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In this paper, we employ the generalized Bloch theory to rediscover the generalized Brillouin zone theory
and follow this way to obtain the Green’s function of the non-Hermitian system. We focus on a classical chiral
model and give the exact expression of the Green’s function for a finite-size system and the formal expression
of the Green’s function suitable for infinite size. Based on these results, we further derive the correlation matrix
and validate it numerically against direct calculations for a system of size 40. The numerical results show the
accuracy of our exact expression and the high fidelity of our formal expression.
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I. INTRODUCTION

Non-Hermitian systems have been a very active research
topic in recent years; they have many interesting properties
different from Hermitian systems, such as the skin effect and
exceptional points [1]. The most successful theories describ-
ing non-Hermitian systems are the generalized Brillouin zone
(GBZ) theory and its relative theories [2–5]. The GBZ the-
ory not only precisely explains the transitional points of the
topological phase [2] but also recovers the breakdown of the
conventional Bloch-band picture and bulk-boundary corre-
spondence in non-Hermitian systems [3,4]. Beyond these, the
GBZ theory finds practical applications in calculating energy
spectra, determining winding numbers [2], and extending its
influence into diverse areas such as wave dynamics and chiral
damping [5]. In the original paper [2] addressing the GBZ
theory, Yao and Wang point out the necessity of extending
the Brillouin zone to the complex plane in non-Hermitian sys-
tems. This extension is inspired by a similarity transformation,
wherein the non-Hermitian Hamiltonian is transformed into a
Hermitian one. Following a prescribed ansatz, they derive the
generalized Brillouin zone.

The Green’s function stands as a powerful method widely
employed in condensed matter physics, serving as a valu-
able tool for elucidating a system’s response to perturbation
and capturing its dynamic behavior. In the realm of non-
Hermitian physics, recent reports, such as [6], highlight the
utility of the Green’s function in classifying boundary modes
and discerning topological properties. The Green’s function of
non-Hermitian systems has been studied previously [7–10]. In
[7,8], the authors present a simple integration expression for
the Green’s function in the bulk regime using matrix-valued
Laurent polynomials. However, they leave out the expression
for the boundary regime. A similar expression is given in
[9], where they take the approach by constructing minimally
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biorthogonal bases for the deep bulk but do not discuss the
edge components. Another work, [10], gives the exact sum-
mation expression for a non-Hermitian system from end to
end but skips details about the bulk regime.

In this paper, we adopt an alternative approach to the way
utilized by Yao and Wang [2], namely the generalized Bloch
theory [11,12], to rediscover the GBZ theory. This also al-
lows us to derive the exact Green’s function of the system.
Comparing to [7–10], our formula not only offers an exact
summation expression tailored for finite sizes but also pro-
vides a formal expression in integral form suitable for infinite
sizes. Importantly, our theoretical framework covers both the
boundary and bulk areas, with results matching well with
numerical outcomes for both exact and formal expressions.
Our present work is reduced to the formalisms presented in
[7–9], if we ignore the boundary part and the edge part of the
Green’s function, as presented by Gbound and Gedge in Eq. (40),
despite debates surrounding the formalism of the proposed
Green’s function in [13]. With the help of the thus found
Green’s function, we derive the correlation matrix, which in
turn allows the exploration of entanglement spectra and the
system’s topological properties.

The paper is organized as follows: In Sec. II, we introduce
the generalized Bloch theory in detail, and in Sec. III, we use
this theory to obtain the wave function of the non-Hermitian
Su-Schrieffer-Heeger (SSH) model, which is our primary con-
cern in this paper. Section IV details how we obtain the exact
expression of the Green’s function of a non-Hermitian system
in finite size and the formal expression as the size tends to in-
finity. Finally, in Sec. V, we verify our discovery numerically,
and at last, we summarize the paper.

II. THE GENERALIZED BLOCH THEORY

Let us start by summarizing the generalized Bloch the-
ory [11]. Consider a translationally invariant Hamiltonian
H in one dimension despite its Hermiticity, i.e., 〈i| H | j〉 =
〈i + 1| H | j + 1〉 for arbitrary |i〉 and | j〉, which denote the
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lattice site. Such Hamiltonian H has following properties:
〈i| H | j〉 = h j−i; hl is an n × n matrix, if there are n types
of particles in one unit cell. For n = 1, H is referred to as
a Toeplitz matrix under lattice representation. For n > 1, H
is a block Toeplitz matrix [14–16]. If hl = 0 for any |l| > R,
where R is an integer, H is termed a banded (block) Toeplitz
matrix.

It is imperative to note that, currently, the length of the 1D
chain N , the range of i and j, and the boundary conditions
remain unspecified. In the context of a banded Toeplitz ma-
trix H , assuming a sufficiently extensive chain (N > 2R), the
equation

H |ε〉 = ε |ε〉 (1)

is equivalent to the following two conditions:{
PBH |ε〉 = εPB |ε〉 ,

P∂H |ε〉 = εP∂ |ε〉 .

(2a)

(2b)

Here, PB = ∑N−R
j=R+1 | j〉 〈 j|, P∂ = 1 − PB = ∑R

j=1 | j〉 〈 j| +∑N
j=N−R+1 | j〉 〈 j|. The integer R represents the boundary or

hopping range. Equation (2b) contains boundary information,
while Eq. (2a) is the bulk equation.

To delve further into Eq. (2a), let us examine an infinite
Toeplitz matrix H∞, where 〈i| H∞ | j〉 = h j−i, for i, j ∈ Z. If
|ψ〉 satisfies

H∞ |ψ〉 = ε |ψ〉 , (3)

its projection onto the finite lattice P1,N |ψ〉 must sat-
isfy Eq. (2a), where P1,N = ∑N

i=1 |i〉 〈i|. Therefore, solving
Eq. (2a) suffices. As detailed in [11], the translational operator
T = ∑

j∈Z | j〉 〈 j + 1| is commutated with H∞, ([T, H∞] =
0). Thus, its eigenvectors {|z〉 = ∑

j∈Z z j | j〉 , z ∈ C} are also
the eigenvectors of H∞. We have

T |z〉 = z |z〉 , (4)

H∞ |u(z)〉 |z〉 = h(z) |u(z)〉 |z〉 = ε |u(z)〉 |z〉 , (5)

where

h(z) =
R∑

l=−R

hlz
l , h(z) |u(z)〉 = ε |u(z)〉 . (6)

The deriving of the above equations can also be found in [11].
Note that h(z) is commonly referred to as the bulk

Hamiltonian [5,17]. To solve Eq. (2a), we only need to solve
Eq. (6), an n × n matrix equation. For a given ε, the cor-
responding z is not unique. Considering the characteristic
equation det[h(z) − ε1] = 0, it can have at most 2Rn different
roots for a given ε. A different z corresponds to different
|u(z)〉. Therefore, for arbitrary {ck} ∈ C,

|ψ〉 =
∑

k

ck |zk〉 |u(zk )〉 (7)

is the solution of Eq. (2a) when projected onto the finite
lattice, where zk represents different roots of the characteristic
equation.1 To obtain the final solution of Eq. (1), we substitute

1For the case involving multiple roots, refer to the details in [11].

FIG. 1. Non-Hermitian SSH model. The dotted box indicates a
unit cell.

Eq. (7) into Eq. (2b) to determine which set of {zk} is allowed
and the value of corresponding {ck}. In other words, we look
for a nonzero solution for the equation

B(ε)

⎛
⎜⎜⎜⎝

c1
...

ck
...

⎞
⎟⎟⎟⎠ = 0, (8)

where

B(ε) =

⎛
⎜⎜⎜⎝

P∂ (H − ε1) |u(z1)〉 |z1〉
...

P∂ (H − ε1) |u(zk )〉 |zk〉
...

⎞
⎟⎟⎟⎠

T

. (9)

B(ε) is also known as the boundary matrix. The constraint
Eq. (8) has nonzero solutions determining the energy spec-
trum for H .

The procedure outlined above to solve the system under
any boundary condition is known as the generalized Bloch
theory, and its detailed expression can be found in Ref. [11].
It is noteworthy that in this procedure, the Hermiticity of H is
not considered, indicating the applicability of this method to
non-Hermitian systems.

III. MODEL

In this section, we employ the generalized Bloch theory
to investigate the non-Hermitian SSH model, as depicted in
Fig. 1.

The chain consists of two sublattices, A and B, in each
unit cell. The intercell transition amplitude is denoted as t2,
while the inner cell transition amplitude exhibits asymmetry.
Specifically, the transition from A to B is t1 + γ /2, and from
B to A is t1 − γ /2. The Hamiltonian H for this model is
expressed as

H =
∑

j

(t1 + γ /2) |A, j〉 〈B, j| + (t1 − γ /2) |B, j〉 〈A, j|

+
∑

j

t2(|A, j + 1〉 〈B, j| + |B, j〉 〈A, j + 1|). (10)

This Hamiltonian manifests as a banded block Toeplitz matrix
with specific blocks hl given by

h0 =
(

0 t1 + γ

2
t1 − γ

2 0

)
,

h1 =
(

0 0
t2 0

)
, h−1 =

(
0 t2
0 0

)
, (11)
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while all the other hl are 0, which suggests that R = 1. The
bulk Hamiltonian can be written as

h(z) = h0 + h1z + h−1z−1

=
(

0 t1 + γ

2 + t2z−1

t1 − γ

2 + t2z 0

)
. (12)

The characteristic equation of this bulk Hamiltonian is ex-
pressed as

det[h(z) − ε1] = 0

⇔
(

t1 + γ

2

)
t2z2 +

(
t2
1 − γ 2

4
+ t2

2 − ε2

)
z

+
(

t1 − γ

2

)
t2 = 0. (13)

This quadratic equation implies two z values that satisfy the
equation for a specific ε in the norm sense. Denoting these
roots as z and z′, we consider the ansatz

|ψε〉 = cz |u(z)〉 |z〉 + cz′ |u(z′)〉 |z′〉 , (14)

where

h(z) |u(z)〉 = ε |u(z)〉 , h(z′) |u(z′)〉 = ε |u(z′)〉 . (15)

The impact of boundary conditions on the system will be
explored next.

A. Periodic boundary condition

The Hamiltonian presented in Eq. (10) is expressed
in a casual form, lacking information about the bound-
ary in the sum. For a periodic boundary, the appropriate
representation is

H =
N∑

j=1

(t1 + γ /2) |A, j〉 〈B, j| + (t1 − γ /2) |B, j〉 〈A, j|

+
N−1∑
j=1

t2(|A, j + 1〉 〈B, j| + |B, j〉 〈A, j + 1|)

+ t2(|A, 1〉 〈B, N | + |B, N〉 〈A, 1|). (16)

Given that R = 1, the boundary projection operator is P∂ =
|1〉 〈1| + |N〉 〈N |. Utilizing Eq. (12), we can derive B(ε) as
follows:2

B(ε) =
(

h−1(zN − 1) |u(z)〉 h−1(z′N − 1) |u(z′)〉
h1z(1 − zN ) |u(z)〉 h1z′(1 − z′N ) |u(z′)〉

)
. (17)

Note that B(ε) here is a nontrivial 4 × 2 matrix. To obtain a
nonzero solution for (cz, cz′ ), one possibility is to set zN =

2To obtain Eq. (17), one can try to rewrite Eq. (16) as

H =

⎛
⎜⎜⎜⎜⎝

h0 h1 · · · h−1

h−1 h0 h1 · · ·
...

...
. . .

...

h1 · · · h−1 h0

⎞
⎟⎟⎟⎟⎠

and use properties Eq. (12) and Eq. (15).

1, cz = 1, cz′ = 0 (similarly, setting z′N = 1 results in cz = 0,
cz′ = 1).

Hence, the wave function for the periodic boundary is
given by

|ψε〉 = |u(z)〉 |z〉 , zN = 1. (18)

In the limit as N → ∞, any |z| = 1 could satisfy this
condition.

B. Open boundary condition

For open boundary conditions, the appropriate expression
of the Hamiltonian is

H =
N∑

j=1

(t1 + γ /2) |A, j〉 〈B, j| + (t1 − γ /2) |B, j〉 〈A, j|

+
N−1∑
j=1

t2(|A, j + 1〉 〈B, j| + |B, j〉 〈A, j + 1|). (19)

Using Eq. (12) again, we can derive3

B(ε) =
(

−h−1 |u(z)〉 −h−1 |u(z′)〉
−h1zN+1 |u(z)〉 −h1z′N+1 |u(z′)〉

)
. (20)

Due to the structure of h1 and h−1 in Eq. (11), having only one
nonzero row, the condition for B(ε) to have nonzero solutions
is equivalent to (

−t2φB −t2φ′
B

−t2zN+1φA −t2z′N+1φ′
A

)
, (21)

where we denote

|u(z)〉 =
(

φA

φB

)
, |u(z′)〉 =

(
φ′

A

φ′
B

)
. (22)

Furthermore, due to Eq. (15), we have the relations

φB = φA

ε

(
t1 − γ

2
+ t2z

)
, φ′

B = φ′
A

ε

(
t1 − γ

2
+ t2z′

)
.

(23)

Substituting Eq. (23) into Eq. (21) and making the determinant
of Eq. (21) equal to 0, we get(

t1 − γ

2
+ t2z

)
z′N+1 =

(
t1 − γ

2
+ t2z′

)
zN+1. (24)

Notably, according to Vieta’s theorem and Eq. (13), we can
derive zz′ = (t1 − γ /2)/(t1 + γ /2) ≡ r. Substituting this into
Eq. (24), we obtain(

t1 − γ

2

)
z2N+2 + t2rz2N+1 − t2rN+1z −

(
t1 − γ

2

)
rN+1 = 0.

(25)

This is a (2N + 2)th-order polynomial, typically having 2N +
2 roots. However, considering Eq. (24), we observe that mul-
tiple roots exist for z = z′ = ±√

r, which should be excluded,
resulting in a total of 2N roots.

3Try to use the same technique as in footnote 2.
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FIG. 2. The numerical solution of Eq. (25), when t1 = 3/2, t2 =
1, γ = 4/3, N = 40. The blue line represents the circle |z| = √|r| in
the complex plane.

Therefore, we can obtain the wave function of the system
in the open boundary condition:

|ψε〉 = cz |u(z)〉 |z〉 + cz′ |u(z′)〉 |z′〉 ;

z is the solution of Eq. (25), z �= ±√
r, z′ = r/z.

(26)

The coefficients cz and cz′ can be readily determined from
B(ε) or Eq. (21):

cz

cz′
= −φ′

B

φB
or

cz

cz′
= − z′N+1φ′

A

zN+1φA
. (27)

Notably, these two expressions are equivalent. We will exam-
ine the behavior of z as N approaches infinity next.

Consider a specific example of a non-Hermitian system
with t1 = 3/2, t2 = 1, γ = 4/3, and N = 40. Solving Eq. (25)
for this example using Mathematica, we plot the solutions in
the complex plane, as depicted in Fig. 2.

We observe that all solutions of Eq. (25) lie on the circle
|z| = √|r|. This outcome aligns with the findings in Ref. [2],
where it is stated that, as N → ∞, z and z′ in Eq. (24) must
share the same absolute value. Otherwise, one side of Eq. (24)
tends toward zero as N grows. Consequently, in the limit of
N → ∞, any z satisfying |z| = √|r| can generate a wave
function in Eq. (26).4

In Refs. [2,5], |z| = √|r| is termed the generalized
Brillouin zone (GBZ), distinguishing it from the conven-
tional Brillouin zone in Hermitian systems. Employing the
techniques of generalized Bloch theory, we deduce the GBZ
for the non-Hermitian system under both periodic and open
boundary conditions. Our analysis reveals that the GBZ is
contingent on the boundary condition—specifically, |z| =√|r| for open boundary conditions and |z| = 1 for periodic
boundary conditions.

4Except z = ±√
r, but these seem unimportant in the context of

N → ∞.

IV. THE GREEN’S FUNCTION OF THE
NON-HERMITIAN SYSTEM

One of the main objectives of our article is to derive the
Green’s function for the non-Hermitian system. For a non-
Hermitian system with wave functions denoted as {|ψε〉}, its
Green’s function is expressed as follows:

G(ω) =
∑

ε

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

1

ω − ε
, (28)

where H |ψε〉 = ε |ψε〉 and 〈ψ̃ε| H = ε 〈ψ̃ε|. For the periodic
boundary condition, substituting Eq. (18) into Eq. (28) yields

G(ω) =
∑

l

∑
z

|ul (z)〉 〈ũl (z)|
N[ω − εl (z)]

|z〉 〈z̄−1| , (29)

where 〈ũ(z)| is the left eigenvector of h(z). The detailed de-
duction is provided in Appendix A.

It is important to note that we have cleverly replaced the
sum over ε with a sum over z. Because in Eq. (13), one z may
have multiple corresponding ε, denoted as εl (z), the summa-
tion should involve all possible εl (z) and their corresponding
eigenvector |ul (z)〉 for a specific z. In the specific case of the
system under consideration, which exhibits chiral symmetry,
every z in the GBZ corresponds to two ε, satisfying ε1(z) =
−ε2(z). However, in a more general scenario, the GBZ may
be decomposed into different sub-GBZs, each corresponding
to an independent closed curve in the complex plane. Each
sub-GBZ corresponds to a Riemann surface of the solution of
Eq. (13) [4]. In such cases,

∑
ε ↔ ∑

l

∑
z∈GBZl

.
Now, let us explore the case as N → ∞. Assuming that

in this limit, z are uniformly distributed in the GBZ, the
difference between z becomes

�z = z(ei 2π
N − 1) ≈ 2π iz

N
. (30)

This leads to the expression

〈k| G(ω) | j〉 =
∑

l

∑
z

�z

2π iz

|ul (z)〉 〈ũl (z)|
ω − εl (z)

zk− j

N→∞−−−→
∑

l

∫
|z|=1

dz

2π iz

|ul (z)〉 〈ũl (z)|
ω − εl (z)

zk− j . (31)

This expression represents the Green’s function of the peri-
odic boundary non-Hermitian system in the limit as N → ∞.

For open boundary conditions, assume the corresponding
left eigenvalue of |ψε〉 in Eq. (26) is

〈ψ̃ε| = c̃z 〈ũ(z)| 〈z̄−1| + c̃z′ 〈ũ(z′)| 〈z̄′−1| . (32)

Likewise, denote

〈ũ(z)| =
(

φ̃A

φ̃B

)T

, 〈ũ(z′)| =
(

φ̃′
A

φ̃′
B

)T

. (33)

Similarly to Eq. (27), we have

c̃z

c̃z′
= − φ̃′

B

φ̃B
or

c̃z

c̃z′
= − z′−(N+1)φ̃′

A

z−(N+1)φ̃A
. (34)

Since Eq. (27) and Eq. (34) are in ratio form, it is con-
vincing to assume czc̃z + cz′ c̃z′ = 1. Denoting Nε = 〈ψ̃ε|ψε〉,
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substituting Eq. (32) and Eq. (26) into Eq. (28), we derive the
Green’s function:

G(ω) = 1

2

∑
l

∑
z

1

Nε[ω − εl (z)]
(|ul (z)〉 〈ũl (z)| |z〉 〈z̄−1|

+ 2cz′ c̃z |ul (z
′)〉 〈ũl (z)| |z′〉 〈z̄−1|). (35)

The appearance of 1
2 is because Eq. (26) contains two com-

ponents |z〉 and |z′〉 (see Appendix A). Equation (35) is a
crucial result in our paper, precisely delineating the Green’s
function of a non-Hermitian system under open boundaries for
any size. Upon comparison with the periodic boundary case
[Eq. (29)], Eq. (35) can be further decomposed into two parts:

Gbulk (ω) = 1

2

∑
l

∑
z

1

Nε[ω − εl (z)]
|ul (z)〉 〈ũl (z)| |z〉 〈z̄−1| ,

Gbound(ω) = 1

2

∑
l

∑
z

2cz′ c̃z

Nε[ω − εl (z)]
|ul (z

′)〉 〈ũl (z)| |z′〉〈z̄−1| .

(36)

The nomenclature Gbulk for the first part is justified as it
closely relates to the Green’s function in the periodic bound-
ary, while the second part, named Gbound, represents an
additional term in open boundary conditions. Similar opera-
tions are found in Ref. [18].

Again we try to understand the case N → ∞. Still assum-
ing that z are located in the GBZ uniformly, since there are
2N possible z in the open boundary according to Eqs. (25)
and (26), the difference between z becomes

�z = z(e
iπ
N − 1) ≈ π iz

N
. (37)

In the limit N → ∞, where Nε → N , the results for
Gbulk (ω) and Gbound(ω) are given by5

〈k| Gbulk (ω) | j〉 =
∑

l

∫
z∈GBZl

dz

2π iz

|ul (z)〉 〈ũl (z)|
ω − εl (z)

zk− j,

〈k| Gbound(ω) | j〉 =
∑

l

∫
z∈GBZl

dz

2π iz
2cz′ c̃z

× |ul (z′)〉 〈ũl (z)|
ω − εl (z)

z′kz− j . (38)

While the deductions presented in Eq. (38) offer a pleas-
ing theoretical framework, certain limitations arise during the
transition from finite to infinite systems. First, in the case of
open boundaries where z are situated in sub-GBZs with mod-
ules not equal to 1, the convergence from Eq. (36) to Eq. (38)
is of the order |z|k− j/N . Consequently, when considering the
Green’s function between the first and last lattice sites, the

5The attentive reader may observe the change in the subscript of
the integral in Eq. (38) now spanning over GBZl . This adjustment
does not introduce complications in the systems under consideration.
One can interpret it as a scenario where two sub-GBZs overlap at
|z| = √|r|. These equations can be responsible for a more general
non-Hermitian system. However, in cases where the sub-GBZs are
not circles, one must modify the integration term from

∫
z∈GBZl

dz
2π iz to∫

z∈GBZl
( dz

2π iz − d|z|
2π i|z| ). For further details, refer to Appendix A.

convergence speed becomes |z|N/N or |z|−N/N . This poses a
challenge for convergence as N → ∞ unless |z| = 1. How-
ever, for any fixed k − j, regardless of its magnitude, there
exists a sufficiently large N allowing Eq. (36) to converge to
Eq. (38).

Second, the coefficient 2cz′ c̃z in Gbound is determined by
Eqs. (27) and (34), signifying their dependence not only on z
and z′ but also on N . The ratio z′N+1/zN+1, appearing in both
Eq. (27) and Eq. (34), lacks a well-defined limit as N → ∞
from a mathematical perspective. Consequently, the integral
of Gbound in Eq. (38) is not well defined. These limitations
render Eq. (38) only a formal theory. Nevertheless, the bulk
properties of non-Hermitian systems can still be predicted by
Gbulk in Eq. (38), as supported by our analysis and others
[7–9].

It is noteworthy that a third part, Gedge(ω), may emerge due
to the presence of edge states. This term is expressed as

Gedge(ω) =
∑

l

|0l〉 〈0̃l |
ω

. (39)

Here |0l〉 and 〈0̃l | represent the lth edge state and its corre-
sponding left eigenvector. For the system under consideration,
two edge states exist due to chirality. In summary, the full
expression for non-Hermitian systems is given by

G(ω) = Gbulk (ω) + Gbound(ω) + Gedge(ω). (40)

The appearance of the third term is contingent on the existence
of edge states. While the precise behavior of Gbulk and Gbound

when N → ∞ remains an open question, we plan to examine
Eq. (38) using numerical methods in the subsequent section.

V. CORRELATION MATRIX
AND THE NUMERICAL RESULTS

In this section, our primary focus is on the correlation
matrix of the open boundary non-Hermitian system, a vital
tool for describing physical systems with applications ranging
from entanglement entropy to various other domains [19,20].
We define â†

k and âk as the creation and annihilation op-
erators of lattice |A, k〉, and b̂†

j and b̂ j as those of lattice

|B, j〉. {âk, â†
j} = {b̂k, b̂†

j} = δk j , {âk, b̂†
j} = {b̂k, â†

j} = 0 be-
ing the fermionic operator, the standard expression for the
correlation matrix in the context of non-Hermitian systems is
given by Eq. (41):

(C)k j = 〈�̃0| ĉ†
k ĉ j |�0〉 . (41)

Here,

ĉ j = â j, ĉN+ j = b̂ j,
(42)

ĉ†
j = â†

j , ĉ†
N+ j = b̂†

j,

for j = 1, . . . , N . 〈�̃0| and |�0〉 represent the left and right
ground states of the system [21,22].

From Eq. (42), it is evident that the correlation matrix C
can be decomposed into

C =
(

QAA QAB

QBA QBB

)
. (43)
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Here,

(QAA)k j = 〈�̃0| â†
k â j |�0〉 , (QAB)k j = 〈�̃0| â†

k b̂ j |�0〉 ,

(QBA)k j = 〈�̃0| b̂†
kâ j |�0〉 , (QBB)k j = 〈�̃0| b̂†

kb̂ j |�0〉 .

The remaining paragraphs of this section will focus on
calculating these matrix elements using the Green’s function
we derived and comparing the results with direct numerical
matrix decomposition.

When |�0〉 = ⊗ε∈E |ψε〉 and 〈�̃0| = ⊗ε∈E 〈ψ̃ε|, Eq. (41)
can be alternatively expressed as

C =
∑
ε∈E

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

. (44)

Comparing this equation with Eq. (28), and using the residue
theorem, we obtain

C = 1

2π i

∫
�E

G(ω)dω. (45)

Here, �E is a closed curve containing all ε in E. In con-
ventional Hermitian systems, the ground state is commonly
defined as the half-filled state, where particles occupy states
from the lowest energy up to half of all available states.
This implies completely filling one energy band in the case
of two-band systems with chiral symmetry. However, in
non-Hermitian systems, the notion of “half filled” becomes
ambiguous due to the presence of a complex energy spectrum
[23,24]. In our study, we maintain the term “half filled” to
signify the occupation of one energy band, with further details
provided later.

By substituting the expression of the Green’s function of
the open boundary into Eq. (45), we find that the matrix
elements in Eq. (43) can be given by

(QAA)k j = 1
2

(
qk− j

δ − /q
k, j
AA

)
, (QAB)k j = 1

2

( − qk− j
AB + /q

k, j
AB

)
,

(QBA)k j = 1
2

( − qk− j
BA + /q

k, j
BA

)
, (QBB)k j = 1

2

(
qk− j

δ − /q
k, j
BB

)
,

(46)

for both the exact expression [Eq. (36)] and the formal expres-
sion [Eq. (38)]. Refer to Appendix B for detailed deduction of
Eq. (46).

The components present in Eq. (46) are different in the
exact formula and the formal expression; we will employ
numerical methods to validate them in both scenarios.

A. The exact expression

For the exact expression, the components in Eq. (46) are
given by [Eq. (B10) and Eq. (B17)]

qk− j
δ =

∑
z

zk− j

2Nε

, qk− j
AB =

∑
z

zk− j

2Nε

qAB(z),

qk− j
BA =

∑
z

zk− j

2Nε

qBA(z), /q
k, j
AA =

∑
z

z′kz− j

2Nε

qAB(z′)qBA(z),

/q
k, j
AB =

∑
z

z′kz− j

2Nε

qAB(z′), /q
k, j
BA =

∑
z

z′kz− j

2Nε

qBA(z),

/q
k, j
BB =

∑
z

z′kz− j

2Nε

. (47)

FIG. 3. The energy spectrum of the open-boundary non-
Hermitian system, when t1 = 1/2, t2 = 1, γ = 5/2, N = 40. The
colored closed curve is �E; the arrow indicates the integral direction.

Here, z′ = r/z,

qAB(z) =
(

t1 + γ

2
+ t2z−1

)
/ε(z),

qBA(z) =
(

t1 − γ

2
+ t2z

)
/ε(z). (48)

Nε = N − 1
4 {[q1(z)q2(z′) + 1] 〈z̄′−1|z 〉 + [q1 (z′)q2(z) + 1] ×

〈z̄−1 |z′〉}, and ε(z) is the eigenvalue of h(z) in Eq. (12) that is
not encircled by �E.

Let us take a specific example with N = 40, t1 = 1/2, t2 =
1, γ = 5/2 for numerical validation. Its energy spectrum is
plotted in Fig. 3.

As observed in the plotted energy spectrum, the system
exhibits symmetry around the real axis in the complex plane,
and no edge states are present. This characteristic designates
the current phase as the entrapped insulator, as illustrated
in Fig. 15 of Ref. [24]. In this phase, the energy spectrum
is bifurcated into two bands—one with energy possessing a
positive imaginary part and the other with energy having a
negative imaginary part. As mentioned earlier, we define “half
filled” as the occupation of one energy band. To be precise, we
select the energy band with a negative imaginary part. In this
case, �E is chosen to surround all energy points in the lower
half plane.

FIG. 4. The logarithm of absolute value of (QAB)k j and (QBA)k j ,
when N = 40, t1 = 1/2, t2 = 1, γ = 5/2. The calculation results
using the two methods are identical; the maximum relative error for
(k, j) pairs <10−32.
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FIG. 5. The value of (QAA)k j or (QBB)k j , when N = 40, t1 = 1/2,
t2 = 1, γ = 5/2. The calculation results using the two methods are
identical; the maximum relative error for (k, j) pairs <10−32.

To verify Eq. (46), we employ numerical methods. First,
we perform an eigenvector decomposition of H , then use
Eq. (44) directly to obtain the correlation matrix. We compare
this result with the one calculated using Eq. (46) and Eq. (47).
Remarkably, the results match precisely using both methods
as depicted in Fig. 4 and Fig. 5.

We use the relative error to measure the correspondence be-
tween our Green’s function method and direct decomposition,
defined as

〈QAA〉k j =
∣∣(Qg

AA

)
k j − (

Qr
AA

)
k j

∣∣∣∣(Qr
AA

)
k j

∣∣ . (49)

Here, 〈 〉 denotes the relative error for the matrix with which
we are concerned, superscript g denotes that this quantity is
obtained by our Green’s function method, and superscript r

denotes that this quantity is obtained by direct decomposition.
Our calculation shows that for the exact expression we

propose, Max1�k, j�N {〈QAA〉k j, 〈QAB〉k j, 〈QBA〉k j, 〈QBB〉k j} <

10−32, for the parameters we chose, suggesting they are
identical.

Additionally, we observe that the results of (QAA)k j and
(QBB)k j are precisely 1

2δk j for Fig. 5. This behavior arises due
to chirality. In Eq. (44), if the sum is taken for all ε rather than
just half, we obtain

∑
ε

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

= 1. (50)

The existence of chirality implies

∑
ε

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

=
∑
ε∈E

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

+
∑
ε∈Ec

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

=
∑
ε∈E

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

+
∑
ε∈E

σ⊗N
z

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

σ⊗N
z .

(51)

FIG. 6. The energy spectrum of the open-boundary non-
Hermitian system, when N = 40, t1 = 1/2, t2 = 1, γ = 4/3. The
colored closed curve is �E; the arrow indicates the integral direction.

where σz is the Pauli-Z matrix. Evidently, we have

〈A, k|
∑
ε∈E

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

|A, j〉

= 〈A, k|
∑
ε∈E

σ⊗N
z

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

σ⊗N
z |A, j〉 ,

〈A, k|
∑
ε∈E

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

+
∑
ε∈E

σ⊗N
z

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

σ⊗N
z |A, j〉 = δk j .

(52)

This implies 〈A, k|C |A, j〉 = 1
2δk, j , i.e., (QAA)k j = 1

2δk j . The
same holds for (QBB)k j . Note that in the above deduction, we
required E to contain exactly half of all eigenstates. This is
crucial as we are now considering situations with edge states.

Consider a system with N = 40, t1 = 1/2, t2 = 1, γ =
4/3; its energy spectrum is plotted in Fig. 6. In this scenario,
the energy spectrum exhibits symmetry around the imagi-
nary axis and features edge states, designating this phase as
the topological insulator phase, as illustrated in Fig. 15 of
Ref. [24]. Notably, in this case, the energy spectrum is divided
into two bands: one with energy exhibiting a positive real
part, and the other with energy having a negative real part.

FIG. 7. The logarithm of absolute value of (QAA)k j and (QBB)k j ,
when N = 40, t1 = 1/2, t2 = 1, γ = 4/3. The calculation results us-
ing the two methods are identical; the maximum relative error for
(k, j) pairs <1.3 × 10−7.
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FIG. 8. The logarithm of absolute value of (QAB )k j and (QBA)k j ,
when N = 40, t1 = 1/2, t2 = 1, γ = 4/3. The calculation results us-
ing the two methods are identical; the maximum relative error for
(k, j) pairs <1.3 × 10−7.

In our definition of the ground state for this case, we fill up
the energy band characterized by a negative real part. In other

words, �E is selected to envelop all energy points situated in
the left half plane. The numerical results of the correlation
matrix are depicted in Figs. 7 and 8.

The results obtained using Eqs. (46) and (47) are consistent
with the direct decomposition. The calculation shows
that Max1�k, j�N {〈QAA〉k j, 〈QAB〉k j, 〈QBA〉k j, 〈QBB〉k j} <

1.3 × 10−7 in this parameter set. It is important to note that
(QAA)k j and (QBB)k j in Fig. 7 are not precisely 1

2δk j due to the
presence of edge states. The set E that we are concerned with
is not exactly half of all states. However, including one of the
edge states in Eq. (44) allows us to recover 1

2δk j for (QAA)k j

and (QBB)k j .

B. The formal expression

In the final analysis, we aim to validate our formal theory
with numerical results. For the formal expression, the compo-
nents in Eq. (46) are given by [Eq. (B22) and Eq. (B31)]

qk− j
δ = δk, j, qk− j

AB =
∫

|z|≡√|r|

dz

2π iz
qAB(z)zk− j, qk− j

BA =
∫

|z|≡√|r|

dz

2π iz
qBA(z)zk− j,

/q
k, j
AA =

∫
|z|≡√|r|

dz

2π iz
[qAB(z′)qBA(z)z′kz− j + z′(k−N−1)z(N+1− j)], /q

k, j
AB =

∫
|z|≡√|r|

dz

2π iz
[qAB(z′)z′kz− j + qAB(z)z′(k−N−1)z(N+1− j)],

/q
k, j
BA =

∫
|z|≡√|r|

dz

2π iz
[qBA(z)z′kz− j + qBA(z′)z′(k−N−1)z(N+1− j)], /q

k, j
BB =

∫
|z|≡√|r|

dz

2π iz
[z′kz− j + qAB(z)qBA(z′)z′(k−N−1)z(N+1− j)].

(53)

We still chose the system with N = 40, t1 = 1/2, t2 = 1, γ =
4/3; the relative error between formal theory [Eq. (46) and
Eq. (53)] and the numerical results is shown in Fig. 9 and
Fig. 10.

The agreement between our formal theory and numerical
results, as shown in Fig. 9 and Fig. 10, is remarkable. Our
formal expression can describe the system well in the regime
away from the boundary. Some points near the edge are mis-
matched because the integrated expression does not converge
in this regime as discussed in Sec. IV. However, for QAA and
QBB, even in regions close to the edge, where the relative

FIG. 9. The relative error of (QAA)k j and (QBB)k j between formal
theory and numerical results, when N = 40, t1 = 1/2, t2 = 1, γ =
4/3. Choose 360 points uniformly in circle |z| = √|r| when doing
numerical integration of formal theory.

error is under 20%, our formal theory provides a consistent
description of QAA and QBB. Disregarding this relatively small
error, we can express QAA and QBB as follows:

(QAA)k j = 1
2

(
qk− j

δ + /q
k, j
AA

) = 1
2

(
δk j + /q

k, j
AA

)
,

(QBB)k j = 1
2

(
qk− j

δ + /q
k, j
BB

) = 1
2

(
δk j + /q

k, j
BB

)
. (54)

Here, we use the fact that qk− j
δ = δk j in Eq. (53). As men-

tioned earlier, including one of the terms of the edge state in

FIG. 10. The relative error of (QAB)k j and (QBA)k j between
formal theory and numerical results, when N = 40, t1 = 1/2, t2 =
1, γ = 4/3. Choose 360 points uniformly in circle |z| = √|r| when
doing numerical integration of formal theory.
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the correlation matrix will recover 1
2δk j . This is expressed as

(QAA)k j + 〈A, k| (|01〉 〈0̃1|) |A, j〉 = 1
2δk j,

(QBB)k j + 〈B, k| (|01〉 〈0̃1|) |B, j〉 = 1
2δk j . (55)

Because of Eq. (54), we can have

〈A, k| (|01〉 〈0̃1|
) |A, j〉 = − 1

2 /q
k, j
AA ,

〈B, k| (|01〉 〈0̃1|
) |B, j〉 = − 1

2 /q
k, j
BB , (56)

where /q
k, j
AA and /q

k, j
BB obey Eq. (53). This result is particularly

interesting as it provides insights into the behavior of the edge
state in the context of the correlation matrix.

We further note that because of chirality,

|02〉 〈0̃2| = σ⊗N
z |01〉 〈0̃1| σ⊗N

z

⇒
{ 〈A, k| (|01〉 〈0̃1|

) |A, j〉 = 〈A, k| (|02〉 〈0̃2|
) |A, j〉 ,

〈B, k| (|01〉 〈0̃1|
) |B, j〉 = 〈B, k| (|02〉 〈0̃2|

) |B, j〉 .

(57)

Using Eq. (39), we can rewrite Eq. (56) as

〈A, k| Gedge(ω) |A, j〉 = − 1

ω
/q

k, j
AA ,

〈B, k| Gedge(ω) |B, j〉 = − 1

ω
/q

k, j
BB . (58)

VI. SUMMARY AND DISCUSSION

In this paper, starting from the generalized Bloch theorem,
we have derived the generalized Brillouin zone theory. In par-
ticular, we examined a classical non-Hermitian model under
periodic and open boundary conditions. We have success-
fully derived exact summation expressions for both scenarios
[Eq. (29) for periodic boundary conditions and Eq. (35) for
open boundary conditions]. Additionally, we have extended
our findings to encompass an infinite-size system under open
boundary conditions, presenting a formal expression in in-
tegral form [Eq. (38)]. Notably, in comparison to existing
literature [7–9], the term Gbound in Eq. (38) can be viewed
as a correction to their formulas. We have also introduced a
method for deriving the correlation matrix using the Green’s
function. We validated our theoretical framework by com-
paring numerical results with outcomes derived from our
approach. The numerical analysis not only confirms the ac-
curacy of our exact formula but also demonstrates the high
fidelity of our formal expression.

The theoretical framework proposed in this paper boasts
versatile applications. Beyond the conventional use of the
Green’s function for system response and dynamic descrip-
tion, its relationship with the correlation function allows for
seamless application in deriving and theoretically analyzing
entanglement spectra and the system’s topological proper-
ties. An illustrative example showcasing its utility in edge
states has been provided in Eq. (58), hinting at its potential
to offer new insights into bulk-boundary correspondence in
non-Hermitian systems. Although our investigation focused
on a model with chiral symmetry, we posit that the framework
we proposed applies to a broader family of non-Hermitian
systems, encompassing various boundary conditions.

One limitation of this paper lies in our numerical tests,
which were confined to a lattice of size 40. Future work could
delve into the scaling behavior of our expressions, spanning
from finite to infinite lattice sizes, providing a more compre-
hensive understanding of their applicability.
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APPENDIX A: SOME DEDUCTION DETAILS
OF THE GREEN’S FUNCTION IN SEC. IV

For a system with Hamiltonian H , its Green’s function can
be expressed in formalization as

G(ω) = 1

ω − H
. (A1)

For the Hermitian system, the above equation can be further
written as

G(ω) =
∑

n

|φn〉 〈φn|
ω − H

=
∑

n

|φn〉 〈φn|
ω − En

, (A2)

where {|φn〉} is the right eigenstates of H satisfying H |φn〉 =
En |φn〉 and

∑
n |φn〉 〈φn| = 1, 〈φn|φm〉 = δnm. However, for a

non-Hermitian system, its right eigenstates do not have or-
thogonality, usually; we choose both left and right eigenstates
to form an orthogonal complete set [25], i.e.,

H |φn〉 = En |φn〉 , 〈χn| H = En 〈χn| , (A3)

〈χn|φm〉 = 〈χn|φn〉 δnm,
∑

n

|φn〉 〈χn|
〈χn|φn〉 = 1. (A4)

Hence, the Green’s function in the non-Hermitian system can
be further written as

G(ω) =
∑

n

|φn〉 〈χn|
〈χn|φn〉

1

ω − H
=

∑
n

|φn〉 〈χn|
〈χn|φn〉

1

ω − En
.

(A5)

For the systems with which we are concerned, just substitute
Eq. (14) into the Eq. (A5); we can get

G(ω) =
∑

ε

|ψε〉 〈ψ̃ε|
〈ψ̃ε|ψε〉

1

ω − ε
, (A6)

where 〈ψ̃ε| is the corresponding left eigenvector of |ψε〉,
satisfying

〈ψ̃ε| H = ε 〈ψ̃ε| ⇒ H† |ψ̃ε〉 = ε̄ |ψ̃ε〉 . (A7)

Since we have 〈i| H† | j〉 = h†
i− j , its corresponding bulk

Hamiltonian is h̃(z) = ∑r
l=−r h†

−l z
l = [h(z̄−1)]†; if h̃(z) has a
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right eigenvector ˜|u(z)〉 satisfying

h̃(z) ˜|u(z)〉 = ε̄ ˜|u(z)〉 ⇐⇒ [h(z̄−1)]†
˜|u(z)〉 = ε̄ ˜|u(z)〉, (A8)

then ˜〈u(z)| is the left eigenvector of h(z̄−1) for eigenvalue
ε. If we denote the left eigenvector of h(z) for ε as 〈ũ(z)|,
then ˜〈u(z)| = 〈ũ(z̄−1)|; then the left eigenvector of H for ε

is ˜〈u(z)| 〈z| = 〈ũ(z̄−1)| 〈z| or 〈ũ(z)| 〈z̄−1|. We note here that
one can always rescale 〈ũ(z)| to satisfy 〈ũ(z)|u(z)〉 = 1 just
for convenience, and we will make it the default in later
calculations.

We can further check this assertion by using the transla-
tional operator T ; since |z〉 = ∑

j∈Z z j | j〉, we have

|z̄−1〉 =
∑
j∈Z

z̄− j | j〉 , 〈z̄−1| =
∑
j∈Z

z− j 〈 j| , (A9)

〈z̄−1| T =
∑
j∈Z

z− j 〈 j|
∑
j∈Z

| j〉 〈 j + 1| = 〈z̄−1| z, (A10)

corresponding to Eq. (4). Therefore, we can deduce that
〈ũ(z)| 〈z̄−1| is the corresponding left eigenvector of |u(z)〉 |z〉.

Let us return to Eq. (A6); our goal is to derive the Green’s
function. The periodic condition is relatively easier since its
wave function only consists of one component; substituting
Eq. (18) and its corresponding left eigenvector into Eq. (A6),
we can get

G(ω) =
∑

ε

|u(z)〉 〈ũ(z)|
N (ω − ε)

|z〉 〈z̄−1| . (A11)

This is the Green’s function of the open boundary; changing
the subscript in the sum from ε into z yields Eq. (29).

Move on to the open boundary condition next. Denote the
corresponding left eigenvector of Eq. (26) as

〈ψ̃ε| = c̃z 〈ũ(z)| 〈z̄−1| + c̃z′ 〈ũ(z′)| 〈z̄′−1| . (A12)

There is no reason to assume the coefficients c̃z and c̃z′ are the
conjugates of cz and cz′ like the Hermitian case. Instead, we
shall use the boundary matrix again to decide them.

Since the left eigenvector of H is the right eigenvector of
H†, its boundary matrix yields

B̃(ε) =
(

P∂ (H† − ε̄1) |ũ(z)〉 |z̄−1〉
P∂ (H† − ε̄1) |ũ(z′)〉 |z̄′−1〉

)T

=
(

−h†
1 |ũ(z)〉 −h†

1 |ũ(z′)〉
−z̄−(N+1)h†

−1 |ũ(z)〉 −z̄′−(N+1)h†
−1 |ũ(z′)〉

)
.

(A13)

Further denote

〈ũ(z)| =
(

φ̃A

φ̃B

)T

, 〈ũ(z′)| =
(

φ̃′
A

φ̃′
B

)T

. (A14)

We can get

c̃z

c̃z′
= − φ̃′

B

φ̃B
or

c̃z

c̃z′
= − z′−(N+1)φ̃′

A

z−(N+1)φ̃A
, (A15)

similarly to Eq. (27).
Denote 〈ψ̃ε|ψε〉 = Nε; Nε will go to N as N increases to ∞.

This is because z and z′ have the same module in our model.
Assuming z = √|r|eiθ , z′ = √|r|eiθ ′

, we would have

1

N
〈z̄′−1|z〉 = 1

N

N∑
j

ei(θ−θ ′ ) j = 1

N

1 − ei(θ−θ ′ )(N+1)

1 − ei(θ−θ ′ ) , (A16)

1

N

∣∣∣∣∣1 − ei(θ−θ ′ )(N+1)

1 − ei(θ−θ ′ )

∣∣∣∣∣ <
2

N

1

|1 − ei(θ−θ ′ )|
N→∞−−−→
θ �=θ ′

0, (A17)

when N → ∞. This results in

〈z̄−1|z′〉 , 〈z̄′−1|z〉 → Nδzz′ . (A18)

Therefore, Nε → N in the limit case.
Substituting Eq. (A12) and Eq. (26) into Eq. (A6), we

derive the Green’s function:

G(ω) =
∑

ε

1

Nε(ω − ε)
[czc̃z |u(z)〉 〈ũ(z)| |z〉 〈z̄−1| + cz′ c̃z′ |u(z′)〉 〈ũ(z′)| |z′〉 〈z̄′−1| + czc̃z′ |u(z)〉 〈ũ(z′)| |z〉 〈z̄′−1|

+ c̃zcz′ |u(z′)〉 〈ũ(z)| |z′〉 〈z̄−1|]. (A19)

We now aim to change the sum over ε to the sum over z again. However, as a z goes over the GBZ, its corresponding z′ will
also go around the GBZ. Therefore,

∑
ε → 1

2

∑
l

∑
z, and we obtain

G(ω) = 1

2

∑
l

∑
z

1

Nε[ω − εl (z)]
[czc̃z |ul (z)〉 〈ũl (z)| |z〉 〈z̄−1| + czc̃z |ul (z)〉 〈ũl (z)| |z〉 〈z̄−1| + cz′ c̃z |ul (z

′)〉 〈ũl (z)| |z′〉 〈z̄−1|

+ c̃zcz′ |ul (z
′)〉 〈ũl (z)| |z′〉 〈z̄−1|]. (A20)

We have made the second term in the sum more symmetrical by changing z′ to z and switching the order of z and z′ in the
third term. If we chose czc̃z + cz′ c̃z′ = 1 for convenience, Eq. (A20) can be simplified to

G(ω) = 1

2

∑
l

∑
z

1

Nε[ω − εl (z)]
[|ul (z)〉 〈ũl (z)| |z〉 〈z̄−1| + 2cz′ c̃z |ul (z

′)〉 〈ũl (z)| |z′〉 〈z̄−1|]. (A21)
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Incorporating Eq. (A21) into a more generalized system
with open boundary conditions is possible. In [3,5], the au-
thors emphasize that in a non-Hermitian system under open
boundaries, wave functions consistently appear in the form
(z, z′), where |z| = |z′|. This phenomenon arises due to the
requirement of the wave function to be a stationary wave
and vanish at the open boundary, necessitating two parts with
equal intensity.

This indicates that the wave function would closely resem-
ble Eq. (26), except for the specific GBZ. Since |z| = |z′|, the
property Nε → N is preserved, suggesting that its formal ex-
pression for infinite size remains the same as Eq. (38), at least
when all sub-GBZs are circular. However, if the sub-GBZs
are not circular, Eq. (37) may not be satisfied, as is possible in
certain multiband systems [4].

In such cases, the difference of z can be expressed as
follows:

�z ≈ π iz

N
+ �|z|. (A22)

Catastrophically, the integral can only be expressed as∫ 2π

0
dθ
2π

, where θ is the main argument of z, given by

z = reiθ . Since
∮

z
dz

2π iz = ∮
z

dr
2π ir + ∫ 2π

0
dθ
2π

, a potential adjust-
ment to the formal expression is to replace

∮
z∈GBZl

dz
2π iz with∮

z∈GBZl
( dz

2π iz − d|z|
2π i|z| ), or simply written as

∮
z∈GBZl

dθ
2π

.

APPENDIX B: DEDUCTION DETAILS IN EQ. (46)

In this Appendix, we are going to deduct the matrix ele-
ment in Eq. (43) using Eq. (45). In Eq. (40), we see that G(ω)
has three parts; we should consider the integral of Gbulk in the
exact expression [Eq. (36)] first.

Follow the denotation in Eq. (22) and Eq. (33), and replace
the subscript of l into ±. Because of chiral symmetry, we have

|u±(z)〉 =
(

φA

±φB

)
, 〈ũ±(z)| =

(
φ̃A

±φ̃B

)T

. (B1)

Here,

h(z) |u±(z)〉 = ±ε(z) |u±(z)〉 ,

〈ũ±(z)| h(z) = ±ε(z) 〈ũ±(z)| . (B2)

Therefore,{〈ũ±(z)|u±(z)〉 = 1,

〈ũ±(z)|u∓(z)〉 = 0,
⇒ φAφ̃A = φBφ̃B = 1

2 . (B3)

This equation is very important and will be used thoroughly.
Moreover,

|u±(z)〉 〈ũ±(z)| =
(

φAφ̃A ±φAφ̃B

±φBφ̃A φBφ̃B

)

= 1

2

(
1 ±qAB(z)

±qBA(z) 1

)
, (B4)

where we denote qAB(z) = 2φAφ̃B, qBA(z) = 2φBφ̃A.

Because of Eq. (B2), we have⎧⎪⎨
⎪⎩

(
t1 + γ

2
+ t2z−1

)
φB = εφA,(

t1 − γ

2
+ t2z

)
φA = εφB,

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
t1 + γ

2
+ t2z−1

)/
2 = εφAφ̃B,(

t1 − γ

2
+ t2z

)/
2 = εφBφ̃A.

(B5)

That is,

qAB(z) =
(

t1 + γ

2
+ t2z−1

)
/ε,

qBA(z) =
(

t1 − γ

2
+ t2z

)
/ε. (B6)

We use Eq. (B3) to deduct Eq. (B5). Returning to Eq. (36),
we have∑

l

|ul (z)〉 〈ũl (z)|
ω − εl (z)

= 1

2

1

ω2 − ε2(z)

(
ω ε(z)qAB(z)

ε(z)qBA(z) ω

)
. (B7)

The subsequent step involves integrating around �E. Due to
the chirality, the two bands of the energy spectrum display
origin symmetry in the complex plane. Given our selection
of the ground state, filled from one energy band, �E should
encircle one energy band according to our choice. Assuming
we denote all the energy points in the chosen band as −ε, then
�E should surround all −ε.

By substituting Eq. (B7) into Eq. (36) and integrating
around �E, the result becomes

(Cbulk )k j =
∑

z

zk− j

2Nε

∫
�E

dω

2π i

∑
l

|ul (z)〉 〈ũl (z)|
ω − εl (z)

=
∑

z

zk− j

2Nε

1

2

(
1 −qAB(z)

−qBA(z) 1

)
. (B8)

Here, we denote Cbulk as the correlation matrix corresponding
to Gbulk. Cbulk can also be written as

Cbulk = 1

2

(
qk− j

δ −qk− j
AB

−qk− j
BA qk− j

δ

)
, (B9)

if we denote

qk− j
δ =

∑
z

zk− j

2Nε

, qk− j
AB =

∑
z

zk− j

2Nε

qAB(z),

qk− j
BA =

∑
z

zk− j

2Nε

qBA(z). (B10)

We are going to consider the integral over Gbound next.
First, calculate the coefficient 2cz′ c̃z. Because of Eq. (27) and
Eq. (34), we can assume

cz = kφ′
B, cz′ = −kφB; c̃z = lφ̃′

B, c̃z′ = −lφ̃B. (B11)
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Since we have czc̃z + cz′ c̃z′ = 1 and Eq. (B3), we have kl = 1
and

2cz′ c̃z = −2φBφ̃′
B. (B12)

Or we can assume

cz = kz′N+1φ′
A, cz′ = −kzN+1φA,

c̃z = lz′−(N+1)φ̃′
A, c̃z′ = −lz−(N+1)φ̃A. (B13)

Then the result would be

2cz′ c̃z = −2φAφ̃′
AzN+1z′−(N+1). (B14)

Note that the equivalence of Eq. (B12) and Eq. (B14)
is guaranteed by Eq. (24). If we choose the expression
Eq. (B12), then we have

2cz′ c̃z |u±(z′)〉 〈ũ±(z)|

= 2

(
−φBφ̃′

Bφ′
Aφ̃A ∓φBφ̃′

Bφ′
Aφ̃B

∓φBφ̃′
Bφ′

Bφ̃A −φBφ̃′
Bφ′

Bφ̃B

)

= 1

2

(−qAB(z′)qBA(z) ∓qAB(z′)
∓qBA(z) −1

)
. (B15)

Similar to Cbulk, we can get Cbound that corresponds to Gbound:

(Cbound )k j = 1

2

(
−/q

k, j
AA /q

k, j
AB

/q
k, j
BA −/q

k, j
BB

)
, (B16)

where

/q
k, j
AA =

∑
z

z′kz− j

2Nε

qAB(z′)qBA(z), /q
k, j
AB =

∑
z

z′kz− j

2Nε

qAB(z′),

/q
k, j
BA =

∑
z

z′kz− j

2Nε

qBA(z), /q
k, j
BB =

∑
z

z′kz− j

2Nε

. (B17)

If we choose the expression Eq. (B14), we can get

/q
k, j
AA =

∑
z

z′(k−N−1)z(N+1− j)

2Nε

,

/q
k, j
AB =

∑
z

z′(k−N−1)z(N+1− j)

2Nε

qAB(z),

/q
k, j
BA =

∑
z

z′(k−N−1)z(N+1− j)

2Nε

qBA(z′),

/q
k, j
BB =

∑
z

z′(k−N−1)z(N+1− j)

2Nε

qAB(z)qBA(z′).

(B18)

Equations (B17) and (B18) are equal for any finite N ,
where

Nε = 〈ψ̃ε|ψε〉 = N + czc̃z′ 〈ũ(z′)|u(z)〉 〈z̄′−1|z〉 + cz′ c̃z 〈ũ(z)|u(z′)〉 〈z̄−1|z′〉

= N − φ′
Bφ̃B(φAφ̃′

A + φBφ̃′
B) 〈z̄′−1|z〉 − φBφ̃′

B(φ′
Aφ̃A + φ′

Bφ̃B) 〈z̄−1|z′〉

= N − 1
4 [[q1(z)q2(z′) + 1] 〈z̄′−1|z〉 + [q1(z′)q2(z) + 1] 〈z̄−1|z′〉].

(B19)

This equation will only be useful when doing numerical cal-
culations.

We have obtained the integral of Gbulk and Gbound so far;
since the integral path we consider for the ground state usually
does not cover the origin, the integral for Gedge is 0. The
correlation matrix C is

C = Cbulk + Cbound =
(

QAA QAB

QBA QBB

)
, (B20)

where

(QAA)k j = 1
2

(
qk− j

δ − /q
k, j
AA

)
, (QAB)k j = 1

2

( − qk− j
AB + /q

k, j
AB

)
,

(QBA)k j = 1
2

( − qk− j
BA + /q

k, j
BA

)
, (QBB)k j = 1

2

(
qk− j

δ − /q
k, j
BB

)
.

(B21)

We recover Eq. (46) in Sec. V.
We are going to consider the matrix elements for formal

expression next. Transforming the sum in Eq. (B10) into

formal integration, we can get

qk− j
δ =

∫
|z|≡√|r|

dz

2π iz
zk− j = δk, j,

qk− j
AB =

∫
|z|≡√|r|

dz

2π iz
qAB(z)zk− j,

qk− j
BA =

∫
|z|≡√|r|

dz

2π iz
qBA(z)zk− j .

(B22)

The appearance of δk, j is the result of using the residue theo-
rem again.

Transforming Eq. (B17) and Eq. (B18) into formal integra-
tion, we can get

(1)
/q

k, j
AA =

∫
|z|≡√|r|

dz

2π iz
qAB(z′)qBA(z)z′kz− j, (B23)

(1)
/q

k, j
AB =

∫
|z|≡√|r|

dz

2π iz
qAB(z′)z′kz− j, (B24)

(1)
/q

k, j
BA =

∫
|z|≡√|r|

dz

2π iz
qBA(z)z′kz− j, (B25)

(1)
/q

k, j
BB =

∫
|z|≡√|r|

dz

2π iz
z′kz− j, (B26)
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for Eq. (B17), and

(2)
/q

k, j
AA =

∫
|z|≡√|r|

dz

2π iz
z′(k−N−1)z(N+1− j), (B27)

(2)
/q

k, j
AB =

∫
|z|≡√|r|

dz

2π iz
qAB(z)z′(k−N−1)z(N+1− j), (B28)

(2)
/q

k, j
BA =

∫
|z|≡√|r|

dz

2π iz
qBA(z′)z′(k−N−1)z(N+1− j), (B29)

(2)
/q

k, j
BB =

∫
|z|≡√|r|

dz

2π iz
qAB(z)qBA(z′)z′(k−N−1)z(N+1− j), (B30)

for Eq. (B18).

The equations with superscript (1) and equations with su-
perscript (2) are generally not equal; that is another mark to
the claim that Gbound is not well defined in the limit case.
However, we believe they both represent the behavior of the
system to some extent, so in our validation in Sec. V, we
simply choose the expressions

/q
k, j
AA =(1)

/q
k, j
AA +(2)

/q
k, j
AA ,

/q
k, j
AB =(1)

/q
k, j
AB +(2)

/q
k, j
AB ,

/q
k, j
BA =(1)

/q
k, j
BA +(2)

/q
k, j
BA ,

/q
k, j
BB =(1)

/q
k, j
BB +(2)

/q
k, j
BB . (B31)

They turn out to correspond to the direct simulation per-
fectly (see Fig. 9 and Fig. 10).
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