismatch angle. To investigate this behavior, the energy value
for which the transmission function equals 0.5 is plotted as
a function of the angle θ for both valleys in Fig. 10. It is
observed that the curves indeed meet for θ equal to 90◦.
In addition, as both curves initially decrease for increasing
mismatch angle θ , the size of the energy gap for which valley
filtering is possible remains relatively large for values of θ up
to 40◦, making this valley filter robust against considerable
misalignment of the top gate relative to the tilting direction.

V. CONCLUSION

In this paper, an alternative valley-filtering method based
on electrostatic waveguides with nanoconstrictions in tilted
Dirac materials, such as 8-Pmmn borophene, was presented.
Therefore, first, the eigenmodes of an electrostatic waveguide
were discussed for the tilted Dirac equation from a theoret-
ical perspective. An inner product, based on the expression
for the probability current density along the waveguide axis,
was proposed, and it was shown that all bound eigenmodes
are mutually orthogonal and orthogonal with respect to the
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FIG. 10. Energy value ET =0.5 for which the transmission function
equals 0.5 as a function of the mismatch angle θ for both valleys kD

and −kD. The employed parameters are V0 = 0.45 eV, W0 = 10 nm,
W1 = 4 nm, and L = 50 nm.

radiating modes. Next, a simulation procedure based on
partitioned Runge-Kutta time stepping that exploited these
orthogonality relations was put forward. This simulation ap-
proach allows the calculation of the transmission function
for an entire energy range with a single simulation run.
Eventually, this numerical procedure was employed to study
electrostatic waveguides with nanoconstrictions in tilted Dirac
materials and it was demonstrated that they can indeed be used
as valley filters.

The workings of the valley filter were qualitatively and
quantitatively investigated. The dispersion relation for the
lowest-order forward-propagating bound mode in the narrow
section is shifted upward compared to the one of the wide
section. Consequently, as the tilting direction is opposite in
the different valleys, the geometrical parameters can be cho-
sen such that there is no forward-propagating bound mode
in the narrow section for one valley, while there is one for
the other valley. As a result, for a considerably large energy
window, transmission through the structure is for one valley
almost nonexisting, while perfect for the other one. As it
is experimentally not possible to exactly set the orientation
of the top gate with respect to the lattice of the Dirac ma-
terial, misalignment between the waveguide axis and tilting
direction was investigated and the results showed that this
energy window was robust against a mismatch angle of sev-
eral tens of degrees. Three geometrical design parameters,
the width of the narrow section, the length of the narrow
section, and the length of the transition region, were varied
and the effects were carefully examined. In addition, the
simulations also revealed that the dispersion relation of the
eigenmodes is not necessarily monotonic, which may give rise
to oscillations in the transmission function due to interference
effects.
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APPENDIX A: EIGENMODES OF A ROTATED
WAVEGUIDE

To determine the eigenmodes in a reference frame (x, y)
in which the waveguide has been rotated by an angle θ with
respect to the y axis, the procedure of Sec. II cannot be applied
directly. Therefore, we first introduce the following coordinate
transformation:

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ. (A1)

The y′ axis now aligns with the waveguide. Applying this co-
ordinate transformation to the tilted Dirac equation (1) yields

ih̄
∂

∂t
� = [τ (vxσx(p′

x cos θ − p′
y sin θ )

+ vyσy(p′
x sin θ + p′

y cos θ )

+ vtσ0(p′
x sin θ + p′

y cos θ )) + V σ0]�. (A2)

Because of the y′ invariance of the potential, we can
substitute u(x′, y′, t ) and v(x′, y′, t ) by u′(x′)ei(k′

yy′−ωt ) and
v′(x)ei(k′

yy′−ωt ), respectively, resulting in the generalized eigen-
value problem

k′
y

(
τvt cos θ τ (−vx sin θ − ivy cos θ )

τ (−vx sin θ + ivy cos θ ) τvt cos θ

)(
u′

v′

)

=
(

E−V (x′ )
h̄ + iτvt sin θ d

dx′ τ (ivx cos θ + vy sin θ ) d
dx′

τ (ivx cos θ − vy sin θ ) d
dx′

E−V (x′ )
h̄ + iτvt sin θ d

dx′

)

×
(

u′

v′

)
, (A3)

with as eigenvalue k′
y and eigenmode (u′

v′). To calculate the
eigenmodes and associated eigenvalues, (A3) is discretized
by means of a staggered grid, together with a fourth-order
central difference approximation for the spatial derivatives.
Afterward the eigenmode is transformed back to the original
reference frame (x, y).

To determine the transmission function, the orthogonal-
ity relations of the eigenmodes are required, as explained
in Sec. III. Therefore, inspired by the expression of the y′
component of the probability density current

j′y = τ�†(−vxσx sin θ + vyσy cos θ + vt cos θ )�, (A4)

and similarly as in Sec. II B, we define an inner product
〈�1, �2〉 of the form

∫ +∞

−∞
dx′ τ�

†
2 (−vxσx sin θ + vyσy cos θ + vt cos θ )�1.

(A5)

It is readily shown that (12) is also valid for the inner product
(A5), with the eigenmodes �1 and �2 satisfying (A3). Hence,
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the orthogonality properties of the eigenmodes are similar to
those obtained in Sec. II B.

APPENDIX B: FOURTH-ORDER NUMERICAL METHOD
FOR THE TILTED DIRAC EQUATION BASED ON
PARTITIONED RUNGE-KUTTA TIME STEPPING

The spatial discretization is based on the staggered grid
of [57]. The simulation domain of size Lx × Ly is subdi-
vided into Nx × Ny unit cells. Within each unit cell (i, j) of
size �x × �y, u is defined at two positions, (x = i�x, y =
j�y) and (x = (i + 1/2)�x, y = ( j + 1/2)�y), while v is
defined at (x = (i + 1/2)�x, y = j�y) and (x = i�x, y =
( j + 1/2)�y). The corresponding values are contained in the
vectors u1, u2, v1, and v2. In a next step, the spatial derivatives
in the tilted Dirac equation (1) are approximated by means
of a fourth-order central difference. Fourth-order averaging is
applied as well so that all terms in the equation are evaluated
at the same position. Splitting the components of the wave
function into real and imaginary part and rearranging the
resulting expression yields

dq

dt
= K p, (B1)

d p

dt
= −KT q, (B2)

with

q =

⎛
⎜⎜⎜⎝

Im(u1)

Re(u2)

Re(v1)

Im(v2)

⎞
⎟⎟⎟⎠, p =

⎛
⎜⎜⎜⎝

Re(u1)

Im(u2)

Im(v1)

Re(v2)

⎞
⎟⎟⎟⎠, (B3)

and K is equal to⎛
⎜⎜⎜⎜⎜⎝

−Vu1
h̄ −vt Ax ⊗ Dy −vxDx ⊗ I vyI ⊗ Dy

vt AT
x ⊗ DT

y
Vu2
h̄ vyI ⊗ DT

y vxDT
x ⊗ I

vxDT
x ⊗ I vyI ⊗ Dy

Vv1
h̄ −vt AT

x ⊗ Dy

vyI ⊗ DT
y −vxDx ⊗ I vt Ax ⊗ DT

y
−Vv2

h̄

⎞
⎟⎟⎟⎟⎟⎠.

(B4)

The Kronecker product is indicated by ⊗ in (B4) and Vu1 is a
matrix with on its diagonal the values of the potential energy
evaluated at the grid positions of u1; likewise Vu2 , Vv1 , and Vv2

are obtained. The matrix elements of Dx satisfy the expression

[Dx]i, j = 1

24�x
(δi, j−2 − 27δi, j−1 + 27δi, j − δi, j+1), (B5)

with i and j varying from 1 to Nx. The elements of Ax are
given by

[Ax]i, j = 1
16 (−δi, j−2 + 9δi, j−1 + 9δi, j − δi, j+1). (B6)

Because of the specific form of the set of equations (B1) and
(B2) an explicit, symplectic partitioned Runge-Kutta time-
stepping method can be used [52,53]. Stepping in time from
t = n�t to t = (n + 1)�t corresponds to

Qn,0 = qn,

Qn,1 = Qn,0 + �t B1 KPn,1,

Qn,2 = Qn,1 + �t B2 KPn,2,
...

Qn,s = Qn,s−1 + �t Bs KPn,s,

qn+1 = Qn,s,

Pn,1 = pn,

Pn,2 = Pn,1 − �t b1 KT Qn,1,

Pn,3 = Pn,2 − �t b2 KT Qn,2,
...

Pn,s+1 = Pn,s − �t bs KT Qn,s,

pn+1 = Pn,s+1,

(B7)
where the intermediate values are denoted by capital letters.
The constants bi and Bi, where i ranges from 1 to s, the number
of substeps, characterize the partitioned Runge-Kutta method.
In this work, a fourth-order method is employed from [50,54].

Note that (B1) and (B2) can be rewritten as a Poisson sys-
tem, similarly as for the normal Dirac equation [50]. Hence,
it is readily shown, following the same steps as in [50], that
this numerical method based on partitioned Runge-Kutta time
stepping conserves the probability and energy up to the fourth
order of the time step and that it, in contrast to explicit Runge-
Kutta time stepping, does not lead to additional, spurious
dissipation.
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