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Single-electron states of phosphorus-atom arrays in silicon
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We characterize the single-electron energies and the wave-function structure of arrays with two, three, and four
phosphorus atoms in silicon by implementing atomistic tight-binding calculations and analyzing wave-function
overlaps to identify the single-dopant states that hybridize to make the array states. The energy spectrum and
wave-function overlap variation as a function of dopant separation for these arrays shows that hybridization
mostly occurs between single-dopant states of the same type, with some cross hybridization between A1 and
E states occurring at short separations. We also observe energy crossings between hybrid states of different
types as a function of impurity separation. We then extract tunneling rates for electrons in different dopants
by mapping the state energies into hopping Hamiltonians in the site representation. Significantly, we find that
diagonal and nearest-neighbor tunneling rates are similar in magnitude in a square array. Our analysis also
accounts for the shift of the on-site energy at each phosphorus atom resulting from the nuclear potential of
the other dopants. This approach constitutes a solid protocol to map the electron energies and wave-function
structure into Fermi-Hubbard Hamiltonians needed to implement and validate analog quantum simulations in
these devices.
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I. INTRODUCTION

Donor-based quantum devices in silicon are ideal plat-
forms for the solid-state implementation of quantum materials
and quantum simulators [1]. After the original proposal
of solid-state quantum computing in impurity-based silicon
nanostructures [2–4], several initial attempts to fabricate these
structures appeared in the literature [5–7]. It was clear that one
of the biggest challenges was the need for atomic precision
in the fabrication of phosphorus arrays in silicon. Modern
nanofabrication techniques allow for near-atomic precision in
dopant placement in silicon, providing fine geometric control
of the device electronic quantum states [8–13]. Recent re-
ports demonstrate the experimental realization of an extended
Fermi-Hubbard model in a 3 × 3 array of single-phosphorus
quantum dots [14], and quantum simulations of the Su-
Schrieffer-Heeger model in P-doped silicon devices [15].

For a single donor embedded in silicon, the sixfold de-
generacy of the conduction band minima splits the otherwise
simple spectrum for a single, bound electron in the spherical
potential of the donor. As a result, the 1s electronic state
splits into six states, characterized by the silicon tetrahedral
symmetry as a single A1, triple T2, and double E states.
This splitting has been experimentally observed via infrared
absorption spectra [16] and other optical measurements [17].
Valley splitting persists in the electronic structure of devices
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with more than one donor, leading to the existence of numer-
ous bound states for a single electron in donor arrays [18,19].
This was already anticipated in the early studies by Luttinger
and Kohn [20,21], and later investigations on the theory of
one and two donors in silicon [22,23], based on multivalley
effective mass theory [24].

Understanding the charge distribution and energies of
bound electron states in terms of the impurity number and
geometry is critical for the implementation of quantum sim-
ulations [25,26] and charge qubits [27,28] in dopant-based
devices. For instance, phosphorus dimers in silicon could
be used to realize qubits with control based on fine tuning
the charge states [29]. Faithful analog simulations of Fermi-
Hubbard models require a clear identification of site energies,
electron tunnelings, and on-site and long-range interactions
between electrons in the dopant array. This information is
encoded in the electronic structure. For the phosphorus dimer,
Ref. [26] reports effective mass theory estimations of tunnel
couplings as half of the energy separation between the sym-
metric and antisymmetric combinations of A1 states. More
recently, tunneling rates between identical and different pairs
of single-impurity states were obtained from computations of
intra- and interorbital hopping integrals utilizing Bardeen’s
tunneling theory [30].

In this paper, we develop a systematic approach to unveil
the structure of electron states in few-atom arrays that allows
us to extract tunneling energies, and on-site energy corrections
originating from the nearby impurities’ attractive potential.
We first use atomistic tight-binding theory to determine the
electronic states of the multidopant arrays. For each dopant in
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the array, we find the electronic states bound to that dopant
from tight-binding calculations. For each array state, we use a
wave-function overlap analysis to determine which site-bound
single-dopant states contribute to the array states. From that,
we are able to extract the tunneling and on-site energies for
the single-particle part of a Hubbard model for the array. This
ensures that the simple Hubbard will faithfully represent the
low-energy states of the array. Our analysis reveals that the
formation of hybrid states in few-atom, few-site arrays from
single-impurity bound states is restricted by the wave-function
symmetry and presents energy crossings as a function of
impurity-impurity separation. Moreover, this approach per-
mits the identification of complex hybrid states where more
than one type of single-impurity bound state defines the ar-
ray state. Since our approach depends on the wave-function
overlap, this methodology can only provide insights on the
formation of states on arrays with separations larger than the
radius of the electron state bound to single impurities.

The organization of the paper is as follows. In Sec. II.
we describe the atomistic tight-binding calculations and the
wave-function overlap analysis. Then, in Sec. III, we apply
this methodology to selected systems with two, three, and four
impurities. Finally, we summarize and conclude in Sec. IV.

II. WAVE-FUNCTION OVERLAP ANALYSIS

We determine the electron energies and wave functions in
dopant arrays by implementing atomistic tight-binding calcu-
lations that reproduce the experimentally verified energy band
gaps and effective masses for the relevant bands. Specifically,
we implement the empirical sp3d5s∗ tight-binding model with
spin for Si with tight-binding (TB) parameters introduced by
Boykin et al. in Ref. [31]. Each phosphorus atom in the array
replaces a Si atom introducing a confinement potential for
the additional electron that we model as a screened Coulomb
potential,

UP(�r) =
{

− e
4πεSi|�r−�rP | , �r �= �rP

UCCC, �r = �rP,
(1)

where εSi is the silicon dielectric constant, �rP is the impurity
location, and UCCC is the central cell correction. For a single-
P atom, this model reproduces the known [32] valley-split
single-electron energies with correct multiplicity and energy
ordering (εA1 < εT2 < εE , with A1, T2, and E representing the
different valley-split 1s states in a single phosphorus atom)
[33] when the central cell correction UCCC is set to −3.5 eV.
We fix UCCC to this value in our simulations of P arrays. The
dielectric constant εSi is set to 10.8εo. Our calculations do not
incorporate the effects of strain or variations in the dielectric
constant near the impurity location. The total confinement
potential induced by the P array is the sum of all individual
contributions given by Eq. (1).

We analyze the single-electron energy spectrum in an array
with n phosphorus atoms in the following steps:

(1) We do a tight-binding calculation for the energies and
wave functions of the array single-particle states and tight-
binding calculations for the single-particle states bound to
each dopant in the array.

(2) For each array state, we calculate its overlap with all of
the bound states of all of the single dopants.

(3) We sort array states according to their overlap with
single-impurity electron states. For example, we find the array
states that have dominant overlap with the single-dopant states
with spin-up, A1 character. This allows us to identify classes
for the array states. We assume that the array states in the same
class are the group of states which can hybridize together.
We expect this to be true, except possibly near an anticross-
ing where the weaker overlaps may provide the channel for
coupling.

(4) We assume that the array states in the same class can
be described by a single-electron Hubbard model. We identify
the minimal single-electron Hubbard model in the site rep-
resentation that can provide an energy spectrum sharing the
same properties as the energy spectrum of the symmetry class
of array states.

(5) For each class of arrays states, we find the Hubbard
model parameters by fitting the eigenvalues obtained for the
Hubbard model to the tight-binding energies. This gives us
a way to define hopping parameters and on-site energies for
each class of array states. We do this as a function of dopant-
dopant separation in the array to determine the dependence of
the hopping and on-site energy on separation.

Specifically, choosing a basis set for electron states in a
single-P atom, {|�σ

i 〉}, we evaluate the overlap integral be-
tween each array state |�σ̃

k 〉 and single-P states |�σ
i 〉 at each

dopant position in the array. In our notation, i and k are
wave-function indices and σ and σ̃ indicate the electron spin
in each state. We order the basis sets such that each con-
secutive pair is a spin-conjugate pair, i.e., we include the ith
spin-conjugate pair {|�σ2i

2i 〉, |�σ2i+1
2i+1〉} in the 2ith and (2i + 1)th

positions so that σ2i = −σ2i+1. Before computing the overlap
integral 〈�σ, (α)

i |�σ̃
k 〉, we align the spins of the single-impurity

spin-conjugate pair |�σ
2i〉, |�σ

2i+1〉 to coincide, as much as
possible, with the spin orientation of the target spin-conjugate
P-array states, |�σ

2i〉, |�σ
2i+1〉. For each site α in the array, we

then collect these overlaps M (α) with

M (α)
ki ( �R) = ∣∣〈�σ, (α)

i

∣∣�σ̃
k

〉∣∣2
. (2)

The overlaps M (α) depend on the array geometry, dopant
position �R, and relative spin orientation. In this approach,
we read the overlap in the form of histogram maps to sep-
arate array states into subgroups that overlap with one or
two single-P orbitals. For parameter calculations, we only use
the P-array energies as detailed below. Moreover, we remark
that this classification of array states does not depend on the
spin-alignment step. The latter facilitates the study and inter-
pretation of the overlap histograms. If spin alignment is not
implemented or possible, one can identify overlapping states
by simultaneously considering the overlaps between the array
and single-impurity spin-conjugate states [34].

Next, we write an n-dimensional single-particle Hamilto-
nian ĤP−array in the site representation consisting of single-site
energies εα , intersite tunneling energies {tα,β}, and on-site en-
ergy shifts {λα}, and obtain exact forms for their eigenvalues
and eigenvectors. In this case, α and β are again indices listing
the array impurities or, equivalently, array sites. ĤP−array is
therefore the site representation of the P-array single-electron
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states. While the tunneling rates tα,β result in the formation of
hybrid states between different sites, the origin of the on-site
correction energies λα is in the nonuniform nature of the local
potential at each site due to the impurity potential, given by
Eq. (1), from all of the sites. On-site energy shifts εα →
εα − λα , are the sum of the Coulomb potentials at the site
α due to all impurities forming the array. The parameter set
defining the Hamiltonian model should preserve the symmetry
of the array in the silicon matrix, reducing the total number of
independent on-site shifts and tunneling energies in the model.
Symmetry considerations also simplify the analytical forms
for the ĤP−array eigenvalues and separate their eigenstates
into subsets that are invariant under different array symmetry
elements.

In the last step, we determine tα,β and λα by numerically
fitting the model eigenvalues to the corresponding array ener-
gies, replacing εα by the energy of the corresponding single-P
orbital on each site. In this form, we complete our protocol
to find Fermi-Hubbard model parameters from TB energy
calculations.

We can use the results from this approach to understand ge-
ometric control on Fermi-Hubbard model parameters. When
a single distance parameter d characterizes the P array, we
model the functional dependence of tunneling and on-site
energy shifts by the exponential forms,

tα,β (d ) = t o
α,βe−d/l (α,β )

t , (3)

λα (d ) = λo
αe−d/l (α)

λ , (4)

with decay lengths l (α,β )
t and l (α)

λ . We notice that for long
lengths l (α)

λ ,

λα (d ) → λo
α

1 + d/l (α)
λ

. (5)

The form for the on-site energy correction originates from
the screened potential used to represent the impurities in our
model given by Eq. (1). The array’s nuclear potential differs
from the Coulomb form in Eq. (1) in the neighborhood of
a single impurity. In the limit of large impurity separation,
this difference is an energy shift λα at site α, proportional to
the sum of other impurities’ potential at Rα , i.e., the sum of
the “Coulomb tails.” In such case, λα must be inversely pro-
portional to the impurity separation, suggesting the λα form
in Eq. (5). At the other end, when the impurities are close,
the local potential differs greatly from the form in Eq. (1),
showing significant deviations from the spherical symmetry
and lower tunneling barriers. To account for such variation in
the local energies within a single parameter λα , we adopt the
generic exponential form in Eq. (4).

We remark that due to the Si spin-orbit coupling, the
spin alignment is not always achieved with great precision.
Occasionally, this results in the misalignment of the spin ori-
entation of a single-impurity spin-conjugate pair relative to the
class of P-array states beyond a desired tolerance. However,
the actual value of the overlap between different states is irrel-
evant for the calculation protocol of the system’s parameters
described above. Only the relative magnitude of the overlaps
matters so that the classes of array states that hybridize can be
identified. In our approach, we read the overlap in the form

of histogram maps to separate array states into subgroups that
overlap with one or two single-P orbitals. To determine the
Hubbard model parameters, we only use the array energies.

III. FEW-ATOM ARRAYS

In this section, we analyze the energy spectrum for single-
electron states in arrays with two, three, and four phosphorus
atoms. We consider the low-energy array states. For this
reason, we compute overlaps between the array states and
the 1s valley-split spin-degenerate bound states of the single
dopants. Since there are 12 valley-split 1s states in a single-P
atom in silicon, and considering that each single-impurity
state hybridizes to form array states, for an nP array, we
identify the lowest 12n electron states with energies falling
in the Si band gap and analyze their structure utilizing the
methodology described in Sec. II.

A. Phosphorus dimer

We begin by investigating the single-electron energies for a
phosphorus dimer, located along the [100] direction, in Figs. 1
and 2. In Fig. 1(a), we show how the electron energies vary
as a function of the impurity separation d , from 6 to 20 ao,
where ao is the Si lattice constant. The energy levels for
a single electron spread more as the separation decreases,
with a drop in the ground-state energy of several tens of
meV relative to the corresponding ground-state energy for an
isolated phosphorus atom, which, for this TB model, corre-
sponds to 1.0799 eV. We analyze the energy distribution and
wave-function structure for this dimer utilizing the overlap
analysis described in Sec. II. Counting 2P wave functions
from the lowest to the highest in energy, and adding labels ↑, ↓
to differentiate between spin-conjugate states, Figs. 1(b)–1(f)
show overlap histogram maps for the first, third, fifth, seventh,
and ninth dimer wave functions. Each histogram map lists on
its vertical axis 12 single-phosphorus states—corresponding
to the twofold A1, sixfold T2, and fourfold E states—and the
horizontal axis lists different P-P separations along the [100]
direction. From Fig. 1(b), we find that the dimer ground state
overlaps mostly with the A1 state at every dimer interatomic
distance, with MA1 1 ≈ 0.5, and small but still relevant overlap
with one E state for distances shorter than 8 ao. In fact,
MA1,1 is consistently larger than 0.5, increasing as the impurity
separation decreases up to d = 4ao. Indeed, the wave function
for an A1 state centered at a single impurity spreads in space
with non-negligible overlap in the neighborhood of the other
impurity. As a consequence, this additional contribution to the
total overlap is larger for closer impurities and it is a signature
of the nonorthogonal character of the single-phosphorus wave
functions. This increase in the overlap the closer the impu-
rities are is not necessarily monotone, as observed for ME ,1.
Even when the single-donor wave functions are nonorthogo-
nal, the overlaps still provide a good way to characterize and
group the dimer states. Moreover, the dimer ground state can
be represented by the linear combination of A1 states from
each impurity in the dimer for d � 10ao. Considering higher-
energy dimer states, shown in Figs. 1(c)–1(f), we find that
the A1 state overlaps with the third, seventh, and ninth states
for the corresponding separations of d � 14ao, d = 12ao, and
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3rd 5th

7th 9th

(a)

FIG. 1. Phosphorus dimer overlap analysis. (a) Energy spectrum
as a function of P-P separation. For each separation d , we show the
lowest 24 dimer states. Black and blue dots correspond to doubly
degenerate, spin-conjugate states. Brown dots correspond to four-
fold degenerate states. The horizontal gray dashed line indicates the
single-electron ground energy in a single phosphorus atom. (b)–(f)
Overlap histograms, given by Eq. (2), as a function of the type of
single-dopant state and the dimer separation d for (b) first, (c) third,
(d) fifth, (e) seventh, and (f) ninth dimer state. The dimer grows along
the [100] direction. The blue dashed lines in (a) indicate the dimer
states identified with symmetric and antisymmetric combinations of
single-phosphorus A1 electron states.

d � 10ao, respectively. We note that the fifth dimer wave
function is orthogonal to the A1 state for the whole set of
considered dimer configurations. Tracing out how the overlap
of the single-particle A1 states varies with d , as illustrated
by the blue line in Fig. 1(a), we identify the dimer states

FIG. 2. The phosphorus dimer along the [100] direction.
(a) Single-electron tunneling energy t , (b) on-site energy shift λ,
and (c) single-electron energy spectrum as a function of P-dimer
separation d along the [100] direction. In (c), solid and dashed
lines show the corresponding symmetric and antisymmetric energies
ε−

2P and ε+
2P for each case of dimer-state pair identified through the

overlap analysis.

which we associate with the symmetric and antisymmetric
hybridizations of single-phosphorus A1 states.

We analyzed the overlap histogram maps for the lowest 24
bound states in phosphorus dimers as we vary the impurity
separation, identifying the energies associated with symmetric
and antisymmetric linear combinations of T2 and E states.
For instance, in Figs. 1(e) and 1(f), we observe dimer states
that overlap with one single-donor E state. Specifically, the
seventh and the ninth dimer states overlap with the E state at
corresponding separations of d � 10ao and d = 12, 14ao. We
also find that the 23rd dimer state overlaps, for the range of
dimer separations considered, with the same single-donor E
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state (not shown in Fig. 1). In this way, we identify the dimer
energy states corresponding to symmetric and antisymmetric
combinations of single-donor E states.

The identification of symmetric and antisymmetric states
permits a quantitative determination of electron tunneling
rates, and the on-site energy shifts, needed for a Hubbard
model, by a fitting to atomistic tight-binding energy calcu-
lations. The Hamiltonian for the two-site representation of
the dimer, with on-site energy εP ∈ {εA1 , εT2 , εE }, tunneling
energy t , and on-site shift energy λ, is

Ĥ2P =
(

εP − λ −t

−t εP − λ

)
, (6)

and has eigenvalues ε±
2P = εP − λ ± t , with corresponding

eigenstates v∓
2P = (1/

√
2,∓1/

√
2). In this form, the symmet-

ric state v+
2P corresponds to the lowest-energy state ε−

2P. By
identifying ε±

2P with the symmetric and antisymmetric ener-
gies obtained from the wave-function overlap analysis, we
compute t and λ.

We show the result for these two parameters in Figs. 2(a)
and 2(b), where we also include fitting curves corresponding
to the expressions in Eqs. (3) and (4). Significantly, we ob-
serve in Fig. 2(a) that the assumed exponential form for the
tunneling rate coincides with the t values obtained from the
atomistic tight-binding calculations, only showing deviations
at separations that are less than or equal to 8ao for the A1

and E states. Indeed, for these separations, both A1 and a
single E states overlap with the same set of dimer states
[see Figs. 1(b)–1(f)], suggesting that in this case, the form
of the dimer state falls beyond the symmetric/antisymmetric
representation and should include linear combinations of both
A1 and E single-donor states. Our results in Fig. 1(a) also
reveal that the tunneling rates for the ground state, the sym-
metric combination of A1 states, are significantly larger than
previously reported [24], whenever the tunnel coupling has
been estimated as the difference between the first excited and
ground states [27]. This better estimation of t results from
the correct identification of energy crossings at shorter P-P
separations, which are fully identified by our wave-function
overlap analysis. Figure 2 demonstrates that the on-site shifts
are significant for the d range that is analyzed. The shifts
are larger in magnitude than the tunneling energies at each
separation, and they follow the exponential form in Eq. (4).
We note in Fig. 2(b) that for impurity separations d > 12ao,
the on-site shift is nearly independent of the character of the
state, indicating that the potential near each impurity is only
slightly modified by the presence of the other impurity, such
that locally the potential is very similar to the one of a single-P
atom shifted downward by the magnitude of the Coulomb tail.
Finally, introducing the t and λ fitting forms in ε±

2P, we obtain
the functional dependence on the impurity-impurity distance
for the electron energies. Figure 2(c) shows that for the donor
separations that are investigated, this results in an excellent
agreement between the tight-binding energies and a site model
for the dimer with eigenstates corresponding to symmetric and
antisymmetric combinations of single-P states. Consequently,
we quantify the geometric modulation of tunneling energies
in a phosphorus dimer in a form that makes these parameters
useful for Hubbard models.

FIG. 3. The phosphorus dimer along the [110] direction.
(a) Single-electron tunneling, (b) on-site energy shift, and (c) single-
electron energy spectrum as a function of P-dimer separation d
along the [100] direction. In (c), solid and dashed lines show the
corresponding symmetric and antisymmetric energies ε−

2P and ε+
2P for

each case of dimer-state pair identified through the overlap analysis.

Next, we carry out the overlap analysis on P dimers along
the [110] direction. The result is presented in Fig. 3. We find
that tunneling rates for the T2 and E states anticipated by the
formation of symmetric and antisymmetric states follow the
exponential form in Eq. (3) for 8ao < d < 15ao, in contrast
with the tunneling rate between A1 states, since the latter
display oscillations as a function of the dimer separation [note
in Fig. 3(c) how the ground tight-binding state energy, rep-
resented by solid dots, oscillates around the solid blue line].
Similarly to the case of P dimers distributed along the [100]
direction, the E and T2 states separate into two kinds, with
strong and weak tunneling rates. Moreover, the weakly hy-
bridized T2 dimer state is twofold degenerate in both cases for
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the distance range that is considered. The on-site shift energies
in Fig. 3(b) are like those found in Fig. 2(b), predicting larger
shifts for the A1, T2, and E states, in that order. However, the
on-site shifts in the [110] direction were better reproduced by
the rational form for λ in Eq. (5). Utilizing the functional
forms for t and λ, we obtain the d dependence of dimer
energies ε±

2P that we compared with the result of the atom-
istic tight-binding calculations in Fig. 3(c). The agreement
between the two-level model and the atomistic calculations is
acceptable for d � 8ao. Additional improvements to the fits
may require linear combinations of additional single-donor
states and considering tunneling rates between different types
of single-donor states (see, e.g., Ref. [30]).

In comparison with previous results reported in the liter-
ature, we find that, for example, Ref. [35] provides a partial
identification of symmetric and antisymmetric states based
on wave-function symmetry, for a dimer grown in the [110]
direction (see Fig. 2 in the cited reference). Specifically, the
authors of Ref. [35] identify the lowest three states as the
symmetric combinations of A1, T2, and the antisymmetric A1

state in the region between 4 and 8 nm, observing energy
crossing around 8 nm separation between the symmetric T2

state and the antisymmetric A1 state. Our overlap analysis co-
incides with this observation in the range of dimer separations
that is considered, but predicts the energy crossing occurring
at ∼5.7 nm (∼10.5ao). This difference could result from the
distance of the donor pair to the silicon surface, variations
in the tight-binding parameter set, or central cell correction.
Moreover, our overlap analysis provides a full description of
the higher-energy states in terms of symmetric and antisym-
metric states.

B. Linear phosphorus trimer

We now investigate a system with three phosphorus atoms,
forming a line along the [100] direction where the outer impu-
rities are at a distance d from the inner atom. For this family of
3P arrays, we perform the full overlap analysis on the lowest
36 bound states found from a full tight-binding simulation,
with energies in the Si band gap. Specifically, we consider
arrays with d varying from 6 to 14 ao, and report the result of
the atomistic tight-binding calculation and overlap analysis in
Fig. 4.

For the linear 3P array, we adopt a site representation
including different on-site corrections for inner and outer
atoms, respectively, λi and λo, and a single nearest-neighbor
tunneling rate t . The corresponding Hamiltonian,

Ĥ3P =

⎛
⎜⎝εP − λo −t 0

−t εP − λi −t
0 −t εP − λo

⎞
⎟⎠, (7)

has three distinct eigenvalues εm
3P, m ∈ {−1, 0, 1}, given by

ε0
3P = εP − λo, (8)

ε±1
3P = εP − λi + λo

2
±

√
2 t2 +

(
λi − λo

2

)2

. (9)

The state with energy ε0
3P has zero amplitude at the inner

impurity and corresponds to the antisymmetric combination

FIG. 4. The linear phosphorus trimer along the [100] direction.
The d dependence for (a) on-site energy shift at the inner impurity,
(b) on-site energy shift at the outer impurity, and (c) nearest-neighbor
electron tunneling. (d) Single-electron energy spectrum as a function
of the separation d of each outer impurity from the inner one. For
each case, we used solid, dotted, and dashed lines to show fits
corresponding to the energies ε+1

3P , ε0
3P, and ε−1

3P , respectively.

of the outer P states (see Ref. [19]). On the other hand, the
symmetric combination of the outer P states hybridizes with
the inner P orbital, resulting in states with energies ε±1

3P . In
addition, ε−1

3P � ε0
3P � ε+1

3P whenever λi � λo � 0. Since the
on-site energy shifts originate from the impurity model, that
is, the screened Coulomb potential in Eq. (1), we anticipate a
larger on-site energy drop on the inner impurity. Only states
with energies ε±1

3P effectively couple the outer impurities with
the central one. Moreover, whenever λo < λi, the state with
energy ε−1

3P will find most of its electron density localized near
the inner impurity, while for the state with energy ε+1

3P , the
electron density will be found at the outer impurities.

For each of the A1, T2, and E single-P states, we identified,
from the 36 overlap histogram maps, the triples of 3P-array
states corresponding to combinations of each single-impurity
state. For instance, for d = 10ao, we noted that the A1 state
for the inner impurity and the A1 state at each outer impurity
overlapped with the first, 13th, and 15th P-trimer bound states.
We ascribe the energies corresponding to these states as the
energies ε−1

3P , ε0
3P, and ε+1

3P . Indeed, we find that the first trimer
state is mostly localized at the inner impurity, the 13th trimer
state has vanishing overlap with the inner A1 state, and the
15th trimer state overlaps with local A1 states at each impurity.

Figures 4(a) and 4(b) show the inner and outer on-site shifts
for the trimer as a function of the separation d . We note that
among all the single-P states, the outer shift λo is very similar,
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FIG. 5. The square array. (a) Nearest-neighbor tunneling energy,
(b) diagonal or next-nearest-neighbor tunneling energy, (c) on-site
energy shift, and (d) single-electron energy spectrum as a function
of the square side length d . For each case, we used solid, dotted, and
dashed lines to show fits corresponding to the energies ε+1

2P×2P, ε0
2P×2P,

and ε−1
2P×2P, respectively.

while the inner shift λi depends strongly on each state. In
all cases, we observe that λi > λo, with the exception of the
T ′

2 hybrid states for separations d � 9ao. Figure 4(c) presents
the tunneling strength t , showing a good agreement between
values obtained from the overlap analysis of our atomistic
tight-binding calculations and the exponential form given by
Eq. (3), with the exception of the weakly hybridized T2 states
at separations 13 and 14 ao. Significantly, when the fitted
forms are substituted into the site-representation energies εm

3P,
we find in Fig. 4(d) a good description of the single-electron
energies as a function of d .

C. Phosphorus square lattice

In this section, we study square arrays formed by four
phosphorous atoms, oriented such that the diagonals are
parallel to the [100] and [010] directions (see inset of
Fig. 5). We consider a single-electron Hamiltonian in the site
representation,

Ĥ2P×2P =

⎛
⎜⎜⎜⎝

εP − λ −t −β −t
−t εP − λ −t −β

−β −t εP − λ −t
−t −β −t εP − λ

⎞
⎟⎟⎟⎠, (10)

accounting for electron tunneling to nearest- and next-
nearest-neighbor impurities with corresponding tunneling

FIG. 6. Confinement potential sections for an electron in a 2P ×
2P array and a 2P array. We show the potential along the line joining
nearest-neighbor (NN) atoms (black, circles), and the diagonal (blue,
squares) in the 2P × 2P array with d = 7

√
2ao. For the 2P array

formed by the P atoms in the diagonal, we present the potential
energy along the straight line (red, diamonds).

energies t and β. Since the impurities forming the square
are equivalent in this configuration, a single on-site shift
energy λ is considered. This Hamiltonian has three distinct
eigenenergies εm

2P×2P, with m ∈ {−1, 0, 1},
ε0

2P×2P = εP − λ + β, (11)

ε±1
2P×2P = εP − λ ± 2t − β, (12)

with a twofold degenerate energy state ε0
2P×2P. The

eigenvectors for the Hamiltonian in Eq. (10) are v−1
2P×2P =

(1/2, 1/2, 1/2, 1/2), v+1
2P×2P = (1/2,−1/2, 1/2,−1/2), and,

for the two-dimensional eigenspace corresponding to ε0
2P×2P,

we can take as a basis v0a
2P×2P = (1/

√
2, 0,−1/

√
2, 0) and

v0b
2P×2P = (0, 1/

√
2, 0,−1/

√
2). For this family of 4P arrays,

we choose as a geometric control parameter the square
side length d—also corresponding to the nearest-neighbor
separation between impurities—and carry out the overlap
analysis for the lowest 48 single-particle array states. In
this case, only overlaps between a single impurity and the
square-array states are evaluated because the dopants forming
the square are equivalent. Figures 5(a) and 5(b) show the
variation in t and β, as a function of d . Clearly, both t and β

are comparable in magnitude for the range of separations that
is considered. For the square-array ground state, the nearest-
neighbor tunneling is larger than the diagonal tunneling for
d � 14ao. However, for d < 14ao, the opposite trend occurs,
i.e., β > t . We anticipate enhanced electron tunneling across
the square diagonal resulting from the gating action of the
transverse impurity pair, lowering the potential barrier across
the diagonal. Figure 6 illustrates this finding by showing the
potential across the line joining the corresponding P atoms for
a separation d = 7

√
2ao. The barrier to tunneling across the

diagonal is significantly lower than the barrier between two
P in a dimer with the same separation as the diagonal length.
This is the gating effect. In fact, the barrier height for diagonal
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OCHOA, LIU, ZIELIŃSKI, AND BRYANT PHYSICAL REVIEW B 109, 205412 (2024)

tunneling is the same, in the figure, as the barrier height for
nearest-neighbor tunneling. In this case, other factors, such
as the effective mass along the tunneling direction, determine
which tunneling is more effective.

Figures 5(a) and 5(b) also reveal that T2 states form
three types of hybrid states in a square lattice. The first
type, labeled T2 in Fig. 5, displays weak nearest-neighbor
and next-nearest-neighbor tunneling; the second type T ′

2
has almost vanishing nearest-neighbor tunneling and mod-
erate next-nearest-neighbor tunneling. In contrast, the third
type T ′′

2 shows relatively significant nearest-neighbor and
next-nearest-neighbor tunneling energies, between one and
10 meV, with β negative. Electron states resulting from
hybridizations of the single-phosphorus E states also show
significant diagonal tunneling rates for the square sizes that
are considered. Moreover, Fig. 5(c) reveals that the variation
in the on-site shifts as a function of d is very similar among
all the array states, with optimal exponential fits, as in Eq. (4),
for the A, T ′′

2 , and E states, while other cases follow the form
in Eq. (5).

For the square array, we are also able to match
the tight-binding spectrum in Fig. 5(d) in the range
10ao � d � 20ao by combining the fitted forms for t , β, and
λ with the energies εm

2P×2P. We conclude that in this range,
the ground state for a single electron is well approximated by
the linear combination of A states, as v−1

2P×2P. However, our
Hamiltonian model fails to reproduce the high-energy states
in the spectrum when d < 12ao.

IV. SUMMARY

We introduced a systematic approach to calculate elec-
tron tunnelings and on-site energy shifts for single-electron
states in P-doped devices from atomistic tight-binding wave
functions. As a consequence of valley splitting, P arrays dis-
play numerous single-electron bound states. Starting from the

wave-function overlap between the array and single-impurity
states, we described each electron wave function as a linear
combination of just a few single-phosphorus electron states
localized at each impurity. Interpreting the overlap maps
for the relevant portion of the spectrum utilizing model site
Hamiltonians, we extracted tunnelings and on-site energy
shifts as a function of the geometric parameters, matching
the energy spectrum of a full, atomistic tight-binding cal-
culation. This approach is relevant for interpreting analog
quantum simulations of the Fermi-Hubbard model in Si:P
devices. Remarkably, we demonstrated that nearest-neighbor
and next-nearest-neighbor tunneling energies can be of the
same magnitude in a square lattice.

The overlap analysis introduced here cannot resolve
the structure of electron states in clusters—arrays where
impurity-impurity separation is similar or smaller than the
wave-function radius—and can only provide qualitative infor-
mation on this strongly hybridized regime. In this regard, we
remark that our approach to obtain model parameters from the
single-electron energies does not depend on the actual values
of the overlaps. The overlaps are only used as a indicator
of which single-impurity states contribute to an array state.
In turn, this tells us which array states are derived from the
same type of impurity states and this tells us which states are
coupled together by the same hopping Hamiltonian. We di-
rectly find effective hopping parameters for a Hamiltonian that
reproduces the full atomistic calculations. Our approach using
the overlap analysis can be extended to calculate electron-
electron interactions if we first obtain the many-electron states
of the system and do the overlap analysis on those states.
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