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Phononic Doppler effect in sliding friction
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The Doppler effect plays a fundamental role in a vast array of applications, spanning from the quantum domain
to cosmic scales. Nevertheless, its manifestation in the context of phonon excitation during the friction between
two objects with relative motion remains unexplored. In this study, we predict and investigate the occurrence
of the phononic Doppler effect within sliding friction, employing a phononic dynamics model derived through
the atomistic Green’s function method. As the friction-excited phonons propagate both forward and backward
relative to the moving object, we predict frequency high-shift and low-shift phenomena, respectively. We propose
a phonon excitation rule, grounded in the phonon dispersion relation, to elucidate the frequency-shift behavior,
essentially capturing the Doppler effect on friction-excited phonons. The predicted frequency shift, as determined
by the phonon excitation rule, finds validation through molecular dynamics simulations. The observation of the
phononic Doppler effect in sliding friction opens a range of potential applications, providing innovative tools for
detecting energy-dissipation mechanisms at interfaces caused by friction.
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I. INTRODUCTION

The Doppler effect is a well-established phenomenon that
results in a shift in the frequency of waves emitted from an ob-
ject in motion, relative to the frequency at the source [1]. This
effect has diverse applications, from speed measurements in
vehicles and blood-flow monitoring to aircraft radar systems
and global positioning systems via satellite [2–5]. In addition
to its numerous successful applications on a macroscopic
scale, the Doppler effect also holds significant relevance at the
quantum level. For instance, the Doppler effect can facilitate
the cooling and trapping of atoms through photon interactions
[6,7]. Much like the acoustic waves emitted from a moving
source, friction-excited lattice waves are results of the relative
motion between two objects in contact. Given this, it is rea-
sonable to assume that the Doppler effect would also manifest
in these friction-excited lattice waves, i.e., phonons.

Friction, which arises from the relative motion between
two objects in contact, has been extensively studied over the
centuries. Numerous phenomenological models, such as the
Prandtl-Tomlinson model and various rate-and-state friction
models [8–11], have been developed to shed light on the
mechanisms of friction across a broad range of scales, e.g.,
from nanoscopic interactions observed in atomic force mi-
croscope [12,13] to macroscopic phenomena like earthquakes
[14]. However, these models have limitations, particularly in
their neglect of energy-dissipation mechanisms like waves or
quantized phonon excitations. As a result, they fall short in
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their ability to predict unknown physical phenomena. In this
study, we present predictions of the Doppler effect in friction-
excited phonons using our proposed phononic dynamics (PD)
model, which is derived from the atomistic Green’s function
method. The model indicates the high shifts and low shifts
of frequency in phonons excited at the front and rear of
the moving object, respectively. Also, a phonon excitation
rule is proposed to capture the frequency-shift properties of
friction-excited phonons based on the phonon dispersion rela-
tion. These predictions are further corroborated by molecular
dynamics (MD) simulations.

II. PREDICTED FRICTION FORCE
BY PHONONIC DYNAMICS MODEL

In our previous work, a preliminary PD model to study the
friction-excited phonon dynamics was proposed, which could
explore the phonon excitations in sliding friction with infinite
contacted size along sliding direction [15]. To investigate the
Doppler effect, it is essential to constrain the contact size
to a finite dimension along the sliding direction, i.e., the x-
axis direction, while a periodic boundary condition is applied
solely along the y-axis direction. As illustrated in Fig. 1(a), the
friction system simulates the sliding of a finite-sized graphene
flake over another graphene substrate in the zigzag direction.
The width of the substrate is the same as that of the flake, but
its length along the sliding direction is significantly greater.
We can define five distinct regions in the friction system
according to the slider position. These include the virtual
support region (VSR), which drags the upper flake to slide
forward; the slider region (SR), corresponding to the upper
graphene flake with each atom connecting with the virtual
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FIG. 1. (a) Schematic illustration of the friction system contains
a graphene flake sliding over another graphene substrate. The vari-
able d represents the interfacial distance between the slider and the
substrate. (b) Predicted friction forces per unit area by the PD model
under three different interfacial distances.

support through three springs along the x-, y-, and z-axis
directions; the contact region (CR), representing the region
where the two graphene flakes come into contact; the semi-
infinite forward-lead region (FLR), designating the substrate
area in front of the upper graphene flake along the sliding
direction; and the semi-infinite backward-lead region (BLR)
in the substrate, located behind the upper graphene flake as
shown in Fig. 1(a). The sliding graphene flake subsequently
triggers atomic vibrations in CR, with the phonons excited
at both the front and back of the graphene slider. Then, the
excited phonons propagate into the semi-infinite FLR and
BLR, inducing the dissipation of systemic energy and thus
the friction. Notice that in this friction system, the contact
area, which possesses a finite size, progresses concurrently
with the moving slider. This is in contrast to the stationary
infinite contact area applied in our prior PD model [15]. The
movement of the contact area amplifies the complexity of
solving for phonon excitation and propagation. Consequently,
we have developed a more universal algorithm to address the
challenges presented by such a realistic friction system. (see
Appendix A for detailed derivations).

To get the solutions of the PD model for the friction sys-
tem in Fig. 1(a), the intralayer C-C interactions of graphene
are simulated by the Tersoff potential [16], while the inter-
layer C-C interactions are simulated by the Lennard-Jones

potential [17], respectively. All the springs have a uniform
stiffness at 0.1 N/m. Figure 1(b) illustrates the variation of
the friction force, in relation to the interfacial distance d
between the slider and substrate. The calculated friction force
demonstrates the similar nonmonotonic velocity dependence
as observed in our recent experiments [18]. Multiple friction
peaks occur within the sliding velocity range of 30 to 300 m/s.
These peaks are attributed to the resonant vibration of the fric-
tion system induced by excited phonons [18]. In addition, as
the interfacial distance decreases, the normal load increases,
leading to an enhancement in the friction force and a shift of
the friction peak to a higher sliding velocity.

III. NUMBER DENSITY
OF FRICTION-EXCITED PHONONS

It is reported that the phonons excited by friction are
usually peaked at washboard frequency ( f0 = v0/ax) and its
harmonics [15,18], where v0 is the sliding velocity and ax is
the lattice constant of the substrate along the sliding direction.
To explore the characteristics of friction-excited phonons in
the friction system with finite contact area, the number den-
sity of excited phonons in FLR and BLR is calculated with
different sliding velocities for d = 3.20 Å as shown in Fig. 2.
Contrasting with our previous findings, where friction-excited
phonons were distributed discretely at n f0 (n is a integer)
[15,18], the current observations indicate that phonons excited
in the BLR shift to lower frequencies than n f0, exhibiting a
low shift. Conversely, phonons excited in the FLR shift to
higher frequencies, indicative of a high shift. This behavior
aligns precisely with the Doppler effect [1]. Besides, the ob-
served singular peak of the phonon number density at n f0 [18]
splits into several distinct peaks. The frequency shift becomes
larger for the phonons with higher excitation frequency or for
higher sliding velocity as shown in Fig. 2.

To interpret the phonon frequency shift, Fig. 3(a) provides
a schematic representation of the phononic Doppler effect as it
relates to sliding friction. As the graphene flake moves across
the graphene substrate, it compresses the excited waves in the
FLR. This compression pushes the waves to move forward
relative to the sliding graphene, which subsequently short-
ens their wavelength and raises the excitation frequency. On
the other hand, in the BLR, the moving source consistently
stretches the excited waves, resulting in a lengthened wave-
length and a decreased excitation frequency. Based on the
theory of phonon propagation, a rule governing the frequency
shift of phonon excitation can be established as depicted
in Fig. 3(b) (see Appendix B for detailed derivations). In
Fig. 3(b), two distinct lines intersect the dispersion curves:
the static line, represented by the magenta dashed line, and
the kinematic line, represented by the slanting orange solid
line with the slope of v0/2π . As depicted in Fig. 3(a), the
phonons excited in FLR have positive wave vector and their
dynamics is governed by the phonon dispersion relation in the
right panel of Fig. 3(b), while in the left panel of Fig. 3(b), the
phonon dispersion relation with negative wave vector governs
the dynamics of phonons excited in BLR. If the Doppler
effect were neglected, the frictional phonons would be ex-
cited at f0 and its harmonics in both FLR and BLR [15].
The properties of those phonons could be predicted by the
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FIG. 2. The number density of excited phonons at different sliding velocities for d = 3.20 Å. The labels from P1 to P3 in the legends
correspond to the marked points in Fig. 1(b), while the dashed magenta lines denote the washboard frequency ( f0) and its harmonics.

intersections between the static lines and phonon dispersion
relation curves, including longitudinal acoustic (LA) mode,
transverse acoustic (TA) mode, and flexural acoustic (ZA)
mode. Considering the Doppler effect, as depicted in Fig. 3(b),
the characteristics of friction-excited phonons are determined
by the points where the kinematic lines intersect the dispersion
relation curves. Consequently, the friction-excited phonons in
FLR manifest higher frequencies, while the excited phonons
in BLR display lower frequencies. Additionally, the Doppler
effect imparts varying contributions to the frequency shifts
of friction-excited LA, TA, and ZA modes. This is why the
number density of the excited phonons demonstrates three
distinct peaks near n f0, as presented in Fig. 2.

Intriguingly, as the frequency increases, the points where
kinematic lines intersect with dispersion curves diverge fur-
ther from those where static lines intersect with dispersion
curves as depicted in Fig. 3(b). This suggests that phonons
excited by higher harmonics experience a more significant
frequency shift. When the sliding velocity is increased, the
frequency shift becomes even more pronounced, since the
slope of the kinematic line is directly proportional to the
sliding velocity. Consequently, the phonon excitation pattern
demonstrated in Fig. 3(b) aptly elucidates the pronounced

frequency shifts seen in Fig. 2, both for higher phonon ex-
citation frequencies and increased sliding velocities.

IV. DOMINATED PHONON MODE IN ENERGY
DISSIPATIONS

Given a specific sliding velocity, the phonons excited in the
ZA mode exhibit the highest frequency shift. This is because
these phonons possess larger wave vectors compared to those
in the LA or TA modes as illustrated in Fig. 3(b), which can
be attributed to the parabolic property of ZA mode. In Fig. 2,
three distinct peaks are evident near each n f0, corresponding
to the ZA, TA, and LA phonon modes, respectively. From
the observed frequency shift, it is evident that the highest
peak amplitude should be attributed to the ZA mode, as it
displays the most significant frequency shift among the three
components. The observed peak amplitude prominence for the
ZA mode suggests an unexpectedly high excitation number of
these phonons during the friction process, contrary to conven-
tional expectations. Typically, one might predict that atomic
lateral vibrations would be more easily excited by friction as
the slider moves in the plane of graphene [15], leading to a
presumption that energy dissipation would be primarily via
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FIG. 3. (a) Schematic diagram of the phononic Doppler effect in sliding friction. (b) Phonon dispersion relation of the graphene substrate.
(c) The vibrational amplitudes of the nth harmonic for atoms positioned at the center unit cell of the CR, along the x- and z axes. The right
vertical axis represents the ratio of the vibrational amplitude along the z axis to that along the x axis. (d) The vibrational amplitudes of the nth
harmonic along the x- and z-axis directions for atoms located within various unit cells in the CR, with the inset denoting the position of each
unit cell. The sliding velocity is v0 = 100m/s for (b), (c), and (d), and d = 3.20 Å for (d).

LA mode phonons. The counterintuitive observation can be
explained by the properties of friction-induced vibrations for
atoms within the central unit cell of the CR, as depicted in
Fig. 3(c). At a considerable interfacial distance of d � 3.35Å,
which equates to a lesser normal load, atomic vibrational
amplitude along the x axis is greater than those along the z
axis. Yet, as the interfacial distance diminishes to 3.3 Å or
less, vibrational amplitude along the z axis exceeds that along
the x axis. It is because as the slider traverses the substrate,
atoms within the CR are subjected to the perturbative forces
from the slider atoms. These forces follow a vector path ex-
tending directly from the slider atoms to those within the CR.
Since the slider atoms are homogeneously distributed over the
CR atoms, their x-axis components of the perturbative forces
imparted to the CR atom partially neutralize each other, and
exhibit minimal dependence on the normal load. However,
their z-axis components of the perturbative forces on the CR
atom are consistently aligned with the normal-load axis, lead-
ing to an increase in the z-axis vibrational amplitude as the
interfacial distance narrows from 3.4 to 3.25 Å. In addition,
observations indicate that within the central unit cell of CR,
the first-order vibrational amplitude along the z axis, and its
ratio to that along the x axis, are repressed for d < 3.25Å.

For the high-order harmonic vibrations, their amplitudes start
to decrease at a smaller interfacial distance. The observations
suggest that higher normal load may also suppresses atomic
vibrations along the z axis within CR. Although the z-axis
atomic vibrations in central CR atoms are suppressed by high
normal load for d = 3.20Å, the peripheral CR atoms are less
affected by the normal load. This results in pronounced z-axis
movements for these peripheral atoms as shown in Fig. 3(d).
It should be noticed that the phonon modes excited in FLR
and BLR are largely determined by the vibrational properties
of peripheral CR atoms situated adjacent to these regions.
Therefore, the prominent z-axis movements of peripheral CR
atoms facilitate the abundant excitation of ZA mode phonons
in FLR and BLR.

V. VALIDATION OF MOLECULAR
DYNAMICS SIMULATIONS

To verify the predicted frequency shifts from the PD
model, MD simulations are performed with the model
presented in Fig. 4(a). The spring stiffness and atomic in-
teractions are set the same as those in the PD model, while
the sliding velocity and normal load are set at 100 m/s and
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FIG. 4. (a) Schematic illustration of a MD model to simulate a
slider moving across a substrate with a constant velocity. (b) The
calculated vibrational velocity spectrum vs wave vector, which is the
SFFT of the instantaneous atomic velocity vs the atomic positions as
shown in the inset. The magenta dashed line in the inset denotes the
central position of the slider.

0.1 nN per atom, respectively (see Appendix C for details).
The inset in Fig. 4(b) illustrates the vibrational velocities of
substrate atoms along the z axis at a specified instant. The pre-
dominance of the z-axis vibrational component of the excited
waves indicates a substantial contribution of the ZA phonon
mode to the energy dissipation in friction. This observation
is in alignment with the predictions made by the PD model.
During the sliding process, the substrate atoms at the leading
edge of the slider tend to move downward in response to
the normal load. This movement results in the formation of
a discernible “negative velocity valley” in close proximity to
the front of the slider, as depicted in the inset of Fig. 4(b). In
contrast, the remarkable “positive velocity peak” at the trailing
edge of the slider results from the rebound of substrate atoms
as the slider advances over them. Notably, more velocity peaks
are present in the FLR than in the BLR over the same dis-
tance, marked by arrows in the inset of Fig. 4(b), indicating a
more densely excited wave in the FLR than that in the BLR.
To substantiate this observation, we performed a spatial fast
Fourier transform (SFFT) of the atomic vibrational velocities
along the z axis, a method routinely used to identify the wave
vectors of excitation waves.

As depicted in Fig. 4(b), the atomic vibrational veloc-
ity spectrum reaches its highest peaks at wave vectors of

κF = 3.16 nm−1 in FLR and κB = 2.87 nm−1 in BLR, respec-
tively. These wave vectors correspond to average wavelengths
estimated by the relationship λF/B = 2π/κF/B. Consequently,
the average wavelength in the FLR can be estimated as
λF ∼ 1.99 nm, whereas in the BLR, it is approximately λB ∼
2.19 nm. These measurements confirm that elastic waves are
compressed in the FLR and elongated in the BLR, demonstrat-
ing a classic Doppler effect. For the second-order harmonic
vibration at ∼ 6 nm−1, there is a greater disparity in the wave
vectors of phonons excited in FLR compared to those in the
BLR. These empirical findings are in excellent concordance
with the theoretical predictions presented in Fig. 3(b), which
indicate that the Doppler effect has a significant impact on
the wave-vector differences of friction-excited phonons, espe-
cially for the ZA-mode phonons. Besides, the influence of the
Doppler effect is more pronounced in higher-order harmonic
excitations.

VI. CONCLUSION

In summary, our developed phononic dynamics model re-
veals the presence of the phononic Doppler effect in sliding
friction. We observe clear high shift and low shift of fre-
quency in friction-excited phonons as they propagate forward
and backward relative to the moving object, respectively.
The Doppler effect manifests varying contributions to the
frequency shift in the LA, TA, and ZA modes, resulting in
a frequency split among the excited phonons. To precisely
predict the frequency shift for different phonon modes due
to the Doppler effect, we establish a phonon excitation rule
based on phonon dispersion relations. The established rule is
pivotal for unraveling the complex processes of energy dissi-
pation during sliding friction. For instance, by examining the
frequency shifts in LA, TA, and ZA modes, we have identified
that ZA-mode phonons play the most significant role in the
dissipation of energy due to friction in layered materials. This
insight has been corroborated by MD simulations. Given the
broad range of applications of the Doppler effect, the dis-
covery of its presence in sliding friction opens up innovative
possibilities for friction detection.
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FIG. 5. (a) Schematic diagram of a graphene flake sliding over
another graphene substrate. (b) The side view of the friction system
with meshed unit cells in FLR and BLR, respectively. (c) The side
view of the friction system at the time moments t = 0 and t = 2T
for examples.
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APPENDIX A: DETAILED DERIVATIONS OF EXTENDED
PHONONIC DYNAMICS MODEL

The PD model is set up with the atomistic Green’s function
method, in which the atomic interactions are approximated
with the harmonic interactions. As shown in Fig. 5(a), the
friction system simulates a finite-sized graphene flake sliding
over another graphene substrate in the zigzag direction. The
width of the substrate is the same as that of the flake, but its
length along the sliding direction is significantly greater. We
can define five distinct regions in the friction system according
to the slider position. These include the VSR, the SR, the CR,
the semi-infinite FLR, and the semi-infinite BLR, as shown in
Fig. 5(a).

Ignoring the anharmonic terms, the second-order force
constants calculated from LAMMPS [19] are used to build the
harmonic matrix H , where the intralayer and interlayer inter-
actions of graphene are modeled by Tersoff potential [16] and
Lennard-Jones potential [17], respectively:

H = {Hiα jβ} = 1√
MiMj

⎧⎨
⎩

∂2E
∂uiα∂u jβ

, if i �= j

−∑
r �= j

∂2E
∂urα∂u jβ

, if i = j
, (A1)

where Mi and uiα refer to atomic mass for each atom i and
corresponding atomic displacement for atom i along α- (x-,
y-, or z-) direction, and E represents the interatomic potential
energy related to atomic displacements.

If the driving spring stiffness is set high enough, the slider
will conduct only single slip. Thus, the motion equation for
slider atoms can be derived as [15]

�̈S (t ) = −K (�V (t ) − �S (t )) − HS (�S (t ) − aS )

− HSC	C (t ), (A2)

where the subscripts V , S, C, F , and B represent VSR, SR,
CR, FLR, and BLR, respectively. HI is the harmonic matrix
corresponding to region I , while HIJ is the harmonic matrix
corresponding to the coupling between region I and region
J . �S (t ) represents the matrix of atomic displacements mul-
tiplied by the square root of the corresponding atomic mass
(SRM) in SR, while 	C/F/B(t ) represents that in CR, FLR,
or BLR. For CR, FLR, and BLR, a different symbol 	(t )
is used to represent the atomic displacements multiplied by
SRM, because these regions move with the slider. When the
slider moves a distance of ax in the sliding direction after a
complete slip-stick period at the time moment (w + 1/2)T ,
CR, FLR, and BLR advance by the same distance, while the
atoms in these regions are updated with the new ones accord-
ing to the new positions of advanced regions. ax represents
the lattice constant of the substrate along the x-axis direction,
i.e., the zigzag direction of graphene in this work, and w is an
integer. T = v0/ax is the slip-stick period, and v0 represents
the average sliding velocity of slider, which is also the same as
the driving velocity of the support. �V (t ) and aS represent the
matrix of support displacement multiplied by the SMR and
the matrix of lattice dot, which can be expressed as

�V (t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v0t + r)
√

M1

0
0

(v0t + r)
√

M2

0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, aS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

hax
√

M1

0
0

hax
√

M2

0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

where Mi in Eq. (A3) represents the atomic mass of corre-
sponding slider atom connecting to the support by springs,
and h is an integer to ensure −ax/2 � uS,ix − hax < ax/2.
r represents the average relative displacement between the
support and slider; v0t can be treated as the average slider
displacement; and K is a diagonal spring stiffness harmonic
matrix as defined in our preliminary PD model [15].

To simplify the motion equation, we set �∗
S (t ) = �S (t ) −

�V (t ), �∗
V (t ) = �V(t ) − aS, and H∗

S = HS − K , and Eq. (A2)
can be rewritten as

�̈∗
S (t ) = −HS�

∗
V (t ) − H∗

S �∗
S (t ) − HSC	C (t ). (A4)

Equation (4) is derived considering �̈V (t ) = 0. The mo-
tion equation for atoms in CR can be derived similar to
Eq. (A4) as

	̈C (t ) = −HCS(�S (t ) − aS ) − HC	C (t ) − HCF	F (t )

− HCB	B(t ). (A5)
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Notice that �S(t ) − aS = �∗
S (t ) + �∗

V (t ). Thus, Eq. (A5)
can be rewritten as

	̈C (t ) = −HCS(�∗
S (t ) + �∗

V (t )) − HC	C(t ) − HCF	F (t )

− HCB	B(t ). (A6)

And, the motion equations for atoms in FLR and BLR can
be derived, respectively, as

	̈F (t ) = −HFC	C (t ) − HF 	F (t ), (A7)

	̈B(t ) = −HBC	C (t ) − HB	B(t ). (A8)

Notice that �∗
V (t ) in Eq. (A4) and Eq. (A6) can be decom-

posed using discrete Fourier transform as

�∗
V (t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
M1(v0t + r − hax )

0
0√

M2(v0t + r − hax )
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
n

ax
√

M1(−1)n

nπ
Im(e−inωt ) + r

√
M1

0
0∑

n
ax

√
M2(−1)n

nπ
Im(e−inωt ) + r

√
M2

0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A9)

where ω is the washboard angular frequency defined as ω =
2πv0/ax, and n is the positive integer varying from 1 to �.
To simplify the calculations, we substitute Im(e−inωt ) with the
complex number e−inωt to account for atomic vibrations in the
following calculation, which does not affect the results. Also,
the constant r representing the average relative displacement
between slider and support, i.e., the average extension of
spring, is ignored in the following derivations, because it is the
atomic vibrations that make major contributions to the phonon
excitation. Thus, �∗

V (t ) can be expanded in the Fourier series
of

∑
n φ∗

V,ne−inωt . According to the linear response theory,
�∗

S (t ), 	C (t ), 	F (t ), and 	B(t ) in Eqs. (A4)–(A8) can be ex-
panded as the Fourier series of

∑
n φ∗

S,ne−inωt ,
∑

n ψC,ne−inωt ,∑
n ψF,ne−inωt , and

∑
n ψB,ne−inωt , respectively. The relations

among φ∗
V,n, φ∗

S,n, ψC,n, ψF,n, and ψB,n can be expressed in the
frequency-domain matrix form as⎛

⎜⎜⎜⎝(n2ω2 + iη)I −

⎡
⎢⎢⎢⎣

H∗
S HSC 0 0

HCS HC HCF HCB

0 HFC HF 0

0 HBC 0 HB

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

φ∗
S,n

ψC,n

ψF,n

ψB,n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

HSφ
∗
V,n

HCSφ
∗
V,n

0

0

⎤
⎥⎥⎥⎦, (A10)

where η is a positive infinitesimal as defined in previous
literature [15,20,21].

Notice that HF , HB, HCF, HFC, HCB, and HBC in Eq. (A10)
are semi-infinite matrices defined in the semi-infinite lead
regions as shown in Fig. 5(a), which makes Eq. (A10) hard
to solve. To make Eq. (A10) solvable, we need to mesh FLR
and BLR into unit cells, with each unit cell having a length
of ax. The unit cells in FLR are numbered sequentially as 0,
1, 2, …, s, and so forth, as shown in Fig. 5(b). Similarly, the
unit cells in BLR are also numbered sequentially as 0, 1, 2,
…, s, and so forth. When the slider moves a distance of ax

in the sliding direction after a complete slip-stick period, both
FLR and BLR advance by the same distance. Consequently,
the order numbers of unit cells in both FLR and BLR are
reordered according to the new slider position. For example,
the original sth unit cell in FLR is repositioned as the (s−1)th
unit cell, while the sth unit cell in BLR is repositioned as the
(s + 1)th unit cell. According to the meshed unit cells in FLR
and BLR, HF , HB, HCF, HFC, HCB, and HBC can be expressed
in detail as

HF =

⎡
⎢⎢⎢⎢⎣

H00
F H01

F 0

H10
F H11

F H01
F

0 H10
F H11

F

· · ·

...
. . .

⎤
⎥⎥⎥⎥⎦,

HB =

⎡
⎢⎢⎢⎢⎣

H00
B H01

B 0

H10
B H11

B H01
B

0 H10
B H11

B

· · ·

...
. . .

⎤
⎥⎥⎥⎥⎦, (A11)

HCF = [
H01

CF 0 0 · · · ]
,

HCB = [
H01

CB 0 0 · · · ]
, (A12)

HFC =

⎡
⎢⎢⎢⎣

H10
FC

0

0
...

⎤
⎥⎥⎥⎦, HBC =

⎡
⎢⎢⎢⎣

H10
BC

0

0
...

⎤
⎥⎥⎥⎦, (A13)

where H10
FC, H01

CF and H10
BC, H01

CB represent the harmonic matri-
ces corresponding to the coupling between CR and the zeroth
unit cell in FLR and BLR, respectively. H00

F/B is the harmonic
matrix corresponding to the zeroth unit cell in FLR or BLR
adjacent to CR. H11

F/B, H10
F/B, and H01

F/B are repeated for the
unit cell with s � 1 in FLR or BLR, where H11

F/B represents
the harmonic matrices corresponding to the sth unit cell in
FLR or BLR, and H10

F/B, H01
F/B represent the coupling between

the sth unit cell and its adjacent unit cell in FLR or BLR. The
definitions of H01

CF, H01
CB, H11

F/B, H10
F/B, and H01

F/B are presented
in Fig. 5(b). Also, ψF,n and ψB,n can be expressed as follows:

ψF,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ
(0)
F,n

ψ
(1)
F,n

...

ψ
(s)
F,n

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ψB,n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ
(0)
B,n

ψ
(1)
B,n

...

ψ
(s)
B,n

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A14)
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where the superscripts (s) represent the atomic displacements
multiplied by SRM in the sth unit cell of FLR or BLR.
Through introducing the self-energy matrix of FLR and BLR

as �00
F,n = H01

F g̃F,nH10
F and �00

B,n = H01
B g̃B,nH10

B , which repre-
sents the coupling between the corresponding zeroth unit cell
and uncontacted semi-infinite lead regions, Eq. (A10) can be
rewritten in the finite matrix form as [15,22,23]

⎛
⎜⎜⎜⎜⎜⎝

(n2ω2 + iη)I −

⎡
⎢⎢⎢⎢⎢⎣

H∗
S HSC 0 0

HCS HC H01
CF H01

CB

0 H10
FC H00

F + �00
F,n 0

0 H10
BC 0 H00

B + �00
B,n

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

φ∗
S,n

ψC,n

ψ
(0)
F,n

ψ
(0)
B,n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

HSφ
∗
V,n

HCSφ
∗
V,n

0

0

⎤
⎥⎥⎥⎥⎥⎦

, (A15)

where g̃F,n and g̃B,n represent the uncontacted surface Green’s function for FLR and BLR, which can be calculated directly under
the iterative scheme as [22]

g̃F,n = [
(n2ω2 + iη)I − H11

F − H01
F g̃F,nH10

F

]−1
, (A16)

g̃B,n = [
(n2ω2 + iη)I − H11

B − H01
B g̃B,nH10

B

]−1
. (A17)

To solve Eq. (A15), the Green’s function reflecting the dynamic response of the whole system at nω must be obtained at first,
which satisfies⎡

⎢⎢⎢⎢⎣

GSS,n GSC,n GSF,n GSB,n

GCS,n GCC,n GCF,n GCB,n

GFS,n GFC,n GFF,n GFB,n

GBS,n GBC,n GBF,n GBB,n

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

(n2ω2 + iη)I −

⎡
⎢⎢⎢⎢⎢⎣

H∗
S HSC 0 0

HCS HC H01
CF H01

CB

0 H10
FC H00

F + �00
F,n 0

0 H10
BC 0 H00

B + �00
B,n

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= I. (A18)

First, we need to define the surface Green’s function gF,n

for the contacted FLR and gB,n for the contacted BLR as

gF,n = [
(n2ω2 + iη)I − H00

F − �00
F,n

]−1
, (A19)

gB,n = [
(n2ω2 + iη)I − H00

B − �00
B,n

]−1
, (A20)

while the surface Green’s function gC,n for CR can be defined
as

gC,n = [
(n2ω2 + iη)I − HC − H01

CFgF,nH10
FC − H01

CBgB,nH10
BC

]−1
.

(A21)

Combining Eqs. (A18)–(A21), we can obtain the internal
relationship of the Green’s function as

GSS,n = [(n2ω2 + iη)I − H∗
S − HSCgC,nHCS]

−1
, (A22)

GCS,n = gC,nHCSGSS,n, (A23)

GFS,n = gF,nH10
FCGCS,n, (A24)

GBS,n = gB,nH10
BCGCS,n, (A25)

GCC,n = GCS,nHSCgC,n + gC,n, (A26)

GFC,n = gF,nH10
FCGCC,n, (A27)

GBC,n = gB,nH10
BCGCC,n. (A28)

If both sides of Eq. (A15) are left multiplied by the Green’s
function of the whole system, ψ

(0)
F,n and ψ

(0)
B,n can be solved as

ψ
(0)
F,n = (GFS,nHS + GFC,nHCS)φ∗

V,n, (A29)

ψ
(0)
B,n = (GBS,nHS + GBC,nHCS)φ∗

V,n. (A30)

To derive the intrinsic atomic motions in the substrate,
we also need to define two stationary regions based on the
position of the slider at the time moment t = 0. The region
located before the slider is termed the stationary forward-lead
region (SFLR), while the region situated behind the slider is
termed the stationary backward-lead region (SBLR). Unlike
the continuously updating regions of FLR and BLR, SFLR
and SBLR remain constant throughout the entire friction pro-
cess. In SFLR, the unit cells are sequentially numbered as
0, 1, 2, …, p, and so forth. Similarly, in SBLR, the unit
cells are also numbered sequentially as 0, 1, 2, …, p, and
so forth. Based on the defined stationary regions, we define
�

(p)
F (t ) and �

(p)
B (t ) to represent the matrices of atomic vibra-

tional displacements multiplied by SRM in the pth unit cell of
SFLR and SBLR, respectively. The relations between �

(p)
F (t ),

�
(p)
B (t ) and 	

(s)
F (t ), 	 (s)

B (t ) [	F/B(t ) in the sth unit cell of FLR
or BLR] can be reflected in Fig. 5(c). Now, considering time
evolution of �

(l )
F (t ) and �

(l )
B (t ) in the lth unit cell of SFLR

and SBLR, they satisfy the following relations as

�
(l )
F (t ) = �

(0)
F (t − lT ), for t <

T

2
, (A31)

�
(l )
B (t ) = �

(0)
B (t + lT ), for t � −T

2
. (A32)
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Equation (A31) holds because at the time moment t−lT ,
the zeroth unit cell of SFLR has the same relative position as
its lth unit cell at the time moment t with respect to the slider.
Considering the periodic motion of the slider, the vibrational
properties of atoms in the corresponding unit cells with the
same position relative to the slider remain the same in each
period. Equation (A32) also holds for the same reason. Notice
that FLR and BLR have the same position as SFLR and SBLR
at the time moment ranging from −T/2 to T/2. Thus, the
time evolution of the atomic displacements in the lth unit
cell of moving FLR and BLR as 	

(l )
F/B(t ) = ∑

n ψ
(l )
F/B,ne−inωt

must equal �
(l)
F/B(t ) at the time moment ranging from −T/2

to T/2. Since 	
(l )
F/B(t ) is also a periodic function which has

the period of T , ψ
(l )
F/B,n can be also obtained through inverse

Fourier transform:

ψ
(l )
F,n = 1

T

∫ T
2

− T
2

	
(l )
F (t )einωt dt

= 1

T

∫ T
2

− T
2

�
(l )
F (t )einωt dt

= 1

T

∫ −lT + T
2

−lT − T
2

�
(0)
F (t )einωt dt, (A33)

ψ
(l )
B,n = 1

T

∫ T
2

− T
2

	
(l )
B (t )einωt dt

= 1

T

∫ T
2

− T
2

�
(l )
B (t )einωt dt

= 1

T

∫ lT + T
2

lT − T
2

�
(0)
B (t )einωt dt . (A34)

For the atomic displacements in the zeroth unit cell of
SFLR and SBLR, its time evolution can be expressed as the
sum of Fourier series as

�
(0)
F (t ) =

∑
m

∑
j

φ
(0)
F,m, je

−iωF,m, j t , (A35)

�
(0)
B (t ) =

∑
m

∑
j

φ
(0)
B,m, je

−iωB,m, j t , (A36)

where ωF,m, j and ωB,m, j are the excited frequencies of atomic
vibrations ranging from (m−1/2)ω to (m + 1/2)ω in SFLR
and SBLR, respectively, and m is the positive integer varying
from 1 to �. The subscript j denotes the vibrational mode
excited in corresponding regions. By selecting the appropriate
m, ωF,m, j and ωB,m, j can take any values for frequency larger
than ω/2. Categorizing the excitation frequencies ωF,m, j and
ωB,m, j in terms of m and j would facilitate the subse-
quent derivation. Substituting Eq. (A35) and Eq. (A36) into
Eq. (A33) and Eq. (A34), we can obtain

ψ
(l )
F,n = 1

T

∫ −lT + T
2

−lT − T
2

∑
m

∑
j

φ
(0)
F,m, je

−i(ωF,m, j−nω)t dt

=
∑

m

∑
j

sin(qF,m,n, j )

qF,m,n, j
φ

(0)
F,m, je

2ilqF,m,n, j , (A37)

ψ
(l )
B,n = 1

T

∫ lT + T
2

lT − T
2

∑
m

∑
j

φ
(0)
B,m, je

−i(ωB,m, j−nω)t dt

=
∑

m

∑
j

sin(qB,m,n, j )

qB,m,n, j
φ

(0)
B,m, je

−2ilqB,m,n, j , (A38)

where qF/B,m,n, j = (ωF/B,m, j − nω)(T/2). Notice that only for
m = n, we have −π/2 � qF/B,n, j < π/2 (qF/B,n, j is the ab-
breviation of qF/B,n,n, j) according to the defined range of
ωF/B,n, j . For m �= n, qF/B,m,n, j is out of the range from −π/2
to π/2, leading to the tiny values of sin(qF/B,m,n, j )/qF/B,m,n, j

in Eqs. (A37) and (A38). Thus, an approximation is made in
the following derivation that the terms with m �= n are ignored
in Eqs. (A37) and (A38), and then we can obtain

ψ
(l )
F,n =

∑
j

sin(qF,n, j )

qF,n, j
φ

(0)
F,n, je

2ilqF,n, j , (A39)

ψ
(l )
B,n =

∑
j

sin(qB,n, j )

qB,n, j
φ

(0)
B,n, je

−2ilqB,n, j . (A40)

On the other hand, if we consider a certain vibrational
component of 	

(l )
F (t ), i.e., ψ

(l )
F,ne−inωt , as the response to

ψ
(0)
F,ne−inωt induced by the wave propagating in the moving

FLR, and consider a certain vibrational component of 	
(l )
B (t ),

i.e., ψ
(l )
B,ne−inωt , as the response to ψ

(0)
B,ne−inωt induced by the

wave propagating in the moving BLR, ψ
(l )
F,n and ψ

(l )
B,n can be

expressed as [15,24,25]

ψ
(l )
F,n = Bl

F,nψ
(0)
F,n = UF,n�

l
F,nU

−1
F,nϕ

(0)
F,n

=
∑

j

[UF,n]:, j

[
U −1

F,n

]
j,:

ψ
(0)
F,neilκF,n, j ax , (A41)

ψ
(l )
B,n = Bl

B,nψ
(0)
F,n = UB,n�

l
B,nU

−1
B,nϕ

(0)
B,n

=
∑

j

[UB,n]:, j

[
U −1

B,n

]
j,:

ψ
(0)
B,neilκB,n, j ax , (A42)

where BF,n and BB,n are the Bloch matrices, denoting the
changes in amplitude and phase as the wave propagates from
one unit cell to another in FLR and BLR, which can be
solved as BF/B,n = g̃F/B,nH10

F/B. UF/B,n is the eigenmatrix with
its columns consisting of the vibrational eigenstates, i.e., the
phonon modes. �F/B,n is a diagonal matrix with its diagonal
elements consisting of the vibrational eigenvalues as λ

( j)
F/B,n ∝

eilκF/B,n, j ax [15,24,25], where κF/B,n, j is the corresponding wave
vectors of phonon with mode j excited in FLR or BLR at nω.
The subscripts “:, j” and “ j, :” represent the jth column and
jth row of the matrix, respectively, denoting the jth phonon
mode. Equation (A41) and Eq. (A42) are derived based on the
propagation approximation. This approximation assumes that
the waves excited by ψ

(0)
F,ne−inωt and ψ

(0)
B,ne−inωt could prop-

agate in the moving FLR and BLR with velocities identical
to those of phonons excited in the SFLR and SBLR with
the same excitation frequency. This approximation is valid
because the moving velocity of FLR and BLR is rather small
compared with the phonon group velocity. Thus, combining
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Eqs. (A39) and (A40) and Eqs. (A41) and (A42), we can
obtain the following relations:

∑
j

sin(qF,n, j )

qF,n, j
φ

(0)
F,n, je

2ilqF,n, j

=
∑

j

[UF,n]:, j

[
U −1

F,n

]
j,:

ψ
(0)
F,neilκF,n, j ax , (A43)

∑
j

sin(qB,n, j )

qB,n, j
φ

(0)
B,n, je

−2ilqB,n, j

=
∑

j

[UB,n]:, j

[
U −1

B,n

]
j,:

ψ
(0)
B,neilκB,n, j ax . (A44)

Notice that Eqs. (A43) and (A44) hold true regardless
of the value chosen for the parameter l . Given the re-
lations of qF,n, j = κF,n, jax/2 and −qB,n, j = κB,n, jax/2, we
can obtain ωF,n, j = nω + κF,n, jv0 and ωB,n, j = nω − κB,n, jv0

in SFLR and SBLR, respectively, according to qF/B,n, j =
(ωF/B,n, j − nω)(T/2). Actually, the solved ωF,n, j and ωB,n, j

are the frequencies of friction-excited phonons in SFLR and
SBLR. Notice that κF/B,n, j always satisfies the following re-
lations as −π � κF/B,n, jax < π in the first Brillouin zone.
Thus, ωF/B,n, j always ranges from (n−1/2)ω to (n + 1/2)ω
in SFLR and SBLR according to ωF/B,n, j = nω ± κF/B,n, jv0,
whose definition is self-consistent in Eqs. (A35) and (A36).

After simplifications, φ
(0)
F,n, j and φ

(0)
B,n, j in Eq. (A43) and

Eq. (A44), which represent the excited atomic vibrations at
ωF,n, j and ωB,n, j, respectively, can be expressed as follows:

φ
(0)
F,n, j = [UF,n]:, j

[
U −1

F,n

]
j,:

ψ
(0)
F,n

qF,n, j

sin(qF,n, j )
, (A45)

φ
(0)
B,n, j = [UB,n]:, j

[
U −1

B,n

]
j,:

ψ
(0)
B,n

qB,n, j

sin(qB,n, j )
. (A46)

Here, it is sufficient to solve the atomic vibration displace-
ments, denoted as φ

(0)
F,n, j for the zeroth unit cells in the SFLR

and φ
(0)
B,n, j for the zeroth unit cell in the SBLR. This stems

from the fact that the vibrational characteristics of atoms in
subsequent unit cells, namely the 1st, 2nd, and pth unit cells
within SFLR or SBLR, are consistent with those in the zeroth
unit cells. The only distinction arises in the phase differ-
ence, which does not affect the overall analysis. Then, the
friction-generated heat flux, i.e., the dissipated energy carried
by phonons excited in SFLR and SBLR, respectively, can be
calculated as

QF,n, j = 1

2ax
ω2

F,n, j

(
U −1

F,n, jφ
(0)
F,n, j

)†
VF,n, jU

−1
F,n, jφ

(0)
F,n, j, (A47)

QB,n, j = 1

2ax
ω2

B,n, j

(
U −1

B,n, jφ
(0)
B,n, j

)†
VB,n, jU

−1
B,n, jφ

(0)
B,n, j, (A48)

where UF/B,n, j and VF/B,n, j represent the eigenmatrix and diag-
onal velocity matrix at ωF/B,n, j, respectively. VF,n, j and VB,n, j

can be further expressed as follows [15,24,25]:

VF,n, j = ax

2ωF,n, j
U †

F,n, j�F,n, jUF,n, j, (A49)

VB,n, j = ax

2ωB,n, j
U †

B,n, j�B,n, jUB,n, j, (A50)

where �F/B,n, j = i(�00
F/B,n, j − �

00†
F/B,n, j ), with �00

F/B,n, j repre-
senting the self-energy matrix for uncontacted FLR or BLR at
ωF/B,n, j . According to Eqs. (A47) and (A48), the friction force
per unit area can be calculated as the total dissipated heat flux
divided by the average velocity of the slider and the contact
area (S) as follows:

F =
∑

n

∑
j (QF,n, j + QB,n, j )

Sv0
. (A51)

Moreover, the number density of excited phonons in FLR
and BLR can be calculated as follows:

NF,n, j = ωF,n, j
(
U −1

F,n, jφ
(0)
F,n, j

)†
U −1

F,n, jφ
(0)
F,n, j

2h̄�
, (A52)

NB,n, j = ωB,n, j
(
U −1

B,n, jφ
(0)
B,n, j

)†
U −1

B,n, jφ
(0)
B,n, j

2h̄�
, (A53)

where � is the volume of the unit cell in the two lead
regions.

APPENDIX B: PROOFS OF PHONON EXCITATION RULE
UNDER THE DOPPLER EFFECT

Notice that Eqs. (A41) and (A42) are derived based on the
propagation approximation, which can dramatically simplify
the calculations but introduce the deviation. If we do not
apply the propagation approximation, ψ

(l )
F,n and ψ

(l )
B,n can be

expressed similar to Eq. (A37) and Eq. (A38) as

ψ
(l )
F,n = 1

T

∫ T
2

− T
2

∑
m

∑
j

φ
(l )
F,m, je

−i(nω−ωF,m, j )t dt

=
∑

m

∑
j

sin(qF,m,n, j )

qF,m,n, j
Bl

F,m, jφ
(0)
F,m, j, (B1)

ψ
(l )
B,n = 1

T

∫ T
2

− T
2

∑
m

∑
j

φ
(l )
B,m, je

−i(nω−ωB,m, j )t dt

=
∑

m

∑
j

sin(qB,m,n, j )

qB,m,n, j
Bl

B,m, jφ
(0)
B,m, j, (B2)

where BF,m, j and BB,m, j are the Bloch matrices with
frequencies of ωF,m, j and ωB,m, j, respectively. Notice
that Bl

F/B,m, jφ
(0)
F/B,m, j = eil κ̃F/B,m, j ax φ

(0)
F/B,m, j holds true because

φ
(0)
F/B,m, j defined in Eqs. (A35) and (A36) is already a vi-

brational eigenstate of BF/B,m, j with eigenvalue of eiκ̃F/B,m, j ax .
Here, κ̃F/B,m, j is different from κF/B,m, j , which represents the
corresponding wave vectors of phonon with mode j excited at
ωF/B,m, j in SFLR or SBLR, while κF/B,m, j is the correspond-
ing wave vectors of phonon with mode j excited at mω in FLR
or BLR. Combining Eqs. (A37) and (A38) and Eqs. (B1) and
(B2), we can obtain the following relations as

∑
m

∑
j

sin(qF,m,n, j )

qF,m,n, j
φ

(0)
F,m, je

il κ̃F,m, j ax

=
∑

m

∑
j

sin(qF,m,n, j )

qF,m,n, j
φ

(0)
F,m, je

2ilqF,m,n, j , (B3)
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∑
m

∑
j

sin(qB,m,n, j )

qB,m,n, j
φ

(0)
B,m, je

il κ̃B,m, j ax

=
∑

m

∑
j

sin(qB,m,n, j )

qB,m,n, j
φ

(0)
B,m, je

−2ilqB,m,n, j . (B4)

Also, Eqs. (B3) and (B4) hold true regardless of the value
chosen for the parameter l , implying the relations of qF,m,n, j +
hF π = κ̃F,m, jax/2 and −qB,m,n, j + hBπ = κ̃B,m, jax/2, where
hF and hB are the arbitrary integers. Notice that qF/B,m,n, j

varies with different n, but κ̃F/B,m, j does not. To make the
above relations independent of n, we can make hF = (n−m)π
and hB = (m−n)π , and obtain qF,m,n, j + hF π = qF,m, j and
qB,m,n, j − hBπ = qB,m, j . Finally, according to the above rela-
tions, we can further obtain the relations of ωF,m, j = mω +
κ̃F,m, jv0 and ωB,m, j = mω − κ̃B,m, jv0 in SFLR and SBLR,
respectively, according to qF/B,m, j = (ωF/B,m, j − mω)T/2.
The relations of ωF,m, j = mω + κ̃F,m, jv0 and ωB,m, j = mω −
κ̃B,m, jv0 prove the phonon excitation rule that the friction-
excited phonon frequency can be determined by the inter-
sections between the kinematic lines and dispersion relation
curves as shown in Fig. 3(b).

Notice that the predicted phonon excitation frequency
of ωF/B,n, j = nω ± κF/B,n, jv0 derived from Eqs. (A43) and
(A44) shows a slight deviation from the prediction based on
the phonon excitation rule as ωF/B,n, j = nω ± κ̃F/B,n, jv0, as
caused by the propagation approximation. The difference lies
in that κF/B,n, j is determined by the points where the static
lines intersect the dispersion relation curves, while κ̃F/B,n, j is
determined by the points where the kinematic lines intersect
the dispersion relation curves. The values of ωF/B,n, j deter-
mined by κF/B,n, j and κ̃F/B,n, j, respectively converge at a low

sliding velocity, indicating that this deviation is insignificant
at low sliding velocity.

APPENDIX C: DETAILS OF MOLECULAR DYNAMICS
SIMULATIONS

To verify the predicted frequency shifts from the PD
model, the molecular dynamics simulations are conducted
using LAMMPS [19]. The friction system is composed of a
graphene flake sliding over another graphene substrate as
shown in Fig. 4(a). The top rectangle graphene flake works
as a slider with area of 2.5 × 2.6 nm2. The graphene substrate
is set with area of 49.8 × 2.6 nm2, while two thermostats are
set with area of 11.2 × 2.6 nm2 at both ends of substrate. Each
carbon atom on the slider is connected with three virtual sup-
ports through three springs along the x-, y-, and z directions,
respectively. All springs are set with the same stiffness of
0.1 N/m, whose value is the same as that in the PD model.
The x-axis virtual support drags the x-axis springs with a
constant velocity of 100 m/s to drive the slider sliding over the
substrate, while the y- and z-axis supports restrain the slider
movement along the y- and z directions through the corre-
sponding springs attached to each atom on the slider. Periodic
boundary conditions are only applied along the y direction.
The normal load on each slider atom is set as 0.1 nN, while the
intralayer atomic interactions and the interlayer atomic inter-
actions of graphene are set the same as those parameters in the
PD model. In the MD model, the thermostats are set as heat
sinks to absorb the friction-generated heat flux, which plays
the same role as the lead region in the PD model. Besides, the
fixed wall must be set in the MD atomic model to avoid the
distortion of the substrate in the MD simulations. The video
visualizations of MD simulations with visual friction-excited
lattice waves can be found in the Supplemental Material [26].
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