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Nature of even and odd magic angles in helical twisted trilayer graphene
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Helical twisted trilayer graphene exhibits zero-energy flat bands with large degeneracy in the chiral limit.
The flat bands emerge at a discrete set of magic twist angles and feature properties intrinsically distinct from
those realized in twisted bilayer graphene. Their degeneracy and the associated band Chern numbers depend on
the parity of the magic angles. Two degenerate flat bands with Chern numbers CA = 2 and CB = −1 arise at
odd magic angles, whereas even magic angles display four flat bands, with Chern number CA/B = ±1, together
with a Dirac cone crossing at zero energy. All bands are sublattice polarized. We demonstrate the structure
behind these flat bands and obtain analytical expressions for the wave functions in all cases. Each magic angle
is identified with the vanishing of a zero-mode wave function at high-symmetry position and momentum. The
whole analytical structure results from whether the vanishing is linear or quadratic for the, respectively, odd and
even magic angles. The C3z and C2yT symmetries are shown to play a key role in establishing the flat bands. In
contrast, the particle-hole symmetry is not essential, except from gapping out the crossing Dirac cone at even
magic angles.

DOI: 10.1103/PhysRevB.109.205411

I. INTRODUCTION

Twisted trilayer graphene (TTG) has recently received sig-
nificant attention due to its structural similarities to twisted
bilayer graphene while exhibiting distinct features. Differ-
ent configurations of TTG have been considered based on
the relative twist directions of the top and bottom layers:
(1) mirror-symmetrical TTG [1–8], where the top and bottom
layers are rotated in the same direction by the same angle
relative to the middle layer, (2) twisted monolayer-bilayer
graphene [9–14], where Bernal-stacked bilayer graphene is
rotated with a small angle relative to the third layer, and
(3) helical TTG [15–22], where the top and bottom layers
are rotated in opposite directions. By adding an additional
graphene layer on top of the bilayer, TTG offers additional
“knobs” to manipulate the system’s physical properties. Aside
from the twist angle, the layer shifting and displacement field
have also been identified as key factors for altering the phys-
ical properties of TTG. These features open up promising
avenues for studying and controlling the unique electronic
properties of TTG systems.

Recent theoretical studies [18–25] and experimental find-
ings [15] have focused on the helical configuration of TTG
[16,17]. This specific structure is of interest due to the pres-
ence of two noncommensurate moiré interference patterns,
resulting in a moiré quasiperiodic crystal [15]. In the case of a
small twist angle, the separation between length scales leads
to the introduction of an effective moiré lattice, defined as the
closest commensurate ratio [18], along with a small deviation
that gives rise to the supermoiré length scale [18,19,25]. The
slow supermoiré periodicity can be seen as a relative shift
between the two different moiré scales and parametrized with
a displacement vector [18,19].

Theoretical studies on helical trilayer graphene [20–22]
have revealed the significant impact of lattice relaxation

effects on the structure at the supermoiré scale. These studies
have shown that energetically favorable ABA- and BAB-
stacking regions expand at the expense of AAA regions.
This leads to a real-space pattern characterized by triangular
domains, where a sizable gap separates the two central low-
energy bands from the remote ones. The ABA regions are
characterized by a total Chern number Ctot = 1 for the central
bands, while the BAB regions have Ctot = −1, resulting in a
real-space valley Chern mosaic [19]. This mosaic is separated
by a network of chiral gapless regions. In the chiral limit [26],
the electronic band structure exhibits perfectly flat bands at
a discrete series of magic angles. These flat bands possess
interesting properties distinct from those observed in twisted
bilayer graphene [26–32].

The study of flat bands, or zero modes, in the chiral limit
consists in finding the kernel of an operator with a purely holo-
morphic derivative and an Abelian or non-Abelian periodic
potential [29,31,33–38]. Investigating the mathematical struc-
ture of this operator for helical trilayer graphene, Popov and
Tarnopolsky [25] have recently identified two possible sce-
narios of flat bands for symmetric stackings (AAA, ABA, or
BAB). The first scenario, originally discussed in Ref. [19] (see
also Ref. [20]), consists of two flat bands: a color-entangled
Chern 2 band and a Chern −1 band. The color-entangled band
[12,39–45] is particularly interesting as it cannot be simply
reduced to a single Landau level. The second scenario, orig-
inally proposed in Ref. [24], features a fourfold-degenerate
flat-band manifold with an additional Dirac cone crossing the
flat bands at the � point.

In this work, we demonstrate that helical trilayer graphene
with ABA (or BAB) stackings and equal twist angles displays
a systematic series of magic angles, where the two scenarios
are alternatively realized. Odd magic angles feature twofold-
degenerate flat bands following the first scenario, while even
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magic angles have four degenerate flat bands and a Dirac
cone as per the second scenario. In each case, we prove the
emergence of the flat-band structure and derive analytical ex-
pression for the zero-energy wave functions and the resulting
Chern numbers.

Our theory reveals interesting relations between the dimen-
sion of the vector space spanned by the zero-energy modes
and the total Chern number of the band. It provides an or-
thogonality relation between chiral and antichiral zero modes
and demonstrates how the C3z and C2yT symmetries constrain
the wave functions’ asymptotics and ultimately protect the
emergence of the flat bands, in contrast with particle-hole
symmetry which proves inessential. Finally, we briefly in-
vestigate the fate of the flat bands when breaking both the
particle-hole and chiral symmetries.

The plan of the paper is as follows. In Sec. II we introduce
the model and the zero-mode equation in the chiral limit.
Then, we discuss the symmetries of the model protecting three
zero-energy Dirac cones at K , K ′, and � of the mini Brillouin
zone in Sec. II B. Finally, we give in Sec. II C the geometrical
relations connecting the chiral and antichiral flat-band sectors.
In Sec. III we move to the investigation of the zero modes
discussing the different properties realized at even and odd
magic angles. We provide the analytical solution of the wave
functions of the different flat bands and we explain the dif-
ferent properties of odd Sec. III A and even Sec. III B magic
angles employing symmetry arguments as well as analytical
results. In Sec. IV we discuss the effect of the breaking of the
particle-hole symmetry P. Finally, we give a summary of the
main results of our work in Sec. V.

II. CHIRAL MODEL
FOR HELICAL TRILAYER GRAPHENE

Helical trilayer graphene is formed by stacking three
graphene layers in a staircase configuration with equal twist
angles, as depicted in Fig. 1. It shows two incommensurate
moiré interference patterns, resulting in a superimposed mod-
ulation of the relative spatial shift between the two patterns.
This long-distance periodic modulation defines a triangular
supermoiré or moiré-of-moiré lattice. It can be seen as a slow
variation of the atomic registry, first at the moiré scale and
then at the supermoiré scale as shown in Fig. 1. The details
of the model [19] we use for the single-particle Hamiltonian
are given in Appendix A. It is a continuum model [46–49]
parametrized by the local relative shift between the two
moirés. The parametrization evolves continuously between
AAA, ABA, and BAB local stacking configurations over the
supermoiré unit cell.

The atomic relaxation in helical trilayer graphene has been
investigated in recent works [20–22] where rearrangements
of the atomic registry was demonstrated. Theoretical calcula-
tions [20] (see also [21,22]) performed at small twist ≈1.5◦
have revealed that relaxation favors the formation of a tri-
angular lattice with linear size ≈400 nm of large domains
characterized by the energetically favorable ABA/BAB stack-
ing expanding at the expense of AAA regions, separated by a
network of domain walls hosting chiral edge modes [21].

In this work, we shall focus on the spatially hegemonic
ABA stacking shown in Fig. 1(b) composed by the periodic

FIG. 1. (a) Long-wavelength periodicity at the supermoiré lat-
tice. Each blue and orange point corresponds to a position where
a precise AA stacking occurs between, respectively, the top-middle
and the middle-bottom layers. The blue and orange sets of points
show the two incommensurate moiré patterns. (b) ABA configuration
characterized by a relative shift of r0 = (a1 − a2)/3 between the two
moiré patterns. (c) The resulting moiré pattern involves the atomic
scale configurations ABA, BAA, and AAB where the atom of one
layer lies at the center of two overlying hexagons. (d) Momentum-
space Brillouin zone with Dirac zero modes at K , K ′ and �, q j shows
the vectors defining the periodicity at the moiré scale.

modulation of the atomic configurations in Fig. 1(c). The BAB
stacking is simply the C2zT symmetric of ABA. Furthermore,
we aim for simplicity and a deeper analytical understanding
by considering the chiral limit [26,29,50–53] of our contin-
uum model (see Appendix A). Away from the chiral limit, the
flat bands become dispersive but their bandwidth is still much
smaller than the energy gap to the remote bands [19,20], and
they keep their topological features.

A. Zero modes

As discussed in Appendix A, the Hamiltonian for ABA
stacking in the chiral limit takes the form

HABA(r) =
(

0 D(r)
D†(r) 0

)
(1)

for a single graphene valley (K), in the “sublattice-Chern”
basis (ψ1, ψ2, ψ3, χ1, χ2, χ3) [29,51–53], where ψ� and χ�

refer, respectively, to the A and B sublattice, and � = 1, 2, 3
labels the three distinct layers from top to bottom. We have
introduced the differential operator

D(r) = −i
√

2I3×3∂ + A(r), (2)

with the derivative ∂ = (∂x − i∂y)/
√

2 associated to the
complex coordinate z = (x + iy)/

√
2, and the non-Abelian

traceless gauge potential

A(r) =
⎛
⎝ 0 αUω(r) 0

αU0(−r) 0 αU0(r)
0 αUω(−r) 0

⎞
⎠, (3)
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resulting from electron tunneling between the layers with the
dimensionless strength α. Given the wave-vector modulation
q j+1 = ie2iπ j/3 shown in Fig. 1(c), for which we use a com-
plex notation [16], the moiré potentials are given by

U0(r) =
3∑

j=1

e−iq j ·r, (4)

Uω(r) = U0(r + r0), and Uω∗ (r) = U0(r − r0) with
r0 = (a1 − a2)/3. The moiré lattice vectors are a j =
4πeiπ/6ei2π ( j−1)/3/3 with j = 1, 2. In the expressions above,
all energy scales are expressed in unit of vF kθ , and all
momentum (length) scales in units of kθ (1/kθ ) with the
moiré momentum kθ = θKD, KD = 4π/3aG, and graphene
lattice constant aG ≈ 2.46 Å. θ is the twist angle between
consecutive layers and α = wAB/vF kθ .

An inspiring mathematical structure emerges [19,26] in the
chiral limit. HABA hence anticommutes {HABA,�z} = 0 with
the chiral operator

�z =
(

I3×3 0
0 −I3×3

)
, (5)

and the search for zero-energy modes decomposes into

D(r)χk(r) = 0, D†(r)ψk(r) = 0, (6)

where ψ and χ are eigenstates of the chiral operator �z

with positive �z = 1 (chiral sector) and negative �z = −1
(antichiral sector) eigenvalue, respectively. The chiral and an-
tichiral sectors also refer to the A-sublattice and B-sublattice
polarized states, respectively. The zero modes must also sat-
isfy the Bloch periodic boundary conditions

ψk(r + a1/2) = eik·a1/2Uϕψk(r),

χk(r + a1/2) = eik·a1/2Uϕχk(r),
(7)

inherited from Eq. (A5), with Uϕ = diag[ω∗, 1, ω]. The re-
mainder of this paper will be devoted to analyzing the
properties of the zero modes, which are solutions of Eq. (6)
under the boundary conditions specified in Eq. (7).

B. Symmetries and Dirac cones

The Hamiltonian HABA (1) is invariant under the spatial
symmetries C3z and C2yT forming the space group P32′1
(No. 150.27 in the BNS notation [54,55]). In the sublattice
basis we have

C3zHABA(r)C−1
3z = HABA(C3zr), (8)

where

C3z =
⎛
⎝ω∗ 0 0

0 1 0
0 0 ω∗

⎞
⎠ ⊗

(
ω 0
0 ω∗

)
. (9)

C2yT is the composition of a spinless time-reversal symmetry
and a twofold rotation around the y axis:

C2yTHABA(r)(C2yT )−1 = HABA(C2yr), (10)

where the transformation exchanges top and bottom layer and
includes the complex-conjugation operator K:

C2yT =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ ⊗ I2×2K. (11)

In addition to these spatial symmetries, the model also ex-
hibits an emerging particle-hole symmetry [16,18,19]

P =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠ ⊗ σ 0, (12)

anticommuting with HABA

PHABA(r)P−1 = −HABA(−r). (13)

In general, i.e., for all twist angles θ , the Hamiltonian HABA

possesses three pairs (chiral and antichiral) of zero modes
from which three Dirac cones emerge. They are located at �,
K , and K ′ of the mini Brillouin zone [Fig. 1(c)] corresponding
to k = 0, q1,−q1, and originate from the Dirac cones of the
individual three graphene layers. The zero modes at � are
protected by particle-hole symmetry P whereas those at K
and K ′ are stabilized by the antiunitary particle-hole operator
PC2yT , as further discussed in Appendix B. We remark that
our symmetry analysis is also valid away from the chiral limit
[16,18].

Magic angles are specific values of the twist angle θ (or
α as they are related to each other) at which the two central
bands of HABA become perfectly flat. At these angles, the zero
modes at �, K , and K ′ are no longer unique, and an extensive
degenerate set of zero modes emerges, forming flat bands.

C. Geometrical relations

Irrespective of the twist angle and value of α, we can derive
a set of identities which shows an interesting structure for the
zero modes. Chiral and antichiral zero-energy modes satisfy
the relation

v(r) = χ̄k1
(r) · ψk2

(r) = 0 (14)

for k1 �= k2 and arbitrary r with χ̄k2
(r) ≡ χ∗

k2
(r). The proof

of Eq. (14) is straightforward. A direct computation shows
that ∂̄v(r) = 0 ⇒ v(r) = v(z) by simply using that χk1

(r) and
ψk2

(r) are zero modes of D(r) and D†(r), respectively. v(z) =
0 then follows from Liouville’s theorem and periodicity over
the moiré unit cell. Equation (14) tells us that the chiral ψ and
antichiral χ̄ solutions of different momenta at a given r are
orthogonal to each other. In addition, we also find that a chiral
zero mode can be generated from a pair of antichiral solutions.
Namely,

ψ−k1−k2
(r) = χ̄k1

(r) × χ̄k2
(r) (15)

solves D†(r)ψ−k1−k2
(r) = 0. Similarly,

χ−k1−k2
(r) = ψ̄k1

(r) × ψ̄k2
(r) (16)

solves D(r)χ−k1−k2
(r) = 0. Expressions similar to Eqs. (14)

and (15) have been derived in Ref. [25] but with a different
choice of gauge.
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(b)(a) (c)

FIG. 2. Top panel: Wronskian |WA| (orange) and |WB| (blue) for
the chiral and antichiral sectors as a function of α. |WA/B| vanishes
at the magic angles denoted as red and green vertical lines. Bottom
panel: (a)–(c) show a schematic representation of the zero-mode
spinors {K, K ′, �} in the chiral and antichiral sectors. (a) Represents
a generic configuration away from the magic angle where the spinors
are linearly independent and chiral and antichiral sectors satisfy
Eq. (14), while (b) and (c) sketch the two scenarios realized at the
magic angle in the helical trilayer graphene. In (c) φ�A and φ̄�B are
the two additional zero modes degenerate with the flat bands at �.

To determine the linear independence of the zero modes
we introduce the Wronskian [19,25] of the Dirac spinors in
the chiral sector:

WA(r) = ψ� (r) · [ψK (r) × ψK ′ (r)], (17)

which obeys the relation ∂̄WA = 0. Thus, according to
Liouville’s theorem, we have WA(r) = WA. WA �= 0 since, un-
like v(r), Eq. (17) is invariant under translations of moiré
lattice vectors. WA �= 0 implies that the three vectors ψ� , ψK ,
and ψK ′ are linearly independent. Similarly, we can define the
Wronskian in the antichiral sector

WB(r) = χ� (r) · [χK (r) × χK ′ (r)] (18)

satisfying the condition ∂WB = 0, which implies WB(r) = WB.
Combining the definitions of the Wronskians with Eqs. (15)
and (16), we find that WA and WB are both proportional, up to
a phase, to the scalar products

χ̄� (r) · ψ� (r), χ̄K (r) · ψK (r), χ̄K ′ (r) · ψK ′ (r), (19)

between the chiral and antichiral zero modes at �, K , and K ′.
Consequently, WA and WB vanish simultaneously with these
scalar products. As illustrated in the top panel of Fig. 2, the si-
multaneous vanishing of |WA| and |WB| defines the positions of
the magic angles [19,25]. We highlight that the Fermi velocity
at the high-symmetry points K, K ′, and � is proportional to
the Wronskian WA and WB. As a result, the vanishing of the
Wronskian implies the vanishing of the velocity at the Dirac
nodes (for details we refer to Appendix C).

From these different relations, an intuitive picture emerges.
At nonmagic angles, the set of chiral vectors CA ≡
{ψ�,ψK ,ψK ′ } is linearly independent and spans the full three-
dimensional space of layers at each r. The same holds for the

x2

(b)

(a)

(c)

x4

FIG. 3. (a) Renormalized Fermi velocity at K as a function of
α. Vertical red and green lines denote odd α∗

2n−1 and even α∗
2n magic

angles, respectively. (b), (c) Show the band structure at the first magic
angle α∗

1 ≈ 0.377 (θ∗
1 ≈ 1.687◦) and the second magic angle α∗

2 ≈
1.197 (θ∗

2 ≈ 0.532◦), respectively. Red lines denote the flat bands,
while ×2 and ×4 give the number of zero modes per k point for odd
and even magic angles, respectively.

antichiral set CB ≡ {χ�,χK ,χK ′ } whereas chiral and antichiral
vectors are mutually orthogonal when their momenta are dif-
ferent as a result of Eq. (14). This is depicted in Fig. 2(a). The
situation is quite different at magic angles because the scalar
products of Eq. (19) all vanish. The chiral CA and antichiral
CB sets then form two distinct subspaces which are orthog-
onal to each other with the three-dimensional layer space.
There are three possible cases, illustrated in Figs. 2(b) and
2(c), corresponding to the two scenarios of Ref. [25]: (i) the
chiral set forms a subspace of dimension 2 and the antichiral
set is forced to be one dimensional, i.e., all three antichiral
vectors are collinear; (ii) same as (i) but the roles of chiral and
antichiral are exchanged; (iii) both chiral and antichiral sets
have dimension 1.

As we will demonstrate in Sec. III, the chiral and antichiral
flat bands that emerge at the magic angle are generated by
the two sets CA and CB, leaving the subspace decomposition
invariant: 2 + 1 for (i), 1 + 2 for (ii), and 1 + 1 for (iii). Ad-
ditionally, for case (iii), we will show that the third dimension
is filled by a pair of additional zero modes at the � point,
corresponding to a crossing of the flat bands by a Dirac cone.

By decreasing the twist angle or increasing the value of
α, we will uncover in Sec. III a series of magic angles alter-
nating between cases (i) and (iii) with an even or odd effect.
Interestingly, we will also observe that the dimension or rank
of the flat band coincides with the absolute value of the Chern
number, highlighting the relationship between the rank of the
flat band and the number of lowest Landau levels comprising
it [42–45].

III. EVEN AND ODD SERIES OF MAGIC ANGLES

The sequence of consecutive magic angles is showcased by
computing the renormalized Fermi velocity at K as a function
of α [see Fig. 3(a)], in agreement with the Wronskians shown
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(a) (b)

FIG. 4. (a) Distance between neighboring magic angles in the
even and odd sequences. (b) Sequence of magic angles αn. Increasing
the order n the distance between nearest-neighbor magic angles in
the even and odd sectors approaches a constant value ≈1.214 repre-
sented by the horizontal gray line in (a).

in Fig. 2. The odd and even magic angles are highlighted by
red and green vertical lines and correspond, respectively, to
the cases (i) and (iii) discussed in Sec. II C. For odd magic
angles α∗

2n−1, the first being α∗
1 ≈ 0.377 (θ∗

1 ≈ 1.687◦), the
spectrum features two degenerate flat bands as displayed in
Fig. 3(b). For even magic angles α∗

2n, however, the first one
is α∗

2 ≈ 1.197 (θ∗
2 ≈ 0.532◦), four degenerate flat bands arise

coexisting with a Dirac cone crossing them at �, as shown
in Fig. 3(c). The structure and degeneracy of the zero-energy
bands thus repeats periodically and depends on the parity of
the magic-angle label.

Furthermore, inspecting more closely the sequence of
magic angles, we find that the difference between consecutive
values rapidly approaches a constant value α∗

2n+1 − α∗
2n−1 ≈

α∗
2n+2 − α∗

2n � 1.214, as shown in Fig. 4, similarly to the
twisted bilayer case [26,56–58]. In the following, we demon-
strate that the distinct nature of the even and odd magic angles
arises from symmetry considerations. These constraints dic-
tate the behavior of the zero-mode wave function at the
high-symmetry points together with the identities presented
in Sec. II C.

A. Zero modes for odd magic angles

To gain analytical insight into the origin of the odd magic
angle, we study the antichiral zero mode χ� (r) in the vicinity
of the high-symmetry point AA (r = 0). The wave functions
around AA regions are not described by pseudo-Landau levels
[59], reflecting a charge distribution of the flat bands different
from the one realized in twisted bilayer graphene [20]. As
detailed in Appendix D 1, the wave function χ� (r) can be
formally expanded in powers of z and z̄ ≡ z∗ close to r = 0.
Enforcing the symmetries C3z, C2yT , and P constrains and
simplifies the resulting expansion. To leading order, we find

χ� (r) =
⎛
⎝ 0

χ2

0

⎞
⎠ + O(z̄), (20)

where C2yT [see Eq. (11)] imposes that χ2 ≡ χ�2(0) is a real
coefficient. Plotting the real χ2 as a function of α in Fig. 6(a),
we find that it vanishes for all odd magic angles. The condition
χ2 = 0, implying χ� (0) = 0, thus defines the series of odd
magic angles and yields a vanishing Wronskian from Eq. (18).

(b)(a)

FIG. 5. Charge distribution of the CA = 2 (a) and CB = −1 (b) in
the first moiré unit cell at the first magic angle.

The vertical red lines of Fig. 6 exactly match the one obtained
from the Wronskian in Fig. 2.

Beyond Eq. (20), the next order obeying symmetries is
χ� (r) � z̄(χ ′

1, 0, χ ′∗
1 ) at the odd magic angles. Here, χ ′

1 is an
arbitrary complex coefficient dependent on the magic angle.
The presence of this simple zero is sufficient to predict and
explicitly construct [19] the whole antichiral flat band follow-
ing the seminal reasoning of Tarnopolsky et al. [26] in twisted
bilayer graphene (see also Refs. [27,29,30]). The zero-mode
wave functions exhibit the analytical expression

χk(r) = η̄k(z̄)χ� (r), (21)

where the antiholomorphic η̄k(z̄) = η∗
k (−z) is related to the

meromorphic function describing the lowest Landau level
(LLL) on a torus [60,61]:

ηk(z) = eik1z/a1
ϑ1[z/a1 − k/b2, ω]

ϑ1[z/a1, ω]
(22)

with the notation k1 = k · a1 and the Jacobi theta function

ϑ1[z, ω] =
∑
n∈Z

eiπω(n+1/2)2
e2iπ (z−1/2)(n+1/2) (23)

(a)

(b)

FIG. 6. (a) Wave-function absolute value |χ� (0)| (blue) and cross
product |ψK (0) × ψK ′ (0)| (black) as a function of α. b) Wave-
function absolute values |χK (r0 )| and |ψK ′ (r0)| as a function of α.
The gray solid line shows the renormalized Fermi velocity v∗/vF .
Vertical green and red lines show the location of odd and even magic
angle, respectively.
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which vanishes at z = 0 and results in a Bloch periodicity (7)
for Eq. (21). Momentum-space boundary conditions [30] on
the self-periodic part of the Bloch state uk̄ (r) = χk(r)e−ik·r
give

uk̄+b̄ j
(r) = e−ib j ·reiφk,b j uk̄ (r), (24)

with φk,b1 = −2π k̄/b̄2 + π − π b̄1/b̄2 and φk,b2 = π cor-
responding to a flat band with total Chern number
CB = −1 [30].

Thanks to the spatial symmetries, the vanishing of χ2 at
the odd magic angles is thus sufficient to predict a flat band
(21) in the antichiral sector with Chern number −1. More-
over, employing Eq. (16) also determines the chiral sector.
Equation (16), evaluated at the origin r = 0 with k1 = K and
k2 = K ′, gives

ψK (0) × ψK ′ (0) = χ̄� (0) = 0, (25)

resulting in the fact that ψK (0) and ψK ′ (0) are collinear vec-
tors [see Fig. 6(a)]. Expanding ψK and ψK ′ around r = 0
and enforcing the symmetries as in Appendix D 1, we find to
leading order ψK (0) = (ψ1, 0, ψ3) and ψK (0) = (ψ∗

3 , 0, ψ∗
1 )

where ψ1/3 are complex coefficients. Using Eq. (25) yields

χ2 = |ψ3|2 − |ψ1|2 = 0 ⇒ ψ1 = ψ3eiϕ. (26)

We choose a gauge with ϕ = 0 and find

ψK (0) = ψK ′ (0). (27)

As shown in Ref. [19], this identity is sufficient to construct
the flat-band wave functions for the chiral sector,

ψk(r) = akηk+K ′ (z)ψK (r) + a−kηk+K (z)ψK ′ (r), (28)

satisfying the Bloch periodicity (7), with the holomorphic
function defined in Eq. (22) and ak = ϑ1[(k + K )/b2, ω].
Momentum-space boundary conditions give CA = 2 as shown
in Ref. [19]. The magic relation (27) which is not associated to
the vanishing of the chiral spinor ψ justifies the charge density
distribution homogeneity in the Chern 2 band [20].

Remarkably, all odd magic angles feature a chiral flat band
of Chern 2, generated by the two vectors ψK (r) and ψK ′ (r),
alongside an antichiral flat band of Chern −1 where all states
align collinearly with χ� (r). Moreover, Eq. (14) reveals that
the chiral and antichiral flat-band spaces are orthogonal to
each other. Specifically, χ� (r) and all the antichiral wave
functions are oriented in a direction perpendicular to the chiral
plane formed by ψK (r) and ψK ′ (r). This provides a clear
understanding of why a chiral Chern ±2 band is accompanied
by an antichiral Chern ∓1 band within a three-layer system.
Figure 5 shows the charge distribution of the CA = 2 and
CB = −1 defined as ρA(r) = ∫

d2k|ψk(r)|2/�BZ and ρB(r) =∫
d2k|χk(r)|2/�BZ, respectively. Notably, the charge distri-

bution exhibits a high degree of uniformity, with the CA = 2
band demonstrating a notably more uniform distribution com-
pared to the CB = −1 band. This property directly follows
from the linear independence of ψK (r) and ψK ′ (r) for generic
r implying that |ψk(r)| does not have nodes as a function of k.

Finally, we observe that the cross product ψK (0) × ψK ′ (0)
vanishes also for even magic angles [see black line in
Fig. 6(a)] but for a different reason that we shall explain in
the next section.

B. Zero modes for even magic angles

We now turn to the characterization of the zero-energy
modes and flat bands for even magic angles. In contrast to
the previous case, χ� (0) remains finite at α∗

2n as shown in
Fig. 6(a). Consequently, the zero-mode construction discussed
in Sec. III A does not apply for even magic angles. To make
progress, we examine the behavior of the zero-mode solu-
tion ψK ′ (r) in the vicinity of the AB-stacking point r0 =
(a1 − a2)/3. By expanding the zero-mode equation (6) for the
middle-layer component ψK ′2 to linear order in the deviation
r, we obtain

∂̄2ψK ′2 − 9α2

2

(
z2

2
+ z̄√

2

)
ψK ′2 = 0, (29)

while top- and bottom-layer amplitudes are given by

∂̄ψK ′1 = 3αzψK ′2/
√

2,

ψK ′3 = (i
√

2∂̄ψK ′2 − 3αzψK ′1/
√

2)/(3α). (30)

We obtain the general solution of Eq. (29):

ψK ′2(r + r0) = γAAi(ζ ) + γBBi(ζ ), (31)

where ζ = (2α)2/3(z2/2 + z̄/
√

2) and we retain both Airy
functions Ai(z) and Bi(z) [62]. A similar behavior of the zero-
mode wave function has been obtained for twisted bilayer
graphene around the AB/BA points in Ref. [56]. C3z rotation
centered at the high-symmetry point r0 implies

ψK ′ (C3zr + r0) =
⎛
⎝ω∗ 0 0

0 ω∗ 0
0 0 1

⎞
⎠ψK ′ (r + r0), (32)

employing the McLaurin expansion of the Airy functions [62]
we find γA = −32/3N , γB = 31/6N :

ψK ′ (r + r0) =

⎛
⎜⎝

0
0

ψ
(0)
3

⎞
⎟⎠ − 3iαψ

(0)
3√

2

⎛
⎜⎝

0
z̄
0

⎞
⎟⎠ + O(z2), (33)

where ψ
(0)
3 ≡ ψK ′3(r0). In addition, the PC2yT symmetry

gives

ψK ′ (r + r0) =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ψ∗

K ′ (C2xr + r0), (34)

implying Reψ (0)
3 = 0. Consequently, ψK ′ (r0) is determined by

a single real number Imψ
(0)
3 . The condition for the even magic

angle is, therefore, the vanishing of this coefficient, such that
ψK ′ (r0) = 0, and the Wronskian WA also becomes zero as per
Eq. (17). The vertical green lines displayed in Fig. 6(b) align
with those in Fig. 2. At even magic angles, the wave function
from Eq. (33) further expands as ψK ′ (r0 + r) � z2(a, b, 0) at
small r (with complex coefficients a and b), corresponding to
a double zero. This structure enables the following analytical
form for the chiral flat bands:

ψk(r) = η
(0)
k′ (z)η(0)

k−k′+K
(z)ψK ′ (r), (35)

with the meromorphic and periodic function

η
(0)
k (z) = eik1z/a1

ϑ1[(z − z0)/a1 − k/b2, ω]

ϑ1[(z − z0)/a1, ω]
, (36)
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z0 denotes the complex representation of r0. Despite the
fact that k′ is an arbitrary wave vector in Eq. (35), at most
two distinct values of k′ yield independent wave functions.
Setting, for instance, k′ = K ′ and k′ = 0, we obtain two de-
generate flat bands described by the wave functions ψ

(1)
k (r) =

η
(0)
K ′ (z)η(0)

K ′+k(z)ψK ′ (r) and ψ
(2)
k (r) = η

(0)
k+K (z)ψK ′ (r).

A very similar analytical form was introduced by Popov
and Tarnopolsky [24,25] to describe the fourfold-degenerate
flat bands but at AAA-stacking magic angles. Mathematically,
the construction of Eq. (35) is possible because the poles
brought by the two functions η

(0)
k at z = z0 are precisely

canceled by the double zero of ψK ′ (r) at r0 (z0). The re-
sulting wave functions are finite everywhere, obey the Bloch
periodic boundary conditions (7), and solve the zero-mode
equation (6). All chiral flat-band wave functions are collinear
to ψK ′ (r) and thus span a one-dimensional space. It readily
explains the vanishing of the cross product ψK (0) × ψK ′ (0)
also at even magic angle, as shown in Fig. 6(a). The above
derivation relies on the double zero of ψK ′ at r0. Alternatively,
we can reconstruct the twofold-degenerate flat band from
the quadratic vanishing of ψ

(1)
� (r) at r = 0. As discussed in

Appendix D 3, the advantage of this latter approach is that it
does not require the particle-hole symmetry P, only C3z and
C2yT .

Moving to the antichiral sector, we can repeat the same
analysis for the wave function χK (r) in the vicinity of r0.
χK (r0) = 0 at even magic angles, as shown in Fig. 6(b), and
the expansion around r0 is quadratic, indicating a double zero.
The same construction thus extends to the antichiral sector,
resulting in two degenerate flat bands. Additionally, by apply-
ing momentum-space boundary conditions, we can determine
that each chiral flat band possesses a Chern number CA = +1,
whereas the antichiral flat bands have CB = −1. In total, we
prove that even magic angles feature a twofold-degenerate set
of bands in each sublattice sector, or four flat bands with a
vanishing total Chern number.

The chiral flat bands align with ψK ′ (r) while the anti-chiral
with χK (r), leaving room for a third direction in the layer
space. By following the arguments presented in Ref. [25],
one can analytically demonstrate the existence of a pair of
additional zero modes at �. These zero modes correspond to
a Dirac cone crossing the flat bands in Fig. 3(c). The proof
is outlined as follows. From Eq. (14), we know that ψK (r)
and χK ′ (r) are orthogonal to each other. Both wave functions
vanish at r0 and remain finite everywhere else. Consequently,
we can define a function φ� (r) such that

ψK ′ (r) = φ̄� (r) × χ̄K (r). (37)

Here, we emphasize that this expression does not uniquely de-
fine φ� (r). The subscript � indicates that φ� (r) has the Bloch
periodicity of the � point, as inferred from the periodicity of
the two other functions. Applying the operator D†(r) to both
sides of Eq. (37), we arrive at

0 = −[D∗(r)φ̄� (r)] × χ̄K (r), (38)

which shows that D∗(r)φ̄� (r) must be proportional to
χ̄K (r), or

D∗(r)φ̄� (r) = f (r)χ̄K (r) (39)

with some periodic function f (r) with vanishing integral on
the unit cell [28]. We introduce the function g(r), solution of
∂̄g(r) = f (r), and shift φ̄� as

φ̄� (r) → φ̄� (r) − ig(r)χ̄K (r)/
√

2 (40)

to finally obtain

D(r)φ� (r) = 0. (41)

This last equation demonstrates that we have constructed an
additional antichiral zero-energy solution. Due to its defini-
tion in Eq. (37), φ� (r) cannot be proportional to χK (r) and
therefore lies outside the one-dimensional antichiral subspace.
Equation (37) also implies that φ̄� (r) · ψK ′ (r) = 0: φ� (r) and
ψK ′ (r) are orthogonal. As a result, φ� (r) occupies the third
vacant direction. As already discussed earlier, φ� (r) satisfies
the Bloch periodic condition with momentum at �. A similar
construction yields a second zero-energy state at � in the
chiral sector, also spanning the third direction orthogonal to
both the chiral and antichiral flat bands. This result concludes
the characterization of the low-energy spectrum at even magic
angles.

IV. BREAKING THE PARTICLE-HOLE SYMMETRY P

The twist-angle dependency in the Pauli matrices obtained
by replacing σ with σ±θ [see Eq. (A1)] breaks the particle-
hole symmetry P (12). The symmetry breaking is negligible
in the small twist-angle regime θ and has been ignored in
the previous analysis. In the following we first discuss the
stability of the zero modes to this perturbation. Then, we move
to consider the effect of the perturbation away from the chiral
limit.

A. Robustness of the flat bands

In the chiral limit the twist-angle difference between top
and bottom layer σ±θ enters in the Hamiltonian HABA (1) as

D(r) = −i
√

2M−θ ∂ + A(r), (42)

where Mθ = diag(eiθ , 1, e−iθ ). Differently from twisted bi-
layer graphene [26] the layer-dependent phases Mθ in Eq. (42)
cannot be gauged away since [Mθ/2,A(r)] �= 0. As mentioned
before, the layer-dependent phase breaks the particle-hole
symmetry P [18,20] while C3z and C2yT are still symmetries
of HABA. In the chiral limit wAA = 0 the Hamiltonian HABA

is characterized by three Dirac cones at K , K ′, and � that are
protected by C3z and the chiral symmetry �z. From Eq. (42)
we readily realize that the orthogonality relation (14) trans-
forms into the identity

vθ (r) = χ̄k1
(r) · [Mθψk2

(r)] = 0 (43)

for k1 �= k2 and arbitrary r. We emphasize that this is
no longer a vector product as it is not definite posi-
tive. Relations (15) and (16) are also modified accordingly
and become ψ−k1−k2

= [Mθ χ̄k1
] × [Mθ χ̄k2

] and χ−k1−k2
=

[M−θ ψ̄k1
] × [M−θ ψ̄k2

], while Eqs. (17) and (18) are still sat-
isfied.

At odd magic angles, the linear vanishing of χ� (r) around
r = 0 still holds, protected by the symmetries C3z and C2yT .
The positions of the magic angles are only slightly shifted by
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the particle-hole symmetry-breaking term α∗
1 ≈ 0.3772, for

instance. Moreover, since

χ̄� (0) = 0 = [MθψK ] × [MθψK ′], (44)

we still obtain that ψK (0) = ψK ′ (0) at the odd magic angle,
yielding the Chern 2 zero-mode chiral solution of Eq. (28)
together with the antichiral Chern 1 band. The structure of the
flat bands is thus fully stable under particle-hole symmetry
breaking as confirmed by our numerical calculations.

At even magic angles, as discussed in Appendix D 3, the
C3z and C2yT symmetries alone are sufficient to preserve a
double zero in one of the two wave functions ψ� (r) at r = 0,
which automatically yields the two flat bands in the antichiral
sector. The analytical expressions for these bands are explic-
itly given in Eq. (D11). It is worth noting that the choice of
ψ� (r) vanishing at r = 0 is not continuously connected to
the zero-mode solution ψ� away from magic angles; instead,
it requires the admixture with the first excited band, which
occurs at even magic angles. In the antichiral sectors, the two
flat bands are protected by the conservation of Tr�z = 0 [see
Eq. (5)] within the zero-energy manifold. This conservation
condition dictates that the two chiral flat bands must be ac-
companied by two antichiral flat bands. Consequently, we find
that the fourfold-degenerate flat-band structure is maintained
at even magic angles, even in the presence of particle-hole
symmetry breaking. Our numerical calculations confirm this
protection. Finally, as already noted in Ref. [20], the addi-
tional Dirac cone at � is gapped by breaking P. The gap is,
however, quite small, on the order of the energy scale ∼θvF kθ .

Before concluding this section, it is worth mentioning other
potential mechanisms that break the particle-hole symmetry
P and lead to the gapping of the Dirac cones. Particularly
relevant is lattice relaxation on the moiré scale as potential
which induces a pseudovector potential and introduces higher
Fourier harmonics in the moiré potential [63–68]. These ad-
ditional terms are known to break particle-hole symmetry,
thereby gapping the Dirac cones at �, K , and K ′. A detailed
analysis of these terms is left to future investigations.

B. Away from the chiral limit

The primary emphasis of this work has been on the chiral
limit, which allowed us to provide analytical wave func-
tions for the flat bands. We now introduce a slight deviation
from this limit by incorporating a finite corrugation factor
wAA/wAB = 0.05, while still accounting for the particle-hole
symmetry-breaking term. In this case, all zero-energy modes
are lifted and gaps open between bands as illustrated in Fig. 7
in the vicinity of the first two magic angles. At twist angles
different from magic values, the Dirac cones at �, K , and
K ′ become gapped when both the chiral and particle-hole
symmetries are broken. At magic angles, whether even or odd,
the flat bands acquire a finite bandwidth, on the order of a few
meV for wAA/wAB = 0.05, and separate from each other.

As discussed in Sec. III A, the odd magic angles in the
chiral limit exhibit a flat band with Chern number +2 (−1)
which is fully polarized on the A (B) sublattice. Remarkably,
even when departing from the chiral limit, where the two
sublattices become mixed, the resulting two bands still retain
their Chern numbers of +2 and −1, as shown in Fig. 7 for the

FIG. 7. Separated middle bands of the first (left panel) and the
second (right panel) magic angles, labeled with the Chern number
associated to each band. The separated bands are obtained by break-
ing simultaneously the particle-hole and the chiral symmetries. To
amplify the effect of the particle-hole symmetry breaking the twist
angle in σ±θ is multiplied by a factor 20.

first magic angle. These Chern numbers are in fact robust and
persist up to significant values of the corrugation as the gap to
the remote bands is large.

In contrast to this, as discussed in Sec. III B, we identified
a set of four flat bands with Chern numbers +1,+1,−1,−1,
and complete sublattice polarization in the chiral limit for
even magic angles. The Dirac cone crossing at �, as shown in
the previous section, is gapped out by particle-hole symmetry
breaking. When we move outside the chiral limit, the mixing
of sublattices leads to the rearrangement of Chern numbers to
+1, 0, 0,−1, as depicted in Fig. 7, for the four split bands
at a small corrugation of wAA/wAB = 0.05. Increasing the
corrugation further leads to topological transitions that involve
the Dirac cone at � and change the topological properties of
the flat bands. Their study is beyond the scope of this work.

V. CONCLUSIONS

This work analyzes the mathematical structure of flat bands
in equal-twist helical trilayer graphene in the chiral limit and
for ABA stacking. We determine analytical expressions for all
zero-energy wave functions at magic angles together with the
band Chern numbers. The magic angles are identified by the
vanishing of the Wronskian where a dimensional reduction
takes place. Moreover, we derive an orthogonality relation
between chiral and antichiral zero modes, which constrains
the number of generators in the zero-energy manifold and
reveals a connection between the dimensionality of the vector
space spanned by the zero modes and the total Chern number
of the band.

In contrast to twisted bilayer graphene, helical twisted
trilayer graphene exhibits an even or odd variation in the
composition and features of the flat bands. At odd magic
angles, we find a twofold-degenerate zero-energy manifold at
each k point, comprising an antichiral flat band with Chern
number CB = −1 and a chiral flat band with Chern number
CA = 2. The latter, being generated by two linearly indepen-
dent spinors, cannot be reduced to the lowest Landau level,
leading to interesting implications on the properties of the
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correlated ground state [19], which will be the topic of future
studies.

Even magic angles, on the other hand, are distinguished
by a fourfold-degenerate manifold, where both chiral and
antichiral flat bands have pairs of, or double, zeros, resulting
in two zero modes in each sector. The two sublattice-polarized
bands in a given sector are all collinear to a single space-
dependent spinor and carry the same Chern number, CA = +1
for the chiral A-polarized bands, CB = −1 for the anti-chiral
B-polarized bands. We also demonstrate that in addition to the
two flat bands, there must be two additional degenerate zero
modes within the zero-energy manifold, thereby explaining
the presence of a Dirac cone crossing the flat bands at �.

Finally, we investigate the stability of flat bands and zero
modes at magic angles under a weak breaking of particle-hole
symmetry. We find that all the features listed above remain
valid, with the exception of the Dirac cone, which becomes
slightly gapped by the perturbation. Only the joint breaking
of particle-hole and chiral symmetries gaps out and splits all
bands. Interestingly, at odd magic angle, the resulting isolated
bands retain the Chern numbers +2,−1 analytically deter-
mined in the chiral limit. In light of Ref. [69], it is natural
to ask which features protect the emergence and properties
of the flat bands. Our analysis highlights the importance of
the structure of the differential operator D = −i

√
2∂ + A,

where A is a non-Abelian traceless SU(3) gauge potential
and there is clearly a natural generalization to the SU(N) case
for multilayer stackings with N > 3, where Chern bands with
C > 2 are expected. In addition, the symmetries C3z and C2yT
appear to be crucial for maintaining exactly flat bands tuned
only by the twist angle, whereas particle-hole symmetry is
not needed. We emphasize that, in contrast to twisted bilayer
graphene, the C2zT symmetry is broken here and the model
belongs to the Altland-Zirnbauer [70] class AIII instead of CI,
although both classes can have protected Dirac cone on a two-
dimensional (2D) surface. The emergence of isolated bands
with nonzero Chern values in a more realistic context, where
both chiral and particle-hole symmetries are broken, opens up
exciting possibilities for realizing an anomalous quantum Hall
effect without the need for an almost aligned hBN substrate.
Moreover, the potential for fractional Hall states consisting
of bands with Chern numbers of ±2 represents a promising
direction for future investigations.
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APPENDIX A: LOCAL HAMILTONIAN

We review here some fundamental properties of the local
Hamiltonian describing equal-twist helical trilayer graphene.
A more general formulation, which includes non-equal-twist
configurations, is provided in Refs. [18,25]. In the basis � =
(ψ1, χ1, ψ2, χ2, ψ3, χ3) where ψ, χ correspond to the wave-
function amplitude on the A and B sublattices, respectively,

the Hamiltonian near valley K reads as [18,19]

HeTTG(r; φ) =

⎛
⎜⎝

vF k̂ · σθ T (r,φ) 0

H.c. vF k̂ · σ T (r,−φ)

0 H.c. vF k̂ · σ−θ

⎞
⎟⎠, (A1)

where vF ≈ 106 m/s is the graphene velocity. The set of
phases φ = (φ1, φ2, φ3) parametrizes the position on the su-
permoiré lattice. With the choice of gauge φ1 = 0,

R = φ2

π
aMM

1 + φ3

π
aMM

2 , (A2)

with the supermoiré lattice vectors aMM
1/2 = 4π

3θkθ
e∓iπ/3. φ also

controls the relative shift between the two moiré patterns and
a change of gauge shifts all phases φ j by the same amount.
R = 0 defines the AAA stacking, whereas ABA and BAB
correspond to R = (aMM

2 − aMM
1 )/3 and R = (aMM

1 − aMM
2 )/3

parametrized by φ = ±(0,−π/3,+π/3).
σ is the vector of Pauli matrices in the sublattice space,

σθ ≡ eiθσ z/2σe−iθσ z/2, and k̂ = −i∇r. The tunneling between
different layers is described by the moiré potential

T (r,φ) =
3∑

j=1

Tje
−ir·q j e−iφ j , (A3)

where Tj+1 = wAAσ 0 + wAB[σ x cos 2π j/3 + σ y sin 2π j/3],
wAB = 110 meV and wAA = rwAB with r dimensionless
parameter quantifying atomic corrugation, using complex no-
tation q j+1 = ikθe2iπ j/3 [16] with kθ = θKD, KD = 4π/3aG,
and aG ≈ 2.46 Å. The moiré lattice is characterized by the
reciprocal lattice vectors b1/2 = q1 − q2/3 and primitive vec-
tors a1/2. Ignoring the twist-angle dependency in the Pauli
matrices σ±θ the Hamiltonian (A1) becomes invariant under
the particle-hole symmetry:

PHeTTG(r; φ)P−1 = −HeTTG(−r; φ), (A4)

with P given in Eq. (12). Under moiré lattice translations we
have

HeTTG(r + a1/2; φ) = UϕHeTTG(r; φ)U †
ϕ , (A5)

where the matrix Uϕ = diag[ω∗, 1, ω] ⊗ σ 0 corresponds to a
layer-dependent phase factor ω = exp(2π i/3).

HeTTG also exhibits a supermoiré periodicity with R (or φ).
One can show [19] the following identity:

HeTTG

(
r + al

2
; φ + �φl

)
= ŨHeTTG(r; φ)Ũ †, (A6)

where Ũ = diag(1, 1, ω). The phase shifts �φ1 = (0, π, 0)
and �φ2 = (0, 0, π ) correspond, respectively, to R → R +
aMM

1 and R → R + aMM
2 . As a result, the AAA-stacking points

are periodically replicated, forming a triangular lattice gener-
ated by aMM

1/2 and characterized by ABA and BAB domains
[19] (see also [20,21]).

As noted above, we focus on the ABA-stacking configu-
ration by setting φ = (0, 2π/3,−2π/3) and the chiral limit
wAA = 0 (suppressed tunneling between A and A orbitals).
The resulting Hamiltonian is given by Eq. (1) in the sublattice-
Chern basis.
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APPENDIX B: PARTICLE-HOLE SYMMETRY
P PROTECTED DIRAC CONES

We discuss the symmetries protecting the Dirac cones at
the high-symmetry points K , K ′, and � in the ABA-stacking
configuration.

The irreducible representations of the space group com-
posed by C3z and C2yT at the high-symmetry momenta � and
K (K ′) verify the C3 point-group character table and are all
one dimensional. This can be understood more directly by
considering an eigenstate of C3z, C3z|ω〉 = ω|ω〉. From the
relation

(C2yT )C3z(C2yT )−1 = C−1
3z , (B1)

we obtain C3zC2yT |ω〉 = ωC2yT |ω〉. C2yT thus does not cir-
culate between the eigenstates of C3z and cannot protect a
twofold degeneracy. The three zero-energy Dirac cones at
K , K ′, and � arising in the band spectrum of ABA trilayer
graphene [18,19] are therefore stable in the presence of the
particle-hole symmetry P [Eq. (12)]. In the chiral limit wAA =
0, the Dirac cones are protected by �z and persist even in the
absence of P.

Since P and C3z commute, if the spectrum at � hosts
two states with C3z eigenvalues ω, ω∗ near charge neutrality
(and no other states), particle-hole symmetry P automatically
pins these two states at zero energy. This is proven by con-
tradiction: if we assume that the two states sit at opposite
nonvanishing energies, then P permutes them. This is, how-
ever, impossible since P cannot change the C3z eigenvalue
which completes the proof. In fact, P restricted to these two
states must be the identity as it commutes with C3z. It further
shows that breaking C3z does not lift the Dirac crossings as
the trivial (identity) representation of P = I2×2 cannot deform
continuously to the traceless σ x matrix permuting states with
opposite nonzero energies. K and K ′ are, however, not stable
under P, which permutes K and K ′, and the stability of their
Dirac cones must come from a different operator. C2yT sends
k → −C2yk and therefore also permutes K and K ′. Combining
P and C2yT we find

PC2yTHABA(r)(PC2yT )−1 = −HABA(−C2yr), (B2)

with

P′ = PC2yT =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ ⊗ I2×2K, (B3)

which leaves K and K ′ invariant and acts as a (antiunitary)
particle-hole operator. P′C3z(P′)−1 = C−1

3z being antiunitary
P′ cannot permute the eigenvalues (ω,ω∗) which implies that
an isolated pair of states at K and K ′ is degenerate and pinned
at zero energy, in the two-dimensional subspace P′ = I2×2K.

APPENDIX C: RELATION BETWEEN THE WRONSKIAN
AND FERMI VELOCITY AT THE DIRAC NODES

In this Appendix we show that the Fermi velocity at the
Dirac nodes K, K ′, and � is proportional to the Wronskian
WA/B [Eqs. (17) and (18)]. The Schrödinger equation for the
cell-periodic part uk = e−ik·r �k of the Bloch function �k

TABLE I. Action of the symmetries of HABA on the zero mode
ψ. Rows refer to the different symmetries, from top to bottom C3z,
P, C2yT , and PC2yT the last two involving the complex conjugation
K. Columns show the action of the symmetry on the momentum k,
space r coordinates, and Mg is the representation of the symmetry
acting on the three-dimensional layer degree of freedom.

Symmetry k r Mg

C3z C3zk C3zr diag(ω, 1, ω)

P −k −r

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠

C2yT −C2yk C2yr

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠K

PC2yT C2yk −C2yr diag(−1, 1, −1)K

reads as

k̄ ukB + D(r)ukB = εkukA,

k ukA + D†(r)ukA = εkukB,
(C1)

where k = kx + iky and k̄ = k∗. Expanding to linear order
around on of the high-symmetry Dirac points κ = K, K ′, �
we have

δk̄ uκB + δk · [κ̄ + D(r)]∇kukB|κ = vκ |δk|uκA,

δk uκA + δk · [κ + D†(r)]∇kukA|κ = vκ |δk|uκB,
(C2)

where vκ is the velocity at the high-symmetry point κ .
Projecting the first line of Eq. (C2) on uκA and knowing that
uκA is a zero-mode solution [κ + D†]uκA = 0 for any twist
angle we find δk̄ ūκA · uκB = vκ |δk||uκA|2 or, equivalently,

vκ ∝ |ψ̄κ · χκ | ∝ WA/B. (C3)

Thus, the vanishing of the Wronskian coincides with a van-
ishing Fermi velocity vκ .

APPENDIX D: SYMMETRIES
OF THE ZERO-MODE WAVE FUNCTION

The symmetries of the Hamiltonian HABA discussed in
Sec. II B constrains the properties of the zero-mode wave
function and gives insight on the nature of the different magic
angles. Considering the symmetry g the A sublattice polarized
solution ψ we have

ψk(r) = ei�gMgψgk(gr), (D1)

where the action of the symmetry g on layer, momentum,
and space degrees of freedom is given in Table I. Similar
expressions are also obtained for the B sublattice zero mode
χk. The phase �g is fixed by taking the decoupled limit α = 0
and depends on k.

We will now employ the symmetry relations in Eq. (D1) of
the model to constrain the zero-mode wave functions in the
CA and CB sectors around high-symmetry points r in the moiré
unit cell.
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1. Odd magic angles

Thanks to Eq. (25) odd magic angles are determined by
looking at the behavior of χ� (r) around r ≈ 0 where the
kernel D(r) takes the form

D(r) �

⎛
⎜⎝

−i
√

2∂ −3αz/
√

2 0

3α −i
√

2∂ 3α

0 3αz/
√

2 −i
√

2∂

⎞
⎟⎠. (D2)

The solution of the zero-mode equation is obtained perform-
ing a Taylor expansion in z and z̄. Employing Eq. (D1)
we readily realize that χ�2(C3zr) = χ�2(r) and χ�1/3(C3zr) =
ω∗χ�1/3(r). In addition, we also have χ�2(C2yr) = χ∗

�2(r) and
χ�1/3(C2yr) = χ∗

�3/1(r) implying

χ� (r) � χ2

⎛
⎜⎝

3iαz2/4

1

−3iαz2/4

⎞
⎟⎠ +

⎛
⎜⎝

χ ′
1z̄

3
√

2α�χ ′
1zz̄

χ ′∗
1 z̄

⎞
⎟⎠, (D3)

where χ2 ≡ χ�2(0) ∈ R while χ ′
1 ≡ ∂̄χ�1|0 ∈ C. Thus, C3z

and C2yT reduce the perfect flatness of the entire band to
the vanishing of a single real number χ2 [69]. Notice that
if we further impose the particle-hole symmetry P we have
Reχ ′

1 = 0. We readily realize that the expression (D3) solves
Dχ� = 0 up to small terms of the order z2z̄. At the magic
angle we have χ2 = 0 and χ� has a simple zero for r → 0:

χ� (r → 0) ∼ z̄(χ ′
1, 0, χ ′∗

1 )T . (D4)

We emphasize that the simple zero at the odd magic angles
where χ2 = 0 persists also in the absence of the particle-
hole symmetry P. The vanishing of χ� (0) implies ψK (0) ×
ψK ′ (0) = 0 resulting in the fact that ψK (0) and ψK ′ (0)
are collinear. Equation (D1) for C3z gives ψK/K ′2(C3zr) =
ωψK/K ′2(r) and ψK/K ′1/3(C3zr) = ψK/K ′1/3(r). Furthermore, K
and K ′ zero modes are related by ψK ′1/3(r) = ψ∗

K3/1(C2yr)
and ψK ′2(r) = ψ∗

K2(C2yr). These symmetries reduce ψK (0) ×
ψK ′ (0) = 0 to ψK (0) = ψK ′ (0), where the identity holds up
to a phase, which gives rise to the Chern 2 zero-mode wave
function in Eq. (28).

2. Even magic angles

Even magic angles realizes the a 1 + 1 decomposition cor-
responding to one-dimensional flat bands in both chiral and
antichiral sectors. The fourfold degeneracy of the flat-band
manifold [see Fig. 3(c)] originates from a double zero in the
spinors ψK ′ (r) and χK (r) at r0. The origin of this double zero
can be explained by symmetry reasoning. To start with we
expand D†(r) around the AB-stacking point r0 finding

D†(r + r0) �

⎛
⎜⎜⎝

−i
√

2∂̄ −3αz/
√

2 0

3αz/
√

2 −i
√

2∂̄ 3α

0 −3αz̄/
√

2 −i
√

2∂̄

⎞
⎟⎟⎠. (D5)

Focusing on the chiral sector and fixing the center of the C3z

rotation around r0 we find Eq. (32) which implies

ψK ′ (r + r0) � ψ
(0)
3

⎛
⎜⎝

0

−i3αz̄/
√

2

1

⎞
⎟⎠ + z2

2

⎛
⎜⎜⎝

ψ
(0)′′
1

ψ
(0)′′
2

0

⎞
⎟⎟⎠, (D6)

where ψ
(0)′′
1/2 ≡ ∂2ψK ′1/2|r0 and we have included terms up

to second order in r. Imposing, the PC2yT symmetry (34)
implies Reψ (0)

3 = 0, Reψ (0)′′
1 = 0, and Imψ

(0)′′
2 = 0. Thus, at

the magic angle where ψ
(0)
3 = 0 we have

ψK ′ (r → 0 + r0) ∼ z2
(
ψ

(0)′′
1 , ψ

(0)′′
2 , 0

)T /
2, (D7)

enabling to attach two lowest Landau levels with simple pole
at r0 to the zero-mode spinor ψK ′ (r) [Eq. (35)]. Following a
similar line of reasoning one could show that the antichiral
zero mode χK shows a double zero at r0.

3. Alternative derivation for the two flat bands

We provide here an alternative argument for the protec-
tion of a twofold-degenerate flat band at even magic angles.
The construction in Sec. III B relies on the quadratic van-
ishing of ψK ′ (r) at r = r0 derived in Sec. D 2 which uses
the PC2yT symmetry, and therefore P. However, the zero-
mode flat bands also host a specific wave function ψ

(1)
� (r) =

η
(0)
K ′ (z)η(0)

K ′ (z)ψK ′ (r) which exhibits a double zero at r = 0. As
we show below, this double zero is protected solely by the
C3z and C2yT symmetries. To linear order in z, the zero-mode
equation takes the form

− i
√

2∂̄ψ�2 − 3αz̄(ψ�1 − ψ�3)/
√

2,

− i
√

2∂̄ (ψ�1 − ψ�3) = 0,

− i
√

2∂̄ (ψ�1 + ψ�3) + 6αψ�2 = 0. (D8)

Solving the system of differential equations and imposing C3z

[Eq. (D1)], we find that the zero mode behaves as

ψ� (r) � ψ2

⎛
⎜⎝

0
1
0

⎞
⎟⎠ − 3αiz̄√

2
ψ2

⎛
⎜⎝

1
0
1

⎞
⎟⎠ + z2

⎛
⎜⎝

ψ ′′
1 /2
0

ψ ′′
3 /2

⎞
⎟⎠, (D9)

where ψ2 ≡ ψ�2(0) and ψ ′′
1/3 = ∂2ψ�1/3|0. C2yT gives the

additional condition ψ�1/3(C2yr) = ψ∗
�3/1(r) and ψ�2(C2yr) =

ψ∗
�2(r) implying ψ2 ∈ R and ψ ′′

1 = ψ ′′∗
3. In summary, a dou-

ble zero is expected,

ψ� (r → 0) ∼ z2(ψ ′′
1 , 0, ψ ′′∗

1 )T
/

2 (D10)

as soon as the real coefficient ψ2 vanishes. It corresponds
to the specific solution ψ

(1)
� (r) introduced above. Breaking P

but keeping C3z and C2yT intact, one only moves the magic
angle for which ψ2 = 0 since ψ2 remains a real number. The
twofold-degenerate flat band in the chiral sector is a direct
consequence of Eq. (D10), with the analytical structure

ψk(r) = η
(0)
k′ (z)η(0)

k−k′ (z)ψ� (r), (D11)

alternative to Eq. (35).
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